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Abstract

We design new algorithms for the combinatorial pure exploration problem in the multi-arm bandit
framework. In this problem, we are given K distributions and a collection of subsets V c 2%
of these distributions, and we would like to find the subset v € ) that has largest mean, while
collecting, in a sequential fashion, as few samples from the distributions as possible. In both the
fixed budget and fixed confidence settings, our algorithms achieve new sample-complexity bounds
that provide polynomial improvements on previous results in some settings. Via an information-
theoretic lower bound, we show that no approach based on uniform sampling can improve on ours
in any regime, yielding the first interactive algorithms for this problem with this basic property.
Computationally, we show how to efficiently implement our fixed confidence algorithm whenever
V supports efficient linear optimization. Our results involve precise concentration-of-measure ar-
guments and a new algorithm for linear programming with exponentially many constraints.
Keywords: Interactive learning; Bandits; Combinatorial optimization

1. Introduction

Driven by applications in engineering and the sciences, much contemporary research in mathemati-
cal statistics focuses on recovering structural information from noisy data. Combinatorial structures
that have seen intense theoretical investigation include clusterings (Mossel et al., 2014; Abbe et al.,
2016; Balakrishnan et al., 2011), submatrices (Butucea and Ingster, 2013; Kolar et al., 2011; Chen
and Xu, 2016), and graph theoretic structures like matchings, spanning trees, and paths (Arias-
Castro and Candes, 2008; Addario-Berry et al., 2010). In this paper, we design interactive learning
algorithms for these structure discovery problems.

Our mathematical formulation is through the combinatorial pure exploration for multi-armed
bandits framework (Chen et al., 2014), a recent generalization of the best-arm identification prob-
lem (Mannor and Tsitsiklis, 2004; Audibert and Bubeck, 2010). In this setting, we are given a
combinatorial decision set VV 251 and access to K arms, where each arm a € [K] is associated
with a distribution with unknown mean p,. We can, in sequential fashion, query an arm and obtain
an iid sample from the corresponding distribution, and the goal is to identify the subset v € V with
maximum mean j(v) = Y, Hq While minimizing the number of samples collected.

This model has been studied in recent work both in the general form and with specific decision
sets V. For specific structures, a line of work established near-optimal algorithms for any V that
corresponds to the bases of a matroid (Kalyanakrishnan et al., 2012; Kaufmann and Kalyanakrish-
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nan, 2013; Chen et al., 2016) and slight generalizations (Chen et al., 2014). After Chen et al. (2014)
introduced the general problem, Gabillon et al. (2016) and Chen et al. (2017) made interesting
progress with improved guarantees reflecting precise dependence on the underlying mean vector .
However, these results fail to capture intricate combinatorial structure of the decision set, and, as we
show, they can be polynomially worse than a simple non-interactive algorithm based on maximum
likelihood estimation. With this in mind, our goal is to capture this combinatorial structure to design
an algorithm that is never worse than the non-interactive baseline, but that can be much better.
Since we are doing combinatorial optimization, we typically consider decision sets ) that are
exponentially large but have small description length, so that direct enumeration of the elements in
V is not computationally tractable. Instead, we assume that } supports efficient linear optimization,
and our main algorithm only accesses V through a linear optimization oracle. To shed further light
on purely statistical issues, we also present some results for computationally inefficient algorithms.

Our Contributions. We make the following contributions:

1. First, we derive the minimax optimal sample complexity in the non-interactive setting, where
arms are queried uniformly. This precisely characterizes how the structure of V influences the
sample complexity and also provides a baseline for evaluating interactive algorithms.

2. In the fixed confidence setting, we design two algorithms that are never worse than the non-
interactive minimax rate, but that can adapt to heterogeneity in the problem to be substantially
better. On the computational side, we show how to implement the first algorithm in polyno-
mial time with access to a linear optimization oracle. The second algorithm is computationally
inefficient, but has a strictly better sample complexity.

3. In the fixed budget setting, we design an algorithm with similar statistical improvements,
improving on the MLE when there is heterogeneity in the problem.

4. We perform a careful comparison to prior work, with several concrete examples. We show that
prior results (Chen et al., 2014; Gabillon et al., 2016; Chen et al., 2017) can be polynomially
worse than the non-interactive minimax rate, which contrasts with our guarantees. We also
describe other settings where our results outperform prior work, and vice versa.

Our Techniques. The core of our statistical analysis is a new deviation bound for combinatorial
pure exploration that we call a normalized regret inequality. We prove that to recover the optimal
subset v*, it suffices to control, for each v € V), the sampling error in the mean difference between
v and v* at a level proportional to the symmetric set difference between the two.! In the non-
interactive setting, the normalized regret inequality always yields the optimal sample complexity (as
we prove in Theorem 2), and is often sharper than more standard uniform convergence arguments
(e.g., over the arms or the decision set) that have been used in prior work. Our new guarantees stem
from using this new inequality in interactive procedures.

The fixed confidence setting poses a significant challenge, since confidence bounds typically
appear algorithmically, but the normalized regret inequality is centered around the optimum, which
is of course unknown! We address this difficulty with an elimination-style algorithm that eliminates
a hypothesis v € V when any other candidate is significantly better and that queries only where
the survivors disagree. Using only the normalized regret inequality, we can prove that v* is never

1. The name arises because the inequality involves comparison with the optimum and is normalized by the set difference.
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eliminated, but also that v* will eventually eliminate every other hypothesis. This algorithm resem-
bles approaches for disagreement-based active learning (Hanneke, 2014), but uses a much stronger
elimination criteria that is crucial for obtaining our sample complexity guarantees.

Computationally, deciding if the surviving candidates disagree on an arm poses further chal-
lenges, since the description of the surviving set involves exponentially many constraints, one for
each candidate v € V. This problem can be written as a linear program, which we can solve using
the Plotkin-Shmoys-Tardos reduction to online learning (Plotkin et al., 1995). However, since there
are exponentially many constraints in the LP, the standard approach of using multiplicative weight
updates fails, but, exploiting further structure in the problem, we can run Follow-the-Perturbed-
Leader (Kalai and Vempala, 2005), since the online learner’s problem is actually linear in the can-
didates u that parameterize the constraints. Thus with a linear optimization oracle, we obtain an
efficient algorithm for the fixed confidence setting.

2. Preliminaries

In the combinatorial pure exploration problem, we are given a finite set of arms A = {1,..., K},
where arm a is associated with a sub-Gaussian distribution v, with unknown mean p, € [—1,1]
and variance parameter 1.2 Further, we are given a decision set V C 24, For u,v € V, we use
d(u,v) £ |u © v| where © denotes the symmetric set difference. The goal is to identify a set v € V
that has the largest collective mean ) -, f1,. Throughout the paper, we use the vectorized notation
p= (1, .., ) and V C {0, 1}, With this notation, we seek to compute

v* £ argmax(v, p1).
veVY

We are interested in learning algorithms that acquire information about the unknown w in an inter-
active, iterative fashion. At the ¢! iteration, the learning algorithm selects an arm a; and receives a
corresponding observation y; ~ v,,. The algorithm’s choice a; may depend on all previous deci-
sions and observations {(a,,y,)}._} and possibly additional randomness.

We consider two related performance goals. In the fixed budget setting, the learning algorithm
is given a budget of T" queries, after which it must produce an estimate ¢ of the true optimum v*,
and we seek to minimize the probability of error P[0 # v*]. In the fixed confidence setting, a failure
probability parameter 0 is provided as input to the algorithm, which still produces an estimate 0,
but must further enjoy the guarantee that P[0 # v*] < 4. In this setting, we seek to minimize the
number of queries issued by the algorithm.

Since we are performing optimization over V, for computational efficiency, we equip our algo-
rithms with a linear optimization oracle for 1. Formally, we assume access to a function

ORACLE(c) £ argmax(v, c), (1)

veY
that solves the offline combinatorial optimization problem. This oracle is available in many com-
binatorial problems, including max-weight matchings, spanning trees, and shortest/longest paths in
DAGs,? and is a basic requirement here since otherwise even if z, were known we would not be able

2. Recall a sub-Gaussian random variable X with mean p and variance parameter o satisfies E[exp(s(X — u))] <
exp(o?s?/2). The results easily generalize to arbitrary known variance parameter.

