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Abstract

We propose an estimator for the mean of a random vector in R? that can be computed in time
O(n3® 4+ n%d) for n i.i.d. samples and that has error bounds matching the sub-Gaussian case. The
only assumptions we make about the data distribution are that it has finite mean and covariance; in
particular, we make no assumptions about higher-order moments. Like the polynomial time estima-
tor introduced by Hopkins (2018), which is based on the sum-of-squares hierarchy, our estimator
achieves optimal statistical efficiency in this challenging setting, but it has a significantly faster
runtime and a simpler analysis.

1. Introduction

Estimating the mean of a population given a finite sample is arguably the most fundamental statisti-
cal estimation problem. Despite the broad applicability and the fundamental nature of this problem,
an estimator achieving the optimal statistical rate has only been discovered recently. However the
optimal computational complexity of such an estimator is not well-understood.

In this paper, we are interested in obtaining high confidence estimates of the mean in the simple
setting where only the existence of the covariance of the distribution is assumed. That is, we would
like to find the smallest 75 such that given samples X1, ..., X, from a distribution D with mean u
our estimator X satisfies:

P{IX - ul 275} <6

To understand the inherent statistical limit of this problem, let us consider the simplified setting
where the covariance is the identity. The most natural estimator for the mean of the population is
the sample mean X = % > i1 X;. From the Central Limit Theorem, the distribution of X satisfies

V(X —p) BN (0, I), and assuming this conclusion holds for any n allows an r; satisfying

-0 L /).

Catoni (2012) shows that this rs is the optimal statistical performance achievable under such mild
assumptions. However, the above confidence interval only holds true asymptotically when the num-
ber of samples goes to infinity or when the distribution is sub-Gaussian. For finite sample results
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with a heavy-tailed distribution, applying Chebyshev’s inequality to the empirical mean gives only

d

The above bound is weaker than the one obtained by the Central Limit Theorem in two ways, the
dependence on the failure probability ¢ is polynomial in 1/4 instead of logarithmic and the term
depending on ¢ is multiplied by the dimensionality d as opposed to being part of a smaller additive
term. Unfortunately, Catoni (2012) also shows the above result is tight. That is, for any n, §, there
exists a distribution D,, 5 for which the bound guaranteed by Chebyshev’s inequality is optimal.
The poor performance of the empirical mean is due to its sensitivity to large outliers that oc-
cur naturally as part of the sample. The median-of-means framework was devised as a means of
circumventing such difficulties. It was independently developed by Nemirovsky and Yudin (1983);
Jerrum et al. (1986); Alon et al. (1999) and was later analyzed by Hsu and Sabato (2016); Lerasle
and Oliveira (2011); Minsker (2015). As part of this framework, the samples are first divided
into k batches and the mean of the samples is computed within each batch to obtain k estimates
Z1,...,Z;. Bach of these has mean p and variance %I . The empirical mean is simply the mean
of these k estimates, which is sensitive to outliers. The median-of-means estimator instead is the
geometric median of the k estimates, which has greater tolerance to outliers. The success of the
median-of-means estimator is due to the fact that it relies on only a fraction of estimates Z; being
close to the mean as opposed to all the estimates being close. Minsker (2015) shows this gives an

improved value of rs as follows:
[dlog1/d
rs = O ( ao8/9 / ) .
n

The confidence interval guaranteed by the median-of-means estimator is better than the one for the
empirical mean by improving the dependence on 1/4, but it is still poorer than we might expect
from the Central Limit Theorem. Subsequent work attempting to bridge this gap achieves better
rates than those guaranteed by the median-of-means but with stronger assumptions on the data gen-
erating distribution' (Joly et al., 2017). The question of whether it was statistically feasible to obtain
confidence intervals of the form guaranteed by the Central Limit Theorem was finally resolved by
Lugosi and Mendelson (2019). They devised an improved estimator, based on the median-of-means
framework, called the median-of-means tournament, which achieves CLT-like confidence intervals.
While the median-of-means estimator relies on the concentration of the number of Z; close to the
mean in Euclidean norm, the median-of-means tournament relies on the fact that along every direc-
tion v, the number of Z; close to the projection of the mean concentrates. The freedom to choose a
different set of Z; for each direction allow one to obtain a much smaller confidence interval than the
one for the median-of-means estimator. In subsequent work, following the PAC-Bayesian approach
of Catoni (2012), Catoni and Giulini (2017a) proposed a soft-truncation based estimator which ob-
tains CLT-like confidence intervals provided one has access to estimates of the trace and spectral
norm of the covariance matrix.

However, it is not known whether the estimators from Lugosi and Mendelson (2019); Catoni and
Giulini (2017a) are computationally feasible, as there are no known polynomial time algorithms to

1. Arate of O(y/d/n + /log( 1°§ ¢)/n) is achieved under a fourth moment assumption on the distribution.
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compute them. In contrast, the median-of-means and empirical mean can be computed in nearly-
linear time (Cohen et al., 2016). To alleviate this computational intractability, Catoni and Giulini
(2017b) proposed an efficient polynomial time estimator which achieves optimal statistical perfor-
mance up to second order terms, assuming the existence of higher order moments. The question of
computational tractability was subsequently resolved by Hopkins (2018), who showed that an algo-
rithm based on a sum-of-squares relaxation of the median-of-means tournament estimator achieves
the statistically optimal CLI-like confidence intervals. However, the runtime of this algorithm is
exorbitantly large? (O(nd + (log1/6)*® + d?3)). In the interesting regime where § = e~ this
reduces to a runtime of O(nd + d*®) and in the worst case setting where § = ¢~("), the runtime
reduces to O(nd + n*® + d?%).