3. Other problems may require slight reformulations of the setup for computational efficiency. For example, shortest
paths in undirected graphs requires 1, € [0, 1] and considering a minimization version.
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to find v*. Technically, we allow the oracle to take one additional constraint of the form v, = b for
a € A,b € {0,1}, which preserves computational efficiency in most cases.
To fix ideas, we describe two concrete motivating examples (see also Section 4).

Example 1 (MATCHING) Consider a complete bipartite graph with /K vertices in each partition
cell so that there are K edges, which we identify with A. Let V denote the perfect bipartite matchings
and let 1 assign a weight to each edge. Here, the combinatorial pure exploration task amounts
to finding the maximum-weight bipartite matching in a graph with edge weights that are initially
unknown. Note that the linear optimization oracle (1) is available here.

Example 2 (BICLIQUE) In the same graph-theoretic setting, let )V denote the set of bicliques with
\/s vertices from each partition. Equivalently in a VK x VK matrix, V corresponds to all subma-
trices of /s rows and \/s columns. This problem is variously referred to as biclique, biclustering,
or submatrix localization, and has applications in genomics (Wang et al., 2007). Unfortunately, (1)
is known to be NP-hard for this structure.

A new complexity measure. We define two complexity measures that govern the performance of
our algorithms. We start with the notion of a gap between the decision sets:

Ay(p) £ W-

Ay (u) captures the difficulty of determining if v is better than v*, and the normalization d(v*,v)
accounts for the fact that the numerator is a sum of precisely d(v, v*) terms. The gap for arm a is
Ag (1) £ ming.qeprop Ay (1), which captures the difficulty of determining if a is in the optimal set.

We also introduce complexity measures that are independent of p. For v € V and k € N, let
B(k,v) £ {u € V| d(v,u) = k} be the sphere of radius k centered at v. Then define

d 2 d(V) £ max —log(|B(k,v)\).
keNweV k

For some intuition, ® measures the growth rate of VV as we expand away from some candidate v.
Finally, let ¥ £ ¥(V) £ min, yey d(u, v) denote the smallest distance. In all of these definitions,
we omit the dependence on p and V when it is clear from context.

A deviation bound and the non-interactive setting. As a reference point and to foreshadow
our results, we first study the non-interactive setting. With budget 7', a non-interactive algorithm
queries each arm 7'/ K times and then outputs an estimate © of v*.* In this case, we have the
following normalized regret inequality, which will play a central role in our analysis.

Lemma 1 (Normalized Regret Inequality) Query each arm T/ K times and let i € RY be the
vector of sample averages. Then Vo € (0,1),

@t v 2K log(2£/9)
P(Hvev. a0 .0) Z\/T'<¢)+\Il)>§5' 2)

4. For simplicity, we do not implement a stopping rule, which naively incurs a max,,+ log(1/A,) dependence.
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This inequality and a simple argument sharply characterize the performance of the MLE, © =
argmax,cy, (v, 1), which we prove is nearly minimax optimal for the non-interactive setting.

Theorem 2 (Non-interactive upper and lower bound) For any p € [—1,1]% and § € (0,1) the
non-interactive MLE guarantees P, [0 # v*] < § with

B K log(K/9d)
r=0 (minwgv* A2 <(I) Ty '

Further, with S(v*, A) £ {p : v* = argmax, ¢y, (v, ), Vo # v*, Ay (u) > A}, any non-interactive
algorithm must have sup,« ¢y SUpes(ur Ay Puld # v*] > 1/2 as long as T' < % (® — loglog 3).

See Appendix A for the proof of Lemma 1 and Theorem 2. The proofs are not difficult and involve
adapting the argument of Krishnamurthy (2016) to our setting. We also extend his result by intro-

ducing the combinatorial parameters ®, W, which are analytically tractable in many cases. Indeed,
Klog(K/a))

since ® < log(K), a more interpretable, but strictly weaker, upper bound is O ( i, AZ

To compare the upper and lower bounds, note that & > 1/W¥ always but in most examples,
including MATCHING and BICLIQUE, we actually have ® > log(K)/W¥. As such, in the moderate
confidence regime where 6 = poly(1/K), the upper and lower bounds disagree by at most log(K)
factor, but typically they agree up to constants. Hence, Theorem 2 identifies the minimax non-

interactive sample complexity and we may conclude that the MLE is near-optimal here.

Prior results. The departure point for our work is the observation that all prior results for the
interactive setting can be polynomially worse than the bound for the MLE. We defer a detailed
comparison to Section 4, but as a specific example, on y/s-BICLIQUE, Theorem 2 can improve on
the bound of Chen et al. (2014) by a factor of $3/2, and it can improve on the bounds of Gabillon
et al. (2016) and Chen et al. (2017) by a factor of \/s.

For intuition, the analyses of Chen et al. (2014) and Gabillon et al. (2016) involve a uniform
convergence argument over individual arms. As noted by Chen et al. (2017), this argument is sub-
optimal whenever ¥ >> 1 as it does not take advantage of large distances between hypotheses (note
that ¥ = /s in BICLIQUE). The analysis of Chen et al. (2017) avoids this argument, but instead in-
volves uniform convergence over the decision set, which can be suboptimal when set differences to
v* vary in size. (e.g., in BICLIQUE, the minimum and maximum distances are O(+/s) and §2(s) re-
spectively). In comparison, our analysis always gives the minimax optimal non-interactive rate (up
to a log(K/4) factor), reflecting the advantage of the normalized regret inequality over these other
proof techniques. In the next section, we show how this inequality yields an interactive algorithm
that is never worse than the MLE but that can also be substantially better.

Related work. Combinatorial pure exploration generalizes the best arm identification problem,
which has been extensively studied (c.f., (Even-Dar et al., 2006; Mannor and Tsitsiklis, 2004; Au-
dibert and Bubeck, 2010; Karnin et al., 2013; Russo, 2016; Garivier and Kaufmann, 2016; Car-
pentier and Locatelli, 2016; Chen et al., 2016; Simchowitz et al., 2017) for some classical and
recent results). This problem is much simpler both computationally and statistically than ours, and,
accordingly, the results are much more precise. One important difference is that in best arm iden-
tification, verifying that the optimal solution is correct is roughly as hard as finding the optimal
solution, which motivates many algorithms and lower bounds based on Le Cam’s method (Kauf-
mann et al., 2014; Karnin, 2016; Garivier and Kaufmann, 2016; Chen et al., 2017). However, for
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combinatorial problems discovering the optimal solution often dominates the sample complexity,
and hence these techniques do not immediately produce near-optimal results in the combinatorial
setting. Nevertheless our algorithms are inspired by some ideas from this literature, namely elimi-
nation and successive-reject techniques (Even-Dar et al., 2006; Audibert and Bubeck, 2010).

The subset selection problem, also called TOP-K, is a special case of combinatorial exploration
where V corresponds to all (IS() subsets (Kalyanakrishnan et al., 2012; Bubeck et al., 2013; Kauf-
mann and Kalyanakrishnan, 2013). This case is minimally structured, and, in particular, there is
little to be gained from our approach since ® = O(log(K)). A related effect occurs when the
decision set corresponds to the basis of a matroid (Chen et al., 2016).

Structure discovery has also been studied in related mathematical disciplines including electri-
cal engineering and statistics. Research on adaptive sensing from the signal processing community
studies a similar setup but with assumptions on the mean u, which lead to more specialized algo-
rithms that fail in our general setup (Castro and Ténczos, 2015). Work from information theory and
statistics focuses on non-interactive versions of the problem and typically considers specific com-
binatorial structures (Krishnamurthy, 2016; Balakrishnan et al., 2011; Arias-Castro and Candes,
2008). In particular, the BICLIQUE problem is extensively studied in the non-interactive setting and
the minimax rate is well-known (Chen and Xu, 2016; Kolar et al., 2011; Butucea and Ingster, 2013).

Our fixed confidence algorithm is inspired by disagreement-based active learning approaches,
which eliminate inconsistent hypotheses and query where the surviving ones disagree (Cohn et al.,
1994; Hsu, 2010; Hanneke, 2014). Our algorithm is similar but uses a stronger elimination criteria,
leading to sharper results for exact identification. Unfortunately, exact identification is rather differ-
ent from PAC-learning, and it seems our approach yields no improvement for PAC-active learning.

Lastly, we use an optimization oracle as a computational primitive. This abstraction has been
used previously in combinatorial pure exploration (Chen et al., 2014, 2017), but also in other infor-
mation acquisition problems including active learning (Hsu, 2010; Huang et al., 2015) and contex-
tual bandits (Agarwal et al., 2014; Syrgkanis et al., 2016; Rakhlin and Sridharan, 2016).