__In this paper, we propose a novel algorithm which achieves a drastically reduced runtime—
O((log1/6)3% + (log1/3)?d + nd)—and a significantly simpler analysis. Our algorithm is a
descent-based method that iteratively improves an estimate of the mean. The main challenge of
such an approach is to estimate the descent direction. To this end, we crucially leverage the struc-
ture of the solutions to semidefinite programming relaxations of polynomial optimization problems
designed to test whether an estimate is close to the mean. Our main contributions are twofold; we
first show how exact solutions to the polynomial optimization problem furnish suitable descent di-
rections and that such descent directions can also be efficiently extracted from relaxations of such
problems and secondly, we show that these descent directions can be used in a descent style algo-
rithm for mean estimation. Our paper is organized as follows: in Section 2, we present our main
result, then in Section 3, as a warm-up, we devise a descent style algorithm for the case where we
are given exact solutions to the polynomial optimization problems mentioned previously and prove
that this algorithm achieves optimal statistical efficiency. This sets the stage for Section 4, where we
present our main algorithm based on semidefinite relaxations of the previously defined polynomial
optimization problems, leading to computationally efficient sub-Gaussian mean estimation.

2. Main result

Formally, our main result® is as follows:

Theorem 1 Let X = (X1,...,X,) € R"*? be n i.id. random vectors with mean 11 and co-
variance Y. Then Algorithm I instantiated with Algorithms 4 and 5 and run with inputs X, target
confidence 0, stepsize v = 1/20 and number of iterations T = 1000 log||11|| /€ returns a vector x*

satisfying:
TrX Y| log1/d
|l — p|| < max <€,480000 <\/ + \/’ [log 1/ )) ;
n n

with probability at least 1 — 0.

We can make the following comments:

e Our estimator is both statistically optimal and computationally efficient. It achieves sub-
Gaussian performance under minimal conditions on the distribution, and its runtime is
O((log 1/6)35 4 (log 1/8)?d + nd). See Section 4.2 for details.

2. Assuming standard runtimes of the Interior Point method for semidefinite programming (Alizadeh, 1995)
3. The constants are explicit but we believe sub-optimal.
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Figure 1: The direction v solution to MTE is well aligned with the vector joining the current esti-
mate x to the true mean .

e In the regime where § = e, we achieve a runtime of 6(d3'5 +nd). In the worst case regime

where § = ¢~ ("), we obtain O(n° + n?d). This is a significant improvement over the

algorithm in Hopkins (2018) which obtains O(nd + d?8) and O(nd + n?® + d8) respectively.

e The dependence of the number of iterations, 7', on || || can be avoided by initializing the algo-
rithm with the median-of-means estimate. In this case, we can instead use 7" = 1000 log d and
obtain the same guarantees, avoiding any dependence on the knowledge of |||, Tr(X), ||X]|.

e The estimator depends on the confidence level §. Devroye et al. (2016) propose an estimator
which works for a whole range of § but for a restricted class of distributions.

e QOur result does not explicitly depend on the dimension d and our algorithm can be extended to
a Hilbert space by working within the finite dimensional subspace containing the data points.

3. Warm-up

We present in this section a simple descent based algorithm. This algorithm is computationally
inefficient but achieves the same guarantees of Theorem 1 with a much simpler analysis which
nevertheless illustrates the main ideas behind the algorithm and proof of Theorem 1.

3.1. Intuition

We provide some intuition for our procedure, which iteratively improves an estimate of the mean.
We first consider the simpler problem of testing whether a given point is close to the mean. We
draw our inspiration from the main technical insight of Lugosi and Mendelson (2019), who show
that along any direction, most of the bucket means, Z;, are close to the mean, p. Thus, to test
whether a point, z, is far from the mean, it is sufficient to check whether there exists a direction
where most of the Z; are far away from z along that direction. This is formally expressed in the
following polynomial optimization problem:
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k
max Z b;
i=1

b? = b
lv]|* =1
bilv, Z; — x) > b2r Vi€ [k (MTE)
This polynomial problem over the set of variables b1, ...,b; and vy,..., vy is parameterized by

r > 0, the current estimate € R and the bucket means Z € R¥*¢_ Its polynomial constraints
are encoding the number of Z; beyond a distance r from x when projected along a direction v.
Intuitively, this program tries to find a direction v so as to maximize the number of Z; beyond a
distance r from x along that direction. Here, we know from (Lugosi and Mendelson, 2019) that for
an appropriate choice of r, along all directions v, a large fraction of the Z; are close to the mean.
Formally, for all directions v, |{i : [(Z; — u,v)| < r}| > 0.9k (see Corollary 5 ). Therefore this
optimization problem has a large value when z is far from the mean and can be used to certify this.
Strikingly, the direction v returned by the solution of the above problem also contains informa-
tion about the location of the mean when r is chosen appropriately, which enables improvement of
the quality of the current estimate. As illustrated in Figure 1, the direction returned by this opti-
mization problem is strongly correlated with the vector joining the current point x to the mean .

Algorithm 1 Mean Estimation

Input: Data Points X € R™*¢ Target Confidence ¢, Number of Iterations 7", Stepsize v
k < 3200log1/6
Split data points into % bins with bin 3; consisting of the points X (i=1) 2415 s Xi%
Zi < Mean(B;) Vi € [k] and Z < (Z1,...,Zy)
¥, xg + 0 and d*, dy + oo
fort =0:7do
d; < Distance Estimation(Z, x;)
g+ < Gradient Estimation(Z, z;)
if d; < d* then
Tr — 1y
d* < d;
end if
Tyl < Ty + ydige
14: end for
15: Return: z*

R e A U o > i e

—_ = = =
Wy 2

Algorithm 2 Distance Estimation Algorithm 3 Gradient Estimation
I: Input: Data Points Z € RF* Current 1: Input: Data Points Z € RF*¢, Current
point z point

2 d* =max{r >0: MTE(z,r,Z) > 0.9k}  2: d* = Distance Estimation(Z, )
3: Return: d* : (byg) = MTE(x,d*, Z)
: Return: g

AW

Therefore, moving a small distance along the vector v should intuitively take us closer to the mean.
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Given solutions to the polynomial optimization problem MTE, we may iteratively improve our
estimate until no further change is necessary.