3. Results

Pseudocode for our fixed confidence algorithm is given in Algorithm 1. The algorithm proceeds in
rounds, and at each round it issues queries to a judiciously chosen subset of the arms. These arms
are chosen by implicitly maintaining a version space of plausibly optimal hypotheses and checking
for disagreement among the version space.

The key ingredient is the definition of the version space. For a vector i € R and a radius
parameter A, the version space is defined as

V(ji, A) = {v € conv(V) | Vu €V, {fi,u — v) < Allu—vl|1}. 3)

Here conv(V) is the convex hull of V and ||u — v||; is the ¢; norm, which is just d(u, v) for binary
u, v. The version space is normalized in that the radius is modulated by ||u — v||1, which is justified
by (2). This yields much sharper guarantees than the more standard un-normalized definition {v |
maxyey (fi,u —v) < A} from the active learning literature (Cohn et al., 1994; Hsu, 2010). At
round t, the version space we use is V; £ V (e, A¢) where i is the empirical mean vector and A
is defined in the algorithm based on the right hand side of (2).
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Algorithm 1 Fixed Confidence Algorithm Algorithm 2 Oracle-based Disagreement (DIS)

1: Input: Class V, failure probability 6 € (0,1) 1. Input: a,b, A, 1,0

169K3 log(4K /6
2: Set Ay = min {1, \/8 (Mﬂog(}%m)) } et #’ m = Tlog(*51)

t T I
3: Setﬁzﬁlm,gozo

3: Sample each arm once yo(a) ~ v, 4 fort—1.....T do

4: Set fi1 = Yo 5: fori=1,...,mdo

5: fort =1,2. " do A 6: Sample o ; ~ Unif([0, 1/¢])

6: Compute 0; = argmax, (v, i) 7 ut,i = ORACLE(V, Zi;é b+ 04)

7 for a € [K] do 3 end for

. ~ N 5 :

8 if Dis(a, 1 —9,(a), Ay, fit, z72) 9: Let s, x; be the value and optimum of
13 els(e?uery @ setyrla) o va max " Av, 1 —2up;) + (v, 1) ()
1 Set y;(a) = 264(a) — 1 s.t. v € conv(V),v(a) =b
12: endif 10: val = > " (g, A1 — f1)

13: end for 11: if s 4+ val < 0 return FALSE
14: Update fipq1 4 7 D i—g Vi 122 Setly = Al —2Ax; — i

15: If no queries issued this round, output v; 13: end for

16: end for 14: return TRUE

This version space is used by the disagreement computation (Algorithm 2), which, with param-
etersa € A,b € {0,1}, A, 1, 0 approximately solves the feasibility problem

?73v € V(ii, A) s.t. v(a) = b. 4)

At round ¢, we use fi, Ay, and the value for b that we use in line 8 is 1 — 04(a), where 0y is the
empirically best hypothesis on [i;. Since ¢, being the empirically best hypothesis, is always in V,
this computation amounts to checking if there exist two surviving hypotheses that disagree on arm
a. We use this disagreement-based criteria to drive the query strategy.

Before turning to computational considerations, a few other details warrant some discussion.
First, if at any round we detect that there is no disagreement on some arm a, then we use a hal-
lucinated observation y;(a) = 20:(a) — 1 € {£1}. While this leads to bias in our estimates,
since all surviving hypotheses v € V; agree with U; on arm a, this bias favors the survivors. As
in related work on disagreement-based active learning, this helps enforces monotonicity of the ver-
sion space (Dasgupta et al., 2007). Finally, we terminate once there are no remaining arms with
disagreement, at which point we output the empirically best hypothesis.

Note that to set A, in the algorithm, we must compute ®. This can be done analytically for many
structures including, paths in various graph models, bipartite matching, and the biclique problem.
Even when it cannot, ® is independent of the unknown means, so it can always be computed via
enumeration, although this may compromise the efficency of the algorithm. Finally, we can always
use the upper bound ® < log(K'), which may increase the sample complexity, but will not affect
the correctness of the algorithm.

Efficient implementation of disagreement computation. Computationally, the bottleneck is the
feasibility problem (4) for the disagreement computation. All other computations in Algorithm 1
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can trivially be done in polynomial time with access to the optimization oracle (1). Therefore, to
derive an oracle-efficient algorithm, we show how to solve (4), with pseudocode in Algorithm 2.

It is not hard to see that (4) is a linear feasibility problem, but it has || constraints, which could
be exponentially large. This precludes standard linear programming approaches, and instead we use
the Plotkin-Shmoys-Tardos reduction to online learning (Plotkin et al., 1995).> The idea is to run an
online learner to compute distributions over the constraints and solve simpler feasibility problems
to generate the losses. In our case, the constraints are parametrized by candidates v € V and we
can express each generated loss as a linear function of the constraint parameter u, which enables us
to use Follow-The-Perturbed-Leader (FTPL) as the online learning algorithm (Kalai and Vempala,
2005). Importantly, FTPL can be implemented using only the linear optimization oracle. As a
technical detail, we must use an empirical distribution based on repeated oracle calls to approximate
the true FTPL distribution, since in our reduction the loss function is generated after and based on
the random decision of the learner.

First we provide the guarantee for the disagreement routine.

Theorem 3 (Efficient Disagreement Computation) Algorithm 2 with parameters a, b, A, [i, § runs
in polynomial time with O(K®/A*) calls to ORACLE. If it reports FALSE then Program (4) is in-
feasible. If it reports TRUE then with probability at least 1 — 6, v € conv(V),v(a) = b such that
Vu eV, (fi,u —v) < Allu—ol||; + A.

This result proves that Algorithm 2 can approximate the feasibility problem in (4) in polynomial
time using the optimization oracle. The approximation is one-sided and, since we do not query
when the algorithm returns FALSE, only affects the sample complexity of Algorithm 1, but never
the correctness. The following theorem, which is the correctness and sample complexity guarantee
for Algorithm 1, shows that this approximation has negligible effect. For the theorem, recall the
definition of the arm gaps A, £ ming.qevour Ay.

Theorem 4 (Fixed confidence sample complexity bound) For any combinatorial exploration in-
stance with mean vector u, and any 6 € (0, 1), Algorithm 1 guarantees that P[0 # v*] < 8. More-
over, it runs in polynomial time with access to the optimization oracle, and the total number of
samples is at most

144 2log(144/(A2W)) + 21log(Km?/6)
a;{ 3 <®+ 7 ) :

The bound replaces the worst case gap, ﬁ, in Theorem 2 with a less pessimistic notion,

>, A2, that accounts for heterogeneity in the problem. Since >°, A ? < ﬁ, the bound
is never worse than the minimax lower bound for non-interactive algorithms (given in Theorem 2)
by more than a logarithmic factor, but it can be much better if many arms have large gaps. To our
knowledge, Algorithm 1 is the first combinatorial exploration algorithm that is never worse than
non-interactive approaches yet can exploit heterogeneity in the problem.

Theorem 4 is not easily comparable with prior results for combinatorial pure exploration, which

use different complexity measures than our gaps A,, ®, and V. Our observations from Theorem 2

5. Technically, we do have a separation oracle here, so we could use the Ellipsoid algorithm, but a standard application
would certify feasibility or approximate infeasibility. Our reduction instead certifies infeasibility or approximate
feasibility, which is more convenient.
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apply here: since Theorem 4 precisely captures the combinatorial structure of V, it can yield poly-
nomial improvements over prior work. On the other hand, our notion of gap A, is different from,
and typically smaller than, prior definitions, so these results can also dominate ours. We defer a
detailed comparison with calculations for several concrete examples to Section 4.

We provide the full proof for Theorem 3 and Theorem 4 in Appendix C. As a brief sketch, we
prove a martingale version of Lemma 1. This inequality and the choice of A; verifies that v* is
never eliminated. We then show that once A; < A,, all hypothesis v € V with a € v* © v satisfy
(fr,v* —v) > A¢||v* —v||; and so they are eliminated from the version space. Theorem 3 then
guarantees that arm a will never be queried again, which yields the sample complexity bound.

3.1. Deferred Results

In this section we state two related results: a guarantee for a disagreement-based algorithm in the
fixed budget setting, and a more refined sample complexity bound for a computationally inefficient
fixed confidence algorithm. Both algorithms and all proof details are deferred to the appendices.

3.1.1. A FIXED BUDGET ALGORITHM

Recall that in the fixed budget setting, the algorithm is given a budget of 1" queries and after issuing
these queries, it must output an estimate ¢. The goal is to minimize P[0 # v*]. As is common in the
literature, this setting requires a modified definition of the instance complexity, which for our fixed
confidence result is H £ > a€[K] A;Q. For the definition, let AY) denote the 4 largest A, value,
breaking ties arbitrarily. The complexity measure for the fixed budget setting is

H 2 max(K + 1 —5)(AW)72,
J

It is not hard to see that H < H < ﬂ)Tg(K)ﬁ, where bz;(t) = S°!_, 1/i is the partial harmonic
sum. With these new definitions, we can state our fixed budget guarantee.

Theorem 5 (Fixed Budget Guarantee) Given budget T > K, there exists a fixed budget algo-
rithm (Algorithm 3 in Appendix E) that guarantees

) 2 _ T-K)
Plo #v] < K exp{\II <<I> 9@([()[?)}

See Appendix E for the proof. At a high level, the savings over a naive analysis are similar to Theo-
rem 4. By using the normalized regret inequality, we obtain a refined dependence on the hypothesis
complexity, replacing log |V| with the potentially much smaller log |B(k,v*)| (implicitly through
the ® parameter). To compare, non-interactive methods scale with /& (A(1))~2 instead of H, so the
bound is never worse, but it can yield an improvement when the arm gaps are not all equal, which
results in /I < K (A®1)~2. Unfortunately, the algorithm is not oracle-efficient.

3.1.2. A REFINED FIXED CONFIDENCE GUARANTEE

We also derive a sharper sample complexity bound for the fixed confidence setting. First, define

D(v,v") £ max{log |B(d(v,v"),v)|,log |B(d(v,v"),v")|},
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to be the symmetric log-volume. We use two new instance-dependent complexity measures:

via€vovt (p, v* — U>2 viacvovr  (u, v* — U>2

The two definitions provide more refined control on the two terms in Theorem 4. Specifically H")
replaces the minimum distance ¥ with the distance to the hypothesis maximizing the complexity
measure. Similarly H(?) replaces the volume measure & with a notion particular to the maximizing
hypothesis. Using these definitions, we have the following fixed-confidence guarantee.

Theorem 6 (Refined fixed confidence guarantee) There exists a fixed confidence algorithm (Al-
gorithm 4 in Appendix F) that guarantees P[0 # v*| < § with sample complexity

2
T<64 ) HY (21og(64H§1>) + log 7T5K> + 64H?).
a€[K]

To understand this bound and compare with Theorem 4, note that we always have H.") < (AZD) -

and H(§2) < %. As such, Theorem 6 improves on Theorem 4 by replacing worst case quantities
®, U with instance-specific variants. However, the algorithm is not oracle-efficient.

4. Examples and Comparisons

As mentioned, the bound in Theorem 4 is somewhat incomparable to previous results (Chen et al.,
2014; Gabillon et al., 2016; Chen et al., 2017). To provide general insights, we perform an instance-
independent, structure-specific analysis, fixing V and tracking combinatorial quantities but consid-
ering the least favorable choice of u. Such an analysis reveals when one method dominates another
for hypothesis class V for all mean vectors, but is less informative about specific instances. For a
complementary view, we study the homogeneous setting, where p = A(2v* — 1) for some v* € V.

We also consider four specific examples. The first is the TOP-K problem, where V' corresponds
to all (f ) subsets. The second is DISISET, where there are K arms and K/s hypotheses each
corresponding to a disjoint set of s arms, generalizing an example of Chen et al. (2017).% The third
and fourth examples are MATCHING from Example 1 and /s-BICLIQUE from Example 2.

Throughout, we ignore constant and logarithmic factors, and we use <, = to denote such
asymptotic comparisons. The main combinatorial parameters are ¥ = miny, ,ey d(u,v), D =
max, ey d(u, v), log|V|, and our combinatorial term A = (® + 1/¥). T denotes our sample
complexity bound from Theorem 4, which we instantiate in the the top row of Table 4 for the four
examples in the homogeneous setting. All calculations are deferred to Appendix B.

Comparison with Chen et al. (2014). The bound of Chen et al. (2014) is O <Za (Xificﬂ)l;)

where A,(lc) 2 ming.qepoe (i, v* — v) is an unnormalized gap, and width is the size of the
largest augmenting set in the best collection of augmenting sets for V. In contrast, in our bound
of O(A D A ?), the normalized gaps that we use incorporate the distance between sets and our
combinatorial term A < 1 is small. The structure-specific relationship with our bound is
2 2
.\Il A ST S Tehents .D72A-
width width

6. As they argue, DISISET is important because it can be embedded in other combinatorial structures, like disjoint paths.

TChen 14 -
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Sample complexity ‘ Top-K ‘ Di1sSISET ‘ MATCHING ‘ BICLIQUE
Theorem 4 | ©(K) | O(K/s) O(K) O(K/+/s)
Chenetal. (2014) | O(K) | O(K) O(K?) O(Ks)
Chenetal. (2017) | O(K) | ©(K/s) | QK3?) | QWKs+ K/\/5)
Gabillon et al. (2016) | O(K) | O(K) O(K) O(K)

Table 1: Guarantees for four algorithms on specific examples, with 1 = A(2v* — 1), ignoring
logarithmic factors. All bounds scale with 1/A2, which is suppressed. For homogeneous
problems, Theorem 4 is never worse than prior results and can be polynomially better.

Therefore, whenever width is comparable with the diameter D, our bound is never worse and,
further, if A < 1 our bound provides a strict improvement. DISJSET is precisely such an example,
where our bound is a factor of s better than that of Chen et al. (2014) for all instances. On the other
hand, in TOP-K, we have width = W = 1 but D = 2s and A =< 1 so our bound is never better, but

can be worse by a factor of up to s2, depending on 1. As a final observation, in the homogeneous

(©) ) L
case, we have A, > éﬁhh and so our bound is never worse and is strictly better whenever A < 1.

Turning to the examples in the homogeneous case, we instantiate the bound of Chen et al. (2014)
in the second row of Table 4. Our bound matches theirs for TOP-K and is polynomially better for
DISISET, MATCHING, and BICLIQUE.

Comparison to Gabillon et al. (2016). Gabillon et al. (2016) use a normalized definition of

hypothesis complexity similar to our A, (), but they compare each hypothesis v to its comple-

ment C, € V where C,, £ argmax,,, <S(Z/,;§> They then define an arm complexity as A 2

ming.qevsc, %, and obtain the final bound O (ZG(AELG))_Q). In contrast, we always com-

pare v with v* and so A, < AgG), but our bound exploits favorable structural properties of the
hypothesis class by scaling with A, which is small. The structure-specific relationship is
D2
TGavition16A S T S Tabvillon16 * @A-
Three observations from above apply here as well: (1) For DISISET, our bound yields a factor of
s improvement on all instances, (2) for TOP-K, our bound is never better but can be a factor of
s? worse on some instances, and (3) our bound is never worse in the homogeneous case and is an
improvement whenever A < 1. On the specific examples in the homogeneous case, we obtain a

polynomial improvement on BICLIQUE, where ¥ = 1/./s (See Table 4).

Comparison to Chen et al. (2017). Finally, Chen et al. (2017) introduce a third arm complexity
parameter based on the solution to an optimization problem, which they call Low. They prove a
fixed-confidence lower bound of Q(Low log(1/6)) and an upper bound of O (Low log(|V|/4)). In
general, the sharpest structure-specific relationship we can obtain is

D2
TChent7 - T < Tchent? - I

2 A
og|V|

The second inequality results from a rather crude lower bound on Low and is therefore quite pes-
simistic. Indeed, the factor on the right hand side is always at least 1, so this bound does not reveal

<
log [V| ™
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any structure where we can improve on Chen et al. (2017) for all choices of p. Unfortunately it is
difficult to relate Low to natural problem parameters in general.

On the other hand, in the homogeneous case, we can bound Low precisely in examples, yielding
the third row of Table 4. Roughly speaking, our bound replaces log |V|/W¥ with A, which is always
smaller, leading to polynomial improvements in BICLIQUE, when s > v/K, and MATCHING.