3.2. Algorithm

In this section we put the intuition provided previously into practice and propose a procedure that
estimates the mean in the ideal situation where MTE can be exactly solved (the method is formally
described in Algorithm 1):

1. First, following the median of means framework, the samples X; are divided into k£ buckets

s=G=1yn/k X3

2. Second, the estimate of the mean is iteratively updated using a descent approach, based on
the solution of MTE. As mentioned in Section 3.1, we need to run MTE with an appropriate
choice of r for the solution v to be correlated with the direction z — p. In the Distance
Estimation step of our algorithm, we estimate a suitable choice of r (see Algorithm 2). This
value of r is subsequently used in the Gradient Estimation step, to obtain an appropriate
descent direction g (see Algorithm 3).

and the mean of the samples within each bucket is computed as Z; = % >

From this point on, we refer to the solution of polynomial equations MTE as (b,v) = MTE(z,r, Z).

3.3. Analysis warm-up

In this simplified setting, we provide an analysis of our method and show that it obtains the same
guarantees as those presented in Theorem 1. This is formally expressed in the following theorem
for Algorithm 1 instantiated with Algorithms 2 and 3.

Theorem 2 Let X = (X1,...,X,) € R"*? be n i.id. random vectors with mean 11 and co-
variance Y. Then Algorithm I instantiated with Algorithms 2 and 3 and run with inputs X, target
confidence 0, stepsize v = 1/4 and number of iterations T = 50log||u||/€ returns a vector x*

satisfying:
vy S [[log 1/5
|z* — p|| < max <e, 108000 <\/ it \/’ [log 1/ )) ,
n n

with probability at least 1 — .

The main steps involved in the proof are the following:

1. Distance Estimation: We show that the Distance Estimation step in Algorithm 2 provides an
accurate estimate of the distance of the current point from the mean. See Lemma 3.

2. Gradient Estimation: Next, we show that when x is far away from the mean p, the vector g
obtained by solving MTE in Algorithm 3 is well aligned with the vector joining the current
point x to the mean u. See Lemma 4.

3. Gradient Descent: Combining the previous two steps, we prove that we eventually converge
to a good approximation to the mean.
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In the proofs of our lemmas relating to the correctness of the Distance Estimation and the Gradient
Estimation steps, we make use of the following assumption:

Assumption 1 For the bucket means, Z = (Zy, ..., Zy), we have:

Vo e RY ol =1 = |{i: (Z; — p,v) > 300 (\/TrE/n + \/k:||2||/n>}‘ < 0.05k

The assumption is a formalization of the insight of (Lugosi and Mendelson, 2019), which shows
that along all directions, v, most of the bucket means are within a small radius of the true mean, g,
with high probability*.

First, we prove that the Distance Estimation step defined in Algorithm 2 is correct.

Lemma 3 Under Assumption 1, for all t € {0, ..., T} in the running of Algorithm 1, d; satisfies:

ld; — ||z — ]| < 300 (\/TrE/n + \/||E\|k:/n) .

Proof Letr* = 300 <\/Tr Y/n+ \/HEHk:/n) We first prove the lower bound ||z — u|| —7* < d;.

We may assume that ||z; — u|| > 7*, as the alternate case is trivially true. For r = ||z; — p| — r*,
we can simply pick the vector v = A where A is the unit vector in the direction of p — x;. Under
Assumption 1, we have that for at least 0.95k points:

(Zi —at,0) = (Zi — pyv) + (p—4,0) > o0 — pl| =77 =7,

This implies the lower bound holds in the case where ||z; — || > r*.

For the upper bound d; < ||z; — p|| + r*, suppose, for the sake of contradiction, there is a value
of r > ||zy — p|| + r* for which the optimal value of MT E(x,r, Z) is greater than 0.9%. Let v be
the solution of M T E(x¢,r, Z). This means that for 0.9% of the Z;, we have:

(Zi = o) = (Zi — 20,0) + {2y — p,0) 27— g — ]| > 7.

This contradicts Assumption 1 and proves the upper bound. |

Next, we prove the correctness of the Gradient Estimation step from Algorithm 3.

Lemma 4 [n the running of Algorithm 1, let us assume x; satisfies:

I = @l = 1200 (VT S/n -+ V/[E]R/n) | (M

and let A\ denote the unit vector in the direction of ;1 — xy. Then, under Assumption 1, we have that:

N

(9t,A) >

Proof Letr* = 300 (\/Tr Y/n+ \/HEHk:/n) We have, from the definition of d;, that for 0.9k
of the Z;, (Z; — x4, g+) > dy. We also have, under Assumption 1, that (Z; — u, g;) < r* for 0.95k

4. This will be made precise in Corollary 5.
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of the Z;. From the pigeonhole principle, there exists a Z; which satisfies both those inequalities.
Therefore, for that Z;, the lower bound from Lemma 3 implies

| —e|| =" < dy <(Zj — x4, 9t) = (Zj — t, ge) + (10— T, 9¢) <7+ || — 2 |[{A, ge)-

By rearranging the above inequality and using the assumption on ||u — 2| in Eq. (1), we get the
required conclusion. n

To control the probability that Assumption 1 holds, we assume the correctness of the following
corollary of Lemma 11, formalizing the insight of (Lugosi and Mendelson, 2019):

Corollary 5 LetY = (Y1,...,Ys) € RF* be k i.i.d. random vectors with mean 11 and covariance
A. Furthermore, assume k > 32001log 1/d. Then we have for all v € R such that ||v|| = 1:

{i: (Vi = py0) > 300 (VT A/k + \/HA||)}‘ < 0.05k

with probability at least 1 — §.

By instantiating Corollary 5 with the Y; = Z;, we see that Assumption 1 holds with high probability.
Finally, we put the results of Lemma 3, Lemma 4 and Corollary 5 together to prove Theorem 2.
Proof [of Theorem 2] Assume first that Assumption 1 holds. Let 7* = 1200 (\/ TrY/n+ /[|Z]k/ n) .

To start with, let us define the set G = {x : ||z — u|| < r*}. We prove the theorem in two cases:

Case 1: None of the iterates z; lie in G. In this case, note that by Lemma 3 and the definition
of r*, we have:

3 5
Zth —pl <di < Zth = ull- 2
Moreover, we have by the definition of the update rule of ; in Algorithm 1:

2 2 t 2 121541 t
— = — + —d — + =< — - =
th-‘rl /J’” ”LUt MH 2 t<xt ,U:,gt> 16 — ”':Et MH 4 16

3 25 23
< flan =l = gz — il + o — il < 2l —

where we have used Lemma 4 for the first inequality and the inequalities in Eq. (2) for the
second inequality. By iteratively applying the above inequality, we get the conclusion of the
theorem in this case.

Case 2: At least one of the iterates x; lies in G. Therefore, we have from Lemma 3:
d; < 1500 <\/Tr2/n + \/HEHk/n) :
We also have at the completion of the algorithm, from another application of Lemma 3:
2 — pl| — 300 (\/TrE/n + \/HEHk/n) < d* < dy < 1500 (\/TrE/n + \/||E||k/n) .

By re-arranging the above inequality, we get the desired result.

By Corollary 5, Assumption 1 holds with probability at least 1 — § and therefore, the conclusions
from Case 1 and Case 2 hold with probability 1 — 6. |

Bearing in mind that the polynomial optimization problem MTE is non-convex, we consider a
convex relaxation in the following section.
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4. Efficient Algorithm for Mean Estimation

In this section, we define a semi-definite programming relaxation of the polynomial optimization
problem MTE. We then design new Distance Estimation and Gradient Estimation algorithms that
use the tractable solutions to the relaxation instead of the original polynomial optimization problem.
We then use these solutions to update our mean estimate along the same lines as those from Sec-
tion 3, albeit with some added technical difficulty. Finally, we provide the analysis of the method
and prove Theorem 1.

4.1. The Semi-Definite Relaxation of MTE

Here, we propose a semidefinite programming relaxation of MTE, a variant of the Threshold-SDP
from (Hopkins, 2018). We first define a semidefinite matrix X € R(k+d+1)x(k+d+1) sumpolically
indexed by 1, the variables b; and v; and denote by the vector vy, = (Xp, vy - - -, Xb,0.):

k
max E X1y,
i=1

X1, = Xo b,
Xi1=1

d
Z Xoj; =1
j=1

<'Ubi7 Z; — x> > Xbi,bir Vi € [k]
X =0 (MT)
Similar to the polynomial optimization MTE, this optimization problem is also parameterized by

avector z € R% r > 0 and a matrix Z € RF*?, We refer to solutions of this program as
(X,m) = MT(z,r, Z) with m denoting the optimal value and X denoting the optimal solution.

Algorithm 4 Distance Estimation
1: Input: Data Points Z € R¥*?, Current point z
2: d* =max{r >0: MT(x,r,Z) > 0.9k}
3: Return: d*

Algorithm S Gradient Estimation

Input: Data Points Z € RF*d Current point x
d* = Distance Estimation(Z, x)
(X,m)=MT(z,d*, Z)
X, = Submatrix of X corresponding to the indices v;
g = Top singular vector of X,
H=A{i:(Z;—x,9) >0}
if || > 0.9k then

Return: g
else

Return: —g
: end if

R e A U o i e

—_ =
—_ O
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The main contribution of our paper is in showing that the solutions to the relaxed optimization
problem MT can be used to improve the mean estimate similarly to those of MTE. We redefine the
Distance and Gradient Estimation steps in Algorithm 1 using MT in Algorithms 4 and 5.

4.2. Algorithm

To efficiently estimate the mean, we instantiate Algorithm 1 to use solutions of MT instead of MTE.
The new Distance Estimation and Gradient Estimation procedures are stated in Algorithms 4 and 5.

As opposed to the polynomial optimization problem, solutions to the relaxation may not neces-
sarily return a single vector v but rather a semidefinite matrix which corresponds to the relaxation
of v. This matrix may not uniquely determine a direction of improvement. We, therefore, parse the
solution to isolate a provably good direction of improvement and use this to iteratively improve our
estimate. It is noteworthy that the singular value decomposition does not provide a sign direction.
Thankfully the correct orientation is easily ascertained using the data points.

To analyze the runtime of Algorithm 1 with Algorithms 4 and 5, we first note that the semidef-
inite relaxation has O(k? 4 d?) variables. However, by projecting all the data down to a subspace
containing the k bucket means, we may effectively reduce the number of variables to O(k?) with an
O(k*d) time pre-processing step. Therefore, we are now left with O(k?) variables. The runtime of
interior point methods for solving semidefinite programs with O(k?) variables and O (k) constraints
is O(k>5) (Alizadeh, 1995). Furthermore, a single call of the Distance Estimation procedure can be
efficiently implemented using 6(1) rounds of binary search on the parameter r. Therefore, the total
cost of a single call to Algorithm 4 is O(k®%). Similarly, the total cost of a call to Algorithm 5 is
5(!{:3'5). Since the cost of each iteration is dominated by a single call of Algorithm 4 and 5, the total
cost per iteration is O(k3). Since, we only run O(1) iterations, the total cost of the Algorithm 1
instantiated with Algorithms 4 and 5 is O (k3 + k?d + nd).