Final Remarks. We close this section with some final remarks. First, our result shows that
log(|V|) dependence is not necessary for many structured classes. This does not contradict the
lower bound in Theorem 1.9 of Chen et al. (2017), which constructs certain pathological classes.
Second, we believe that the optimization-based measure Low, corresponds to the sample com-
plexity for verifying that a proposed v is optimal. Indeed the bound of Chen et al. (2017) is optimal
in the extremely high-confidence setting (§ < 1/|V|), where high-probability verification dominates
the sample complexity, yet it is more natural to consider polynomially- rather than exponentially-
small §. In the moderate-confidence case, exploration to find a suitable hypothesis v is the dom-
inant cost, but the upper bound of Chen et al. (2017) can be suboptimal here. We believe the
Q(Low log(1/9)) lower bound is loose in this regime, but are not aware of sharper lower bounds.
Finally, we note that for the fixed-confidence setting it is easy to achieve the best of all of these
guarantees, simply by running the algorithms in parallel. For example, by interleaving queries
issued by Algorithm 1 and the algorithm of Chen et al. (2017), we obtain a sample complexity of
2min{7, Tehen17} With probability 1 — 24. This yields an algorithm that is never worse than the
non-interactive minimax optimal rate and is instance-optimal in the high-confidence regime.

5. Discussion and Open Problems

This paper derives new algorithms for combinatorial pure exploration. The algorithms represent a
new sample complexity trade-off and importantly are never worse than any non-interactive algo-
rithm, contrasting with prior results. Moreover, our fixed confidence algorithm can be efficiently
implemented whenever the combinatorial family supports efficient linear optimization.

We close with some open problems.

e In the homogeneous BICLIQUE, our bound is O(K/(y/sA?)), yet one can actually achieve
O(ﬁ(\/fi( + K/s)) with a specialized algorithm (Castro and Tanczos, 2015). Whether the
faster rate is achievable beyond the homogeneous case is open, and seems related to the fact
that active learning at best provides distribution-dependent savings in general but can provide
exponential savings with random classification noise (analogous to our homogeneous setting).

e Relatedly, settling the optimal sample complexity for combinatorial pure exploration is open.
For lower bounds, the technical barrier is to capture the multiple testing phenomena, which
typically requires Fano’s Lemma. For upper bounds, some interesting algorithms to study are
median-elimination (Even-Dar et al., 2006), explore-then-verify (Karnin, 2016), and sample-
and-prune (Chen et al., 2016), all of which yield optimal algorithms in special cases.

We hope to study these questions in future work.

Acknowledgments

We thank Sivaraman Balakrishnan for formative and insightful discussion.

12



DISAGREEMENT-BASED COMBINATORIAL EXPLORATION

References

Emmanuel Abbe, Afonso S Bandeira, and Georgina Hall. Exact recovery in the stochastic block
model. IEEE Transactions on Information Theory, 2016.

Louigi Addario-Berry, Nicolas Broutin, Luc Devroye, and Gabor Lugosi. On combinatorial testing
problems. The Annals of Statistics, 2010.

Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert E. Schapire. Tam-
ing the monster: A fast and simple algorithm for contextual bandits. In International Conference
on Machine Learning, 2014.

Andras Antos, Varun Grover, and Csaba Szepesvari. Active learning in heteroscedastic noise. The-
oretical Computer Science, 2010.

Ery Arias-Castro and Emmanuel J. Candes. Searching for a trail of evidence in a maze. The Annals
of Statistics, 2008.

Jean-Yves Audibert and Sébastien Bubeck. Best arm identification in multi-armed bandits. In
Conference on Learning Theory, 2010.

Sivaraman Balakrishnan, Min Xu, Akshay Krishnamurthy, and Aarti Singh. Noise Thresholds for
Spectral Clustering. In Advances in Neural Information Processing Systems, 2011.

Sébastian Bubeck, Tengyao Wang, and Nitin Viswanathan. Multiple identifications in multi-armed
bandits. In International Conference on Machine Learning, 2013.

Cristina Butucea and Yuri I. Ingster. Detection of a sparse submatrix of a high-dimensional noisy
matrix. Bernoulli, 2013.

Alexandra Carpentier and Andrea Locatelli. Tight (lower) bounds for the fixed budget best arm
identification bandit problem. In Conference on Learning Theory, 2016.

Rui Castro and Ervin Tanczos. Adaptive sensing for estimation of structured sparse signals. /EEE
Transactions on Information Theory, 2015.

Lijie Chen, Anupam Gupta, and Jian Li. Pure exploration of multi-armed bandit under matroid
constraints. In Conference on Learning Theory, 2016.

Lijie Chen, Anupam Gupta, Jian Li, Mingda Qiao, and Ruosong Wang. Nearly optimal sampling
algorithms for combinatorial pure exploration. In Conference on Learning Theory, 2017.

Shouyuan Chen, Tian Lin, Irwin King, Michael R Lyu, and Wei Chen. Combinatorial pure explo-
ration of multi-armed bandits. In Advances in Neural Information Processing Systems, 2014,

Yudong Chen and Jiaming Xu. Statistical-computational tradeoffs in planted problems and subma-
trix localization with a growing number of clusters and submatrices. Journal of Machine Learning
Research, 2016.

David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active learning. Ma-
chine Learning, 1994.

13



CAO KRISHNAMURTHY

Sanjoy Dasgupta, Daniel Hsu, and Claire Monteleoni. A general agnostic active learning algorithm.
In Advances in Neural Information Processing Systems, 2007.

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action elimination and stopping conditions
for the multi-armed bandit and reinforcement learning problems. Journal of Machine Learning
Research, 2006.

Victor Gabillon, Alessandro Lazaric, Mohammad Ghavamzadeh, Ronald Ortner, and Peter Bartlett.
Improved learning complexity in combinatorial pure exploration bandits. In Artificial Intelligence
and Statistics, 2016.

Aurélien Garivier and Emilie Kaufmann. Optimal best arm identification with fixed confidence. In
Conference on Learning Theory, 2016.

Steve Hanneke. Theory of disagreement-based active learning. Foundations and Trends in Machine
Learning, 2014.

Daniel Hsu. Algorithms for Active Learning. PhD thesis, University of California at San Diego,
2010.

Tzu-Kuo Huang, Alekh Agarwal, Daniel Hsu, John Langford, and Robert E. Schapire. Efficient and
parsimonious agnostic active learning. In Advances in Neural Information Processing Systems,
2015.

Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. Journal of
Computer and System Sciences, 2005.

Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer, and Peter Stone. Pac subset selection in
stochastic multi-armed bandits. In International Conference on Machine Learning, 2012.

Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed bandits.
In International Conference on Machine Learning, 2013.

Zohar S Karnin. Verification based solution for structured mab problems. In Advances in Neural
Information Processing Systems, 2016.

Emilie Kaufmann and Shivaram Kalyanakrishnan. Information complexity in bandit subset selec-
tion. In Conference on Learning Theory, 2013.

Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of a/b testing. In
Conference on Learning Theory, 2014.

Mladen Kolar, Sivaraman Balakrishnan, Alessandro Rinaldo, and Aarti Singh. Minimax localization
of structural information in large noisy matrices. Advances in Neural Information Processing
Systems, 2011.

Akshay Krishnamurthy. Minimax structured normal means inference. IEEE International Sympo-
sium on Information Theory, 2016.

Shie Mannor and John N Tsitsiklis. The sample complexity of exploration in the multi-armed bandit
problem. Journal of Machine Learning Research, 2004.

14



DISAGREEMENT-BASED COMBINATORIAL EXPLORATION

Elchanan Mossel, Joe Neeman, and Allan Sly. Belief propagation, robust reconstruction and optimal
recovery of block models. In Conference on Learning Theory, 2014.

Serge A. Plotkin, David B. Shmoys, and Eva Tardos. Fast approximation algorithms for fractional
packing and covering problems. Mathematics of Operations Research, 1995.

Alexander Rakhlin and Karthik Sridharan. Bistro: An efficient relaxation-based method for contex-
tual bandits. In International Conference on Machine Learning, 2016.

Daniel Russo. Simple bayesian algorithms for best arm identification. In Conference on Learning
Theory, 2016.

Max Simchowitz, Kevin Jamieson, and Benjamin Recht. The simulator: Understanding adaptive
sampling in the moderate-confidence regime. In Conference on Learning Theory, 2017.

Vasilis Syrgkanis, Haipeng Luo, Akshay Krishnamurthy, and Robert E Schapire. Improved regret
bounds for oracle-based adversarial contextual bandits. In Advances in Neural Information Pro-
cessing Systems, 2016.