4.3. Analysis

We now prove Theorem 1. We follow the same lines as the proof of Theorem 2, but with the added
technical difficulties arising from the use of the semi-definite relaxation.

1. Distance Estimation: We show that the Distance Estimation step in Algorithm 4 provides an

accurate estimate of the distance of the current point from the mean. See Section 4.3.1.

2. Gradient Estimation: Next, we show that when x is far away from the mean p, the vector g
output by Algorithm 5 is well aligned with the vector joining the current point x to the mean
. See Section 4.3.2.

3. Gradient Descent: Combining the previous two steps, we prove that we eventually converge
to a good approximation to the mean. See Section 4.3.3.

The following assumption is required to prove the correctness of the Distance Estimation and Gra-
dient Estimation steps:

Assumption 2 For the bucket means, Z = (Zy, . .., Zy), let S, denote the set of feasible solutions
for MT(p,r, Z). Then, we have for all v > 300 <\/Tr X/n+ \/kHEH/n>

k

k

max Xp 0 < —.

Xe&E bisbi = 20
1=

10
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The above assumption is a strengthening of Assumption 1 for the case where we use MT instead of
MTE. We use the following fact at several points in the subsequent analysis:

Remark 6 Note that Assumption 2 implies Assumption 1.

4.3.1. DISTANCE ESTIMATION STEP

In this subsection, we analyze the Distance Estimation step from Algorithm 4. We show that an
accurate estimate of the distance of the current point from the mean can be found. We begin by
stating a lemma that shows that a feasible solution for MT'(z,r, Z) can be converted to a feasible
solution for MT (i, 300 (\/Tr Y/n+ \/k||EH/n) , Z) with a reduction in optimal value. The

proof of the following lemma may be found in Appendix C.

Lemma 7 Let us assume Assumption 2. Let X € REFd+D)x (k+d+1) pe g positive semi-definite
matrix, symbolically indexed by 1 and the variables b; and v;. Moreover, suppose that X satisfies:

d k
Xi1=1, Xpp = X1, ZXUJ-,U]- =1, ZXbi,bi > 0.9k.
j=1 i=1
Then, there is a set of at least 0.85k indices T such that for all i € T :
(Zi = ) < X300 (VIYS/n + VRS /n)

and a set of at least k /3 indices R such that for all j € R, we have Xb; b; = 0.85.

The following lemma, proved in Appedix D, shows that if the distance between the mean p and
a point x is small then the estimate returned by Algorithm 4 is also small.

Lemma 8 Suppose a point © € R satisfies ||z — p|| < 6000 (\/Tr Y/n+ \/k||ZH/n) Then,

under Assumption 2, Algorithm 4 returns a value d' satisfying

d' < 7500 (\/TrE/n + \/k:||2|]/n> .

The next lemma, whose proof may be found in Appendix E, shows that the distance between
the mean p and a point z can be accurately estimated as long as x is sufficiently far from .

Lemma 9 Suppose a point x satisfies d = ||z — p| > 6000 <\/Tr Y/n+ \/k:HZH/n> Then,

under Assumption 2, Algorithm 4 returns a value d' satisfying:

0.95d < d’ < 1.25d.

4.3.2. GRADIENT ESTIMATION STEP

In this section, we analyze the Gradient Estimation step of the algorithm. We show that an ap-
proximate gradient can be found as long as the current point x is not too close to the mean . The
following lemma shows that we obtain a non-trivial estimate of the gradient in Algorithm 5. The
proof of the following result may be found in Appendix F.

Lemma 10 Suppose a point x satisfies ||x — p|| > 6000 <\/Tr X/n+ \/k||EH/n) and let A be
the unit vector along . — x. Then under Assumption 2, Algorithm 5 returns a vector g satisfying:
1

Ay > —.

11
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4.3.3. GRADIENT DESCENT STEP

The following lemma guarantees that Assumption 2 holds with high probability and is used analo-
gously to Corollary 5 in the proof of Theorem 2:

Lemmall LetY = (Yi,...,Y;) € R¥*9 be k iid. random vectors with mean . and co-
variance A and let S denote the set of feasible solutions of MT (u,r,Y ). Then, we have for

r > 300 (\/ﬂ AJk + \/HAH) and k > 3200log 1/5:

k

max Xb~ b
XeSs v

1=

k
< —,
tT20

with probability at least 1 — 9.

The proof of the lemma is an application of standard empirical process theory and concentration
inequalities (Lugosi and Mendelson, 2019; Hopkins, 2018) and is proven in Appendix B.

The rest of the proof of Theorem 1 follows the same lines as that of Theorem 2 and is postponed
to Appendix G.

5. Conclusion

In this paper, we proposed a computationally efficient estimator for the mean of a random vector
which obtains the statistically optimal performance. This estimator has a significantly faster runtime
together with a simpler analysis than previous works. Our algorithm is based on a descent method,
where a current estimate of the mean is iteratively improved.

Considering the extension to M-estimation procedures (Brownlees et al., 2015; Hsu and Sabato,
2016; Lugosi and Mendelson, 2017) is a promising direction for further research, with as first step,
the particular example of linear regression with heavy tailed noise and covariates (Audibert and
Catoni, 2011).
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Appendix A. Auxiliary lemma

Lemma 12 For any Z € R**4 and = € RY, the optimal value of MT (x,r, Z) is monotonically
non-increasing in r.

Proof The lemma follows trivially from the fact that a feasible solution X of MT'(z,r, Z) is also
a feasible solution for MT'(x,r', Z) for v’ < r. [

Appendix B. Proof of Lemma 11

We first show that the optimal value of the semi-definite program MT satisfies a bounded-difference
condition with respect to the Z;’s.

Lemma 13 LetY = (Y1,...,Y},) be any set of k vectors in R Now, letY' = (Yq,...,Y/!, ..., Y})
be the same set of k vectors with the i'" vector replaced by Y/ € Re. If m and m' are the optimal
values of MT (z,7,Y ) and MT(x,r,Y"), we have:

Im —m/| <1

Proof Firstly, assume that X is a feasible solution to MT'(x,r,Y ). Now, let us define X' as:

i = .
J 0 otherwise

) _{Xivj ifi,j # b,

That is X' is equal to X except with the row and column corresponding to b; being set to 0. We see
that X’ forms a feasible solution to M T (x,r,Y"). Therefore, we have that:

k k &
Zijvbj = Z Xl,)j,b]. + X, b, < Z Xl/)j,bj +1<m' +1
j=1 j=Lj#i j=14#i

where the bound X3, 5, < 1 follows from the fact that the 2 x 2 sub-matrix of X formed by the
rows and columns indexed by 1 and b; is positive semidefinite and the constraint that X, 5, = X7 ,.
Since the above series of equalities holds for all feasible solutions X of MT'(z,r,Y ), we get:

m<m +1.

Through a similar argument, we also conclude that m’ < m + 1. Putting the above two inequalities
together, we get the required conclusion. |

For the next few lemmas, we are concerned with the case where x = . Since we already know
that the optimal SDP value satisfies the bounded differences condition, we need to verify that the
expectation is small. As a first step towards this, we define the 2-to-1 norm of a matrix M.

Definition 14 The 2-to-1 norm of M € R™*% is defined as

M2 = max o' Mv = max|Mouvl|
[lo]|=1 [lo]|=1
oie{£1}

14
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We consider the classical semidefinite programming relaxation of the 2-to-1 norm. To start with,
we will define a matrix X € R(+d+1)x(n+d+1) with the rows and columns indexed by 1 and the
elements o; and v;. The semidefinite programming relaxation is defined as follows:

max E M; ; Xo,; v,
,J
X11=1

d
Z ij,vj =1
j=1
Xoj0, =1
X =0 (TOR)
We now state a theorem of Nesterov as stated in (Hopkins, 2018):

Theorem 15 (Nesterov (1998)) There is a constant Ko_,1 = \/7/2 < 2 such that the optimal
value, m, of the semidefinite programming relaxation TOR satisfies:

m < K2—>1||M”2—>1-

In the next step, we will bound the expected 2-to-1 norm of the random matrix Z. To do this, we
begin by stating the famous Ledoux-Talagrand Contraction Theorem (Ledoux and Talagrand, 1991).

Theorem 16 Let X1, ..., X, € R% be i.i.d. random vectors, F be a class of real-valued functions
on R* and oy, ..., 0, be independent Rademacher random variables. If ¢ : R — R is an L-
Lipschitz function with ¢(0) = 0, then:

E sup 0id(f(X;)) < L-Esup o f(X
fer ; ' feF ; ’
We are now ready to bound the expected 2-to-1 norm of the random matrix Z.

Lemma 17 LetY = (Y1,...,Y,) € R™*? be a set of n i.i.d. random vectors such that E[Y;] = 0
and E[Y;Y,"] = A. Then, we have:

E|Y |21 < 2Vn Tr A + nl|A[|*/2.

Proof Denoting by Y and Y; random vectors that are independently and identically distributed as
Y; and by o; independent Rademacher random variables, we have:

E[|Y|l2-1] = E ”mﬁXlZI v
v

n
YI=t =1

+n max E[|(v,Y)]]

< B | 310010} = B0}

+n max E[|(v,Y)]].

< [E | max Zm(\(Ym’U)’ - ’<Y;,7U>D oll=1

15
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Now, we have for the second term:

max E[|(v, Y)|] < max /E(v,Y)2 < ||A|'/2.

f[oll=1 [[of=1

For the first term, we get via a standard symmetrization argument:

n n n
E | max Y oi(|(Yi,0)| = |(Y/,0))) | <E|max Y o;(¥;,0)|| +E | max Y —oy|(¥],0)|
l[oll=1 = l[oll=1 = loll=1 .=
i n n
=2E HI'LIJIHaXlZUiKv,KH <2E ”rqr}”aXlZUi(v,Y;)
=1 i=1
M| n n 2 1/2
=28 | ovi|| <2 |E|[|D oY
LIli=1 i=1
1/2
=2|E Z oi0;(Y;, Y}) =2vnTrA,
1<ij<n

where the second inequality follows from the Ledoux-Talagrand Contraction Principle (Theorem 16)
By putting the above two bounds together, we get the lemma. |

We now bound the expected value of M T (u,r, YY) by relating it to | Y ||2—1.