Shu Wang, Robin R Gutell, and Daniel P Miranker. Biclustering as a method for rna local multiple
sequence alignment. Bioinformatics, 2007.

Appendix A. Non-interactive analysis
A.1l. Proof of Lemma 1

Observe that % is the average of %d(v*, v) centered sub-Gaussian random variables, each
with variance parameter 1. This follows because v* — v € {—1,0,+1} is non-zero on exactly
d(v*,v) coordinates, and because /i — p is the average of 7'/K sub-Gaussian random vectors.
Therefore, by a Subgaussian tail bound and a union bound

[(v* — v, i — ) —v, i — )

P (3 : P >
VYT ) P e

2

<22exp< Tdv v)e )

veY

K _ 2
:2I§]B(k,v*)exp< QTI?)

Tke?
< 2K exp <\I/I<HI?<XK log |B(k,v*)| — 2;, ) :

Unpacking the definitions of ¥, ® and setting € = \/ % (‘P + W), this bound is at most 9,

which proves the lemma.
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A.2. Proof of upper bound in Theorem 2

Recall the definition of the gap A, (i), and observe that probability of error for the MLE ¢ =
argmax, ey (fi, v) is

PloAv|<P[FweV:{(iv—0v)>0=PFveV:{i—uv—v")>(uv —uv)

:P[HUGV:W>AU(M)]

= p v — %)
]P)|:E|UEV. (0. 0" >£I71é1vIlA ()] -

Now the result follows from Lemma 1, specifically by setting the right hand side of the normalized
regret inequality to be at most min, ., A, () and solving for T'.

A.3. Proof of lower bound in Theorem 2

The proof here is based of Fano’s inequality and follows the analysis of Krishnamurthy (2016). Let
us simplify notation and define P, = P,_A(2y—1) to be the distribution where 7'/ K samples are
drawn from each arm and pn = A(2v — 1). For any distribution 7 supported on V let P, denote
the mixture distribution where first v* ~ 7 and then the samples are drawn from P,~. With this
notation, Fano’s inequality (with non-uniform prior) shows that for any algorithm

Eyr KL(P,||Py) 4 log 2
sup Pos [0 # 0*] > By Py n (o1 [0 # 0% > 1 — =5 = :
sup P [0 # 0*] > BoranPpuzn2or—1)[0 # v*] > Hm)
(This slightly generalizes one standard version of Fano’s inequality, where 7 is uniform over V, so
the denominator is log |V|.) Let © € V denote the candidate achieving the maximum in the definition
of ® and define the prior

2= _ 112
m(v) x exp <_TA”;(7}H2> ,

With this definition, the entropy term becomes

2|5 _ 2Ny —
:log(zexp( TA| ””2)>+Z T 3

2015 _
:log<Zexp(—TAH;(U”2>>+2Z v)KL(P,||P;).

Here in the last step we use the definition of the Gaussian KL, and the tensorization property for
KL-divergence. As for the KL term in the numerator, it is not too hard to see that

> w(W)KL(P||Pr) <> woKL(Py||Pr) + KL(Pr||Ps) = > m,KL(P,|| Py).

(2

Thus, we have proved the lower bound if

2 v—
> " w(0)KL(P,||P5) + log(2) flog <Zexp< M””Z)>+Z v)KL(P,||P;).

v
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After simple algebraic manipulations, we get

2 2
log(2log(2)) < Zexp (_Tﬁd@:@)) = Zexp (log |B(k,v)| — T];(A ) .
v k

Since the sum dominates the maximum, o realizes the definition of ®, and since 21og(2) < 3, we
obtain the result. More formally, if

K
T< A2 (® — loglog3),
then
. TkA? i
Zexp log |B(k,v)| — 7 > max exp (log|B(k,v)| — @k + loglog 3)
k

= exp(loglog 3) = log 3.
Thus if 7" is smaller than above, the minimax probability of error is at least 1/2.

Remark 7 As we have discussed, the lower bound identifies the minimax rate up to constants for
examples where ® > log(K) /W, in the moderate confidence regime where § = poly(1/K). Ob-
taining the optimal 6 dependence even for non-interactive algorithms, seems quite challenging and
is an intriguing technical question for future work.

Remark 8 We emphasize here that the lower bound applies only for non-interactive algorithms
and only in the homogeneous case. A more refined instance-dependent bound is possible with our
technique but is not particularly illuminating.

Appendix B. Calculations for examples
B.1. Instantiations of Theorem 4

To instantiate Theorem 4 for the examples, we need to compute ®, ¥, and A, for each arms a. In
the homogeneous case, we always have A, = A. We now compute ¢, ¥ for the four examples.
For ToP-K, we have ¥ = 2 and

tog (%) (.

- )> < O (log(K)).-

® = max
k

Thus the sample complexity is T < %, where recall that < ignores logarithmic factors.
For DISJSET, it is easy to see that ® < 1/(2s), ¥ = 2s, so we have T" < %.
For MATCHING, ¥ = 4 since we must switch at least two edges to produce another perfect

matching. To calculate ®, by symmetry we may assume that the “center” v is the identity matching
{(a1, bl)}g where {a;}, {b;} form the two partition cells. Then, as an upper bound, the number
of matchings that differ on 45 edges is at most (‘/I?) s! < K*. (Actually this bounds the ball volume

S

and hence the sphere volume.) Thus ¢ < O(log(K)) and so we have " < %.
For BICLIQUE, ¥ = 2,/s which arises by swapping a single node on either side of the partition.
The computation of ® is more involved. The idea is that for every vertex that we swap into the
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biclique, we switch ©(,/s) edges, formally at least 1/s/2 edges but no more than /s. Then rather
than optimizing over the radius in the decision set, we optimize over the number of vertices swapped
in on both sides of the partition, which we denote sy, sg. For a set v, note that we can obtain any
set by swapping sy, column and sg rows of v

This gives T < ﬁ

B.2. Comparison with Chen et al. (2014).

To compare with Chen et al. (2014), we must introduce some of their definitions. Translating to our
terminology, they define AELC) = miny.qepou+ (1, v° — v), which differs from our definition since it
is not normalized. They also define exchange classes and a notion of width of the decision set. An
exchange class is a collection of patches b = (b4, b_) where b, ,b_ C [K] and by Ub_ = (), with
several additional properties. To describe them further define the operator v &b = (v \ b—) U b
andv @ b = (v \ by) U b_ where v is interpreted as a subset of [K]. Then a set of patches 5 is an
exchange class for V if for every pair v # v € V and every a € v \ v/, there exists a patch b € B
suchthat (1)a € b_, 2) by C V' \v,3)b_ Cv\v, @ vPbeV,and (5) v @b € V. Then they
define the width

width(V) = min max [b_| + [by|
exchange classes B beB

With these definitions, the fixed-confidence bound of Chen et al. (2014) is

0 <width(V)2 > @(10))2 10g(K/5)>

a

where we have omitted a logarithmic dependence on the arm complexity parameter ASF).

For homogeneous DISJSET it is easy to see that width()) < s and ALY < sA. Hence their
bound is O(K log(K)/A?).

For MATCHING, number the vertices on one side a1, . . ., a ;7 and on the other side by, . .., b /7.
Let v* be the matching with edges {(a;, bz)};if1 In the homogeneous case where 1 = A(2v* — 1),

it is easy to see that A((lo) = O(A) since for every edge e (which correspond to the arms in the
bandit problem), there exist a matching that contains this edge, that disagrees with v* on exactly
two edges. Specifically, if e = (a;, b;) then the matching that has edge (ay, by) for all k # 4, j and
edges (a;, b;) and (a;, b;) has symmetric set difference exactly 4.

On the other hand we argue that the width is ©(v/K). This is by the standard augmenting path
property of the matching polytope. In particular if v* is as above and we define another matching

v = {(a,b; +1 mod ﬁ)}g, then the only patch for v*, v is to swap all edges. Hence the bound
of Chen et al. (2014), in this instance is O (IA(—; log(K/ 6)) which is a factor of K worse than the
non-interactive algorithm in this setting.

For BICLIQUE, we have width()) = s yet A9 < v/sA. For the former, consider two bicliques
v, v’ that disagree on all nodes on both sides of the partition. Then the smallest patch betweeen
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them is the trivial one (v, v") since any other potential patch covers edges between the two bicliques
(which are not contained in either one). For the latter, for any edge a we can swap at most two
nodes, one from each side, to cover this edge. Thus their bound is O(Ks/A?).

For the worst case comparison, note that

* * C)
vt —v) () A
— -~ > —

Aa v:aIggI@lv* d(’U*, U) - v:a%ll}gv* D D

*x ()
A, < W t0) Ba
d(v*,v,) v

where v, is the set that witnesses A,(IC) and D £ maxy yey d(u,v) is the diameter. Ignoring
logarithmic factors, our bound therefore satisfies

2 2

Tchen14 width 2A < T < Tchen14 dth2A

B.3. Comparison with Chen et al. (2017).
As for Chen et al. (2017), their guarantee is
O (Low(V)(log(1/8) +log [V])) ,
ignoring some logarithmic factors. Here Low()) is the solution to the optimization problem

1
minimizeZTa s.t. Z — <A{p,v* — )2, Vv #v* and 7, > 0,Va € [K]. (6)

T
a acvov* ¢

In the homogeneous case for bipartite matching, we show that Low()) = ©(K/A?). This proves
what we want since log()) =< v/K and hence the bound is a factor of v/K worse than Theorem 2.
The proof here is by passing to the dual of Program (6). First we construct the Lagrangian

zmzav( 5 T_<M,U*_v>2).

acvovr ¢
By weak duality, the solution of the primal problem is always lower bounded by the solution of the
dual problem

min max £(7, &) > maxmin £(7, a).
T (63 (0% T

Taking the derivative with respect to 7 we have

oL 1
87a21_ Z av<7_2>:():>7'a: Z Qs

viaEvOU* a v:ia€vOv*

and plugging back into the Lagrangian gives

1
max E ay + g o E — {1, v* — v)?
a0
UHASISIN acvoU* 4/ Zv’:aev’ev* Qyt
= max 2 E Oy — E ay (L, v — v) @)
a0
a v:a€vOv*
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By weak duality, any feasible solution here provides a lower bound on Low(}). For matchings,
we construct a feasible solution in a similar way to the construction we used to analyze the bound
of Chen et al. (2014). Let v* be the matching {(a;, bl)}l\ig1 For every edge (a;, b;), there is a unique
matching v that disagrees with v* on exactly 4 edges, and for these matchings we will set «,, to some
constant value .. We set o, = 0 otherwise. This ensures that for every a & v*, > . ..o,
On the other hand, for a € v*, we get >, cocp @ = (VK — 1)ar > a, since we can swap out
this edge with one of v/K — 1 other edges, iterating over all other nodes on the other side of the
partition. In other words, for every arm a € [K], the first term is at least y/cv, while no more than
K ays are non-zero. In total, a lower bound on the dual program is given by

« Oy = Q.

max 2K /o — 4K A%a.
a>0

This simpler program is optimized with o = 1/(16A%) and plugging back in reveals that
Low(V) = Q(K/A?).

This is all we need for our comparison, since Low(V) log(|V|) = Q(K?3/2/A?) in this case.

For BICLIQUE, let us assume that /s divides VK. Considering the dual program (7), we set
a,, in the following way: We define the set that contains all the hypotheses that can be obtained by
swapping the first row or the first column of v* with another row or column to be set V.. Note that
Vo] = 2(VK —/s). Forv € V., we set ., = or;. We define a maximum set of disjoint hypotheses

that does not share any rows or columns with v* to be V;. Note that |V,| = (\/E\/;‘/g)2 Forv €V,
we set a, = az. We discard all the other sets and set o, = 0. For the remaining sets, note that for
each arm a ¢ v*, there is only one hypothesis v such that that a € v* & v, let us call it v,. Thus the

dual program (7) can be lower bounded as follow

(7) > max Z Vor + Z Voo — Z a1sA? — Z 52 A? )

1,02
{alva €V, } {alva€Vy} veVe veVy

Note that |{a | v, € V.}| = 2(VK — /s)y/sand |{a | v, € V,}| = (VK — /35)%. Solving for
a1, as gives ap = 1/sA%, ag = 1/52A%, and plugging these back into the dual gives

Low(V):Q<A12 (ﬁ—ﬁ+w>>.

S

Recall that their sample complexity is Low()V) log(V), where log(V) =< /s. This means that their
sample complexity is lower bounded as

Sl (3 (52 )

For the worst case comparison, notice that if we set 7; = 0o, Vi # a, we obtain a lower bound

for 7, in each of the constraints. Specifically, we get 7, = max, qcv oo m v}_v>2 > m U*l_v 12>

so the worst case

where v, is the set that witness our complexity for arm a. Thus 7, > D%Ag’
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ratio between our bound and their bound is %IQV\A‘ On the other hand, it is easy to see that with

Tq = ﬁ, using our definition of arm complexity, their program is feasible, and so we have
a

1
LOW(V) < Z §7
a a
which readily yields a lower bound on our complexity, in terms of theirs.

B.4. Comparison with Gabillon et al. (2016).

In Gabillon et al. (2016), the authors introduce a improved gap by defining the complement of a set.
Intuitively the complement is the easiest set to compare with. For any set v # v*, the gap is

A(G) _ <M7 v — U>

= max I vare——
v’ (v —v) >0 d(v’,v) ’

and the set that achieves this maximum is the complement of v. A tie breaks in favor of the sets that
) (@)

. G . G
are closer to v. The gap of an arm « is Ag = min, gepcor Do

0 (Z (1@) 1og<K/6>> ,

, and their sample complexity is

a (A

which is similar to the sample complexity of Chen et al. (2014) except the width is absorbed into
the new gap definition. As a consequence, this bound is never worse than Chen et al. (2014).

In the homogeneous BICLIQUE example, it is easy to see Al(lG) = A, since taking v/ = v* will
always achieve the maximum. Hence the bound becomes O(% log(K/4)), which is Q(,/s) worse
than the bound in Theorem 2.

For general p, note that for any set v,

(u, Cy — vy d(Chy,v)
d(Cy,v) d(v*,v)

A(G) > A, = <:U’77}* _U> >

> A
d(v*,v) -

v
v 57
where C, is the complement of v. Hence the bounds satisfy

D2
TGavittonte * A = T' < TGabvittont6 * 5 -

Appendix C. Proofs

In this section we provide the proofs of Theorem 3 and Theorem 4. Several lemmas and their proofs
are provided in Appendix D.

Proof of Theorem 3. We repeatedly use the following identity for the ¢; norm: For any u €
{0,1}% and any 2 € [0, 1],

|z —ull1 = (z +u,1) — 2(z,u). )

This identity reveals that the disagreement region, V, is polyhedral and hence Program (4) is just
a linear feasibility problem. Now suppose that Program (4) is feasible and that 2* € conv(V) is
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a feasible point. Then for every distribution p € A(V), x* satisfies the linear combination of the
constraints weighted by p € A(V), which is precisely what we check by solving Problem (5) and
examining the objective value in line 11 in each iteration of the algorithm. Hence by contraposition,
if the algorithm ever detects infeasibility, it must be correct.

For the other direction, we use the regret bound for Follow-the-Perturbed Leader (Kalai and
Vempala, 2005). Succinctly, when the learner makes decisions d; € D C R? and the adversary
chooses losses /; € S C R, FTPL with parameter ¢ < 1 guarantees

T T
E ;(dt, (r) — min 3 (d,¢;) < eRAT + D/e,

where D = maxggep ||[d — d'||1, R = maxgep ees |(d, s)|, and A = maxeg ||€]|1. Setting ¢ =
\/D/(RAT) gives 2v/DRAT regret. The algorithm chooses d; by sampling oy ~ Unif([0, 1/¢])
and playing d; = argming.p(d,or + Zi_:ll ¢;). This induces a distribution over decisions d,
which we denote by p; € R? and the expectation accounts for this randomness. It will be important
for us that FTPL can accommodate adaptive adversaries, and hence the loss ¢; can depend on p; but
not on the random decision d;.

In our case, we have D = conv()), and we write £, = A1 —2Ax;— i where z; is the solution to
Program (5) in the ¢t iteration. This makes D < K. Recall that /1 is the empirical average of y;. By
Chernoff bound and a union bound, with probability at least 1 — 01, ||z — |1 < K+/2log(2K/d1).
Since i € [—1,1)%, 2, € [0,1]5, A € [0,1], we get A, R < 5K +/log(2K/81) in our reduction. So
with € = /1/(25 KT log(2K/41)) the regret is upper bounded by 2K /25K T log(2K/51). Note
that while x; and hence ¢; depends on the random choices of the learner through p;, we will actually
apply the regret bound only on the expectation, which we denote by p;, which can be equivalently
viewed as the adversary sampling to generate p; and ¢;. To translate from p; to p; we need one final
lemma, which we prove in Appendix D.