Lemma 18 Let Y = (Y1,...,Y}:) € R¥*? be a collection of k i.i.d. random vectors with mean i
and covariance N. Now, denoting by S the set of feasible solutions for MT (u,r,Y"), we have:

k
1
Em §X <~ (5VETr A + 2k||A][2/2) .
ccéag'(izl 17bl_2’l“ (5 LA+ H H >

Proof Firstly, let X be a feasible solution for MT'(u,r,Y"). We construct a new matrix W which
is indexed by o; and v; as opposed to b; and v; for X:

WO'Z‘,O']' - 4Xbi,bj - 2X1,bi - 2X1,bj + ]-7 inﬂ)j == XUi,vja W].,]. - ]-7
Wl,vi - Xl,via W].,bi = 2X1,bi - 17 in,bj = 2X’Ui,bj - Xl,vy

We prove that Y is a feasible solution to the SDP relaxation TOR of Y — u. We see that:

d
Wopo, =Lland > Wy, =1.
=1

Then, we simply need to verify that Y is PSD. Let w € R*"4*! indexed by 1, o; and v;. We
construct from w a new vector w’, indexed by 1, b; and v; and defined as follows:

k

/ / /
w) = Wy — E Wo;y Wy, = 2Wo;, Wy, = W,
i=1

16
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With w’ defined as above, we have the following equality:
w Ww = (w')" Xuw >0.

Since the above condition holds for all w € R¥++1 we get that Y 3= 0. Therefore, we conclude
that Y is a feasible solution to the SDP relaxation TOR of Y — p.

We bound the expected value of M T (u, r,Y) as follows, denoting by vy, the vector (X, v, ;- - -, Xp, 0,)
and by v the vector (X1, ..., X10,):

k Kk k
1
Emaxg X v:EmaXE X_<fIEmaxE Vp,, Y5 —
X€ES 4 Lb: XeS 4 bisbi = = XES < (v, Yi = 1)
=1 =1 =1
Kk

<2vbi - U)E - /J’> + Z<U7Yi - M)]

=1

1
= —[Emax [
2r XesS

-

= L

1

k

1

< = — ).

<5 (Er)rgggc 1(2111, 0, Y; — p) +Emg%< 1<v,Yl u})
= i=

We note that from the fact that X is PSD, we have that (from the fact that the 2 x 2 submatrix
indexed by v; and b; is PSD):

d
X2 b — X'U'L U'LXb b < XU'L i = Hvb H2 Z Uz,b S ZXUi,Ui = 1

Therefore, we get for the second term in the above equation:

2\ 1/2

= (kTrA)'/2.

k
Ema§ (v,Y; —p) <E
i=1

k

> Y- p

=1

k
d Yi—p

=1

<|E

We bound the first term using the following series of inequalities where Y is constructed from X as
described above:

k

k d
Emaxz 2up, — v, Y; — Emaxzz Emaxzz
zES 4 1< bi Y= p) z€S U“U] z€S g 'u] U“UJ
1= : :

=1 j=1
<2E|Y — 1p a1 < 4VETr A + 2k[|A[ V2,

where the first inequality follows from Theorem 15 and the second inequality follows from Lemma 17.
By combining the above three inequalities, we finally get:

k
1
Emax Y Xy, < o (5\/I<:TrA+ 2k|yA||1/2) .
zeS =1 ’ 2r

We are now able to prove Lemma 11.

17
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Proof [Lemma 11] From Lemma 18, we see that:

k
k
Emax > X5 < .
es — bibi = 0

Now from Lemma 13 and an application of the bounded difference inequality (see, for example,
Theorem 6.2 in (Boucheron et al., 2013)), with probability at least 1 — 4:
y X, b, < i
max o < —.
XeS bisbi = 20

=

Appendix C. Proof of Lemma 7

Letr = 300 <\/ TrY/n+ VE|Z]|/ n) . We prove the lemma by contradition. Firstly, note that X is

infeasible for MT'(u, r, Z) as the optimal value for MT'(u,r, Z) is less than k/20 (Assumption 2).
Note that the only constraints of MT'(u,r, Z) that are violated by X are constraints of the form:

(Zi — p,vp,) < Xip, ;T

Now, let 7 denote the set of indices for which the above inequality is violated. We can convert X
to a feasible solution for MT(u, r, Z) by setting to O the rows and columns corresponding to the
indices in 7. Let X' be the matrix obtained by the above operation. We have from Assumption 2:

k k
0.05k > > X7 4 => Xpp, — > Xpp, > 0.9k — [T,
i=1 i=1 €T
where the last inequality follows from the fact that X, ;, < 1. By rearranging the above inequality,

we get the first claim of the lemma.
For the second claim, let R denote the set of indices j satisfying Xp, 5. > 0.85. We have:

k
k
0.9k < bej,bj = Zij,bj + Z Xp, b, <RI +0.85k —0.85R| = 2 <[R|.
Jj=1 JER JER

This establishes the second claim of the lemma. [ |

Appendix D. Proof of Lemma 8

Let ' = 7500 <\/Tr2/n + \/kHEH/n> and r = 300 (\/TrE/n + \/k:HZH/n> Suppose that
the optimal value of MT'(x,r’, Z) is greater than 0.9k and let its optimal solution be X . Let R and
T denote the two sets whose existence is guaranteed by Lemma 7. From, the cardinalities of R and
T, we see that their intersection is not empty. For j € R N T, we have:

0.851" < (Z; —w,v0,) = (Z; — ovn,) + (i —a,v5,) < 7+ o — ]

18
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where the first inequality follows from the fact that j € R and the fact that X is feasible for
MT(x,r', Z) and the last inequality follows from the inclusion of j in 7 and Cauchy-Schwarz.
By plugging in the bounds on 7’ and r, we get:

|z — ul| > 6075 <\/Tr2/n + \/kHEH/n> .

This contradicts the assumption on ||z — p|| and concludes the proof of the lemma. [ |

Appendix E. Proof of Lemma 9

Let us define the direction A to be the unit vector in the direction of z — p. From Assumption 1
(which is implied by Assumption 2), the number of Z; satisfying (Z;—u, A) > 300 (\/Tr Y/n+ \/E|Z] /n)
is less than k/20. Therefore, we have that for at least 0.95k points:

(Z; —x, =AY ={(x —p+pu— Z;,A) = ||z — pul| — 300 <\/Tr2/n+ \/kHEH/n) > 0.95d.

Along with the monotonicity® of MT(x,r, Z) in r, this implies the lower bound.

For the upper bound, we show that the optimal value of M T (x, 1.25d, Z ) is less than 0.9%. For
the sake of contradiction, suppose that this optimal value is greater than 0.9%k. Let X be a feasible
solution of MT(z,1.25d, Z) that achieves 0.9%. Let R and 7 be the two sets whose existence is
guaranteed by Lemma 7 and j be an element in their intersection. We have for j:

0.85(1.25d) < Xy, ,1.25d < (Z; — x,vp,) = (Zj — p, ve, )+ (1 — @, v8,)
< Xp, 5,300 <\/Tr2/n + \/k||ZH/n) =] = X4, 5,300 <\/Tr2/n + \/k:HEH/n) +d,

where the first inequality follows from the inclusion of 7 in R and the last inequality follows from
the inclusion of j in 7 and Cauchy-Schwarz. By re-arranging the above inequality, we get:

X, 5, > (1.0625d — d) (300 (\/ﬁ >/n + \/kuzu/n) )_1 >1,

which is a contradiction. Therefore, we get from the monotonicity of M T(x,r, Z) (see Lemma 12),
that d’ < 1.25d and this concludes the proof of the lemma. |

Appendix F. Proof of Lemma 10

In the running of Algorithm 5, let X denote the solution of MT'(x, d*, Z). We begin by factorizing
the solution X into UU " with the rows of U denoted by u, Upy s+ - o Upy, AN Uy, s - . o, Uy, We also
define the matrix Uy, = (uy, , . . . , Uy,) in R(E+d+1)xdFrom the constraints in MT, we have:

d d
Koo = lun P <1 = Jlup | <1, D Xy =D g [P = [Uu]7 =1 = |Up]lr = 1.
i=1 j=1

5. See Lemma 12 in Appendix A.
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Let R and 7 denote the sets defined in Lemma 7. Let j € 7 N 'R. By noting that vy, = ubT] U,, we
have for j:

0.85d" < (Zj — p,vp;) + (0 — x,vp,) < X, 5,300 <\/Tr2/n + \/kHEH/n) + uijUv(u —x),

where the first inequality follows from the inclusion of j in R and the second from its inclusion in
T. We get by rearranging the above equation and using our bound on d* from Lemma 9:

0.80]|1n — 2| < 0.85d" < X, 5,300 <\/Tr2/n n \/kHEH/n> tulUp—2). (3
By rearranging Eq. (3), using Cauchy-Schwarz, ||up,|| < 1 and the assumption on ||z — p||:
10 (1 = )| = uy, Us(pe — @) = 0.75] |10 — z]].

We finally get that:
|UyAll > 0.75.

Now, we have:
1= |U|% = |UPalF + |UPaIE = IUP 7 + (0.75)° = |U,Pallr < 0.67.

Let y be the top singular vector of X,. Note that X,, = U,] U, and y is also the top right singular
vector of U,. We have that:

0.75 < |Usyll < |UsPayll + 1UPxyl < IPayll + IUPxllF < | Payll +0.67.

This means that we have: )

> —.

Note that the algorithm returns either y or —y. Firstly, consider the case where (y, A) > 0. From
Assumption 1 (implied by Assumption 2), we have for at least 0.95k points:

(Z; — p,y) < 300 (\/TrE/n + \/k||EH/n) .

Therefore, we have for 0.95k points:

(Zi —x,y)=(Zi — p,y) + (p— x,y)

6000 <\/Tr2/n + \/kHEH/n> »
15

> —300 (\/TrE/n + \/k||2|]/n) +
This means that in the case where (y, A) > 0, we return y which satisfies (;x — z,y) > 0. This

implies the lemma in this case. The case where (y, A) < 0 is similar with —y used instead of y.
This concludes the proof of the lemma. |
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Appendix G. Proof of Theorem 1

Let G = {z : ||z — p|| < 6000 (\/Tr Y/n+ \/k:||§]|]/n)} Also, we assume that Assumption 2
holds. We prove the theorem differentiating between two cases:

Case 1: None of the iterates x; fall into the set G. In this case, we have from Lemma 9 that:

0.95||z; — pf| < dy < 1.25||x — p| 4)
Now, we get:
dy : | |
2 2 2 tip — Tt
_ — _ 27 o e,

[ — $t|| d 1
Sth_Nuz_dt( 150 400 < 1—% HCCt_NHZ-

where the first inequality follows from Lemma 10 and the last inequality follows by substi-
tuting the lower bound on d; in the first term and the upper bound on d; in the second term
(Equation (4)). By an iterated application of the above inequality, we get the required result.

Case 2: One of the iterates x; falls into the set G. If the algorithm returns an element from
G, the theorem is trivially true. From Lemma 8, we have for this iterate x; € G that:

dy < 7500 (\/TrZ/n + \/k:HEH/n) .

Therefore, we have at the completion of the algorithm a value d* < 7500 <\/ TrY/n+ /E[[Z]|/ n>

together with 2* lying outside G. Thus, we finally have from Lemma 9:

0.95]2"~pl| < 7500 (v/TrS/n + VEIZ[/n) = "~ < 8000 (VIrS/n + VEIZ]/n) .

By Lemma 11, Assumption 2 holds with probability at least 1 — § and therefore, the conclusions
from Case 1 and Case 2 hold with probability 1 — 6.
Substituting the value of k, we obtain

lo* — i < max (e, 8000 <\/Tr2/n + \/kHEH/ﬂ,))

Tr %[ log 1
< max <6,480000 <\/ i +\/! I o /5)>’

with probability at least 1 — 4.
This concludes the proof of the theorem. |
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