Lemma9 Let p; = E,,p; and let Uy be any vector, which may depend on p;. Then with probability
at least 1 — 6, simultaneously for all rounds t € [T

< 3K log(2KT/5)'
2m

> Be(w) = pi(w)(u, &)

uey

Now, we condition on the event in Lemma 9 and use the fact that x; optimizes Program (5)
(which is defined by p;) and passes the check in line 11. Applying the FTPL regret bound, we get

T m m
1 oy A
0< Z - ‘ Axe, 1 —2uz ;) + (x4, 1) + Z<Ut’i7 Al — [1)
t=1 =1 i=1
T
=33 Beu) (u, b) + (e, o+ 1A)
t=1 uey
3 - log(2KT/55)
< (o AL+ i) +min Y (u, f) + 2K/ 25K T log(2K /1) + 3TK | 2222,

o~
Il
—

t=1
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Note that we apply the regret bound on py, the expected decision of the algorithm, rather than
on Py, the randomized one. Setting 6; = d2 = /2, dividing through by T, and using (9), we get

log(4KT/9)

Yu €V, (u— 7, 1) < Al|Z — ul|s + 2K+/25K log(4K/8)/T + 3K o

i

where Tz = % ZZ;I x¢. The theorem follows by our choices for 7" and m. In particular, the number
of oracle calls is Tm = O (K%/A% - log? (K /5) log(K log(K/A)/5)) .

Proof of Theorem 4. The key lemma in the proof of Theorem 4 is a uniform concentration in-
equality on the empirical mean j used by the algorithm. To state the inequality let fi;(a) € R be
the conditional mean of y;(a), conditioning on all randomness up to round ¢, including the execu-
tion of DISAGREE. This means that ji;(a) is either u(a) or 20;(a) — 1, depending on the outcome of
the disagreement check. Recall the definition of A; in Algorithm 1. We first derive a concentration
inequality relating fi; to the empirical means fi;:

Lemma 10 With the above definitions, for any 6 € (0, 1), with probability at least 1 — 6 /2

Vt>0,Vv eV, (W =, 1y — yi)| < dw*,v)A.

1

1
t f—

7

This concentration inequality is not challenging to prove, but is much sharper than ones used in
prior work. The key difference is that our inequality is a regret inequality in the sense that it only
bounds differences with the true optimum v*, while the prior results bound differences between all
pairs of hypotheses. Our definition of the version space V(ji, A) enables using this concentration
inequality, which leads to our sample complexity guarantees.

Define the event £ to be the event that Lemma 10 holds and also that the disagreement com-
putation succeeds at all rounds for all arms, which by Theorem 3 happens with probability 1 —
> o0 727 > 1 — /2. Under this event, we establish two facts:

1. Vt,v* € V, where V, = V(jiy, A;) is the version space at round ¢ (Lemma 11).
2. If Ay < A, /3, then arm a will never be queried again (Lemma 13).

The correctness of the algorithm follows from the first fact. In detail, the algorithm only terminates
at round ¢ if for all arms, Algorithm 2 detects infeasibility. By Theorem 3, this means that V, NV =
{0}, and, by Lemma 11, we must have v* € V;. Thus conditioned on &, the algorithm returns v*.

For the sample complexity, from the second fact and the definition of A;, arm a will not be
sampled once

72 (q) . log(KZITIQtQ/(S)) |

A sufficient condition for this transcendental inequality to hold is (see Fact 14):

2 2
T, > 1A4;1 (q) N 210g(144/(Aa\Il)\I)j—|— 2log(Km /5)) ‘

The sample complexity is at most ), T, which proves the theorem.
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Appendix D. Proofs for the lemmas

Proof [Proof of Lemma 9] Let V be a RE* VI matrix whose columns are the vectors v € V. Recall
that p; € A(V) is a distribution over the perturbed leader at round ¢. Let S; € {0, 1}Vl be the
indicator vector of the i sample. Clearly, E[S;] = p; and p; = % >, Si. We have

E (De(u) — pe(w)) (u, )

uey

= [(Vpr — Vpi, b)) < ||VDr — Vprlool|lell1-

Let (); denote the j-th coordinate of a vector. By Hoeffding’s inequality and union bound we have
Pvt € [T),9) € [K], [(Vie); — (V)] > d < 2KT exp (~2me?),
so that with probability at least 1 — ¢

log (2K'T/9)

2m

vVt e [T], Vs — Vpilloo <

This proves the lemma. n

Proof [Proof of Lemma 10] Let F; be the o-algebra conditioning on all randomness up to and
including the execution of DISAGREE for all arms a € [K] at round ¢. Thus y;(a) is F; measurable
and with Z, = S'_ | (fi; — ;) it is not hard to see that {Z;}/_; forms a vector-valued martingale
adapted to the filtration {F;} 1 :

E[Z|F) = E[(fe — vt) + Zi—1|Z1—1] = Zi—1.

Observe also that ji;(a) — y¢(a) is a 0-mean Subgaussian random variable with variance parameter
at most 1. Thus, for any v # v*, Subgaussian martingale concentration gives

IP’[ S Z(a)t SQexp{—&l(t;i)*)}.

acvov*
With a union bound, we get

Y Zila)/t

acvov*

> €

P [Elt, eV,

> (v, v* 6] <222exp{ teé;v *5)) }
(v,v

t>0 vey

Following the argument in the proof of Theorem 2, this right hand side will be at most §/2 if

Et(U*,’U,(S) = \/Sd(vt*’v) log < t2 2‘8( (5( ) ,U*)‘>.

We set A; = \/% (® + log(Km2t2/6) /W) so that for all v € V, Ard(v,v*) > €(v,v*,d), which
concludes the proof. |
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Lemma 11 Recall the definition of Vy = V(fut, A¢) at round t, with V(ji, A) defined in (3). Then
in event £, we have that Vt,v* € V,.

Proof The proof is by induction. First, we know that if v* € V;_4 then (v* — v, i) > (v* — v, p).
This follows since if arm a is queried then fi;(a) = p(a) and if arm a is not queried, we know that
v*(a) = v¢(a) and our hallucination sets ji;(a) = 20:(a) — 1 = 2v*(a) — 1. So if v*(a) = 1 and
v(a) = 0, we have fi(a) = 1 > p(a). If v*(a) = 0 and v(a) = 1, we have [i;(a) = —1 < p(a).
So in both cases we have (v*(a) —v(a))(a) > (v*(a) —v(a))p(a). Thus, if Vi € [t —1],v* € V;
(which is our inductive hypothesis), then by Lemma 10 Vv € V

¢
(v—0v* i) < <v — v, % Z ,ut> + Ad(v,v") < (v — 0", p) + Avd(v,v*) < Ad(v,v").

By definition of V%, this proves that v* € V. Clearly the base case holds since v* € Vy = V. |

Lemma 12 Let x € conv(V) = ), av, where v € V, > . a; = 1, a; > 0 and let v € V. Then,

lz = vlls = aillvi — vl (10)

Proof This follows by integrality of v € V and (9). In particular, for integral v, ||x — v|| is actually
linear so we can bring the ; o outside the /1 norm. |

Lemma 13 Under event &, once t is such that Ay < A, /3, arm a will not be sample again.

Proof We consider here the case where v*(a) = 1. For v*(a) = 0 the analysis is similar. Assume
for the sake of contradiction that a is sampled, which means that Dis(a, 1 — 0;(a), Ay, fi;) returns
TRUE. If v*(a) = 1, then Vv € V with v(a) = 0 we have

t
1
(V" — v, i) > <v* — g E ﬁ7> — Ayd(v*,0) > (0 — v, u) — Ard(v*,0) > 2d(v*,v) Ay
=1

The first inequality is Lemma 10, the second uses the property of the hallucinated samples that
we used in Lemma 11. The last inequality is due to A, < % and our assumption that
A < A,/3. This implies that v;(a) = 1, which means that we execute DISAGREE to check if
any surviving hypothesis v € V, has v(a) = 0. Since we sampled arm a, this means there exists

x € conv(V) such that
Vu € V{u—x, fir) < A¢flu— |1 + Ay

This follows by Theorem 3 which holds under the event £. Now write z = ZZ a;v; where o 1s a
distribution and v; € V. Since x(a) = 0, we must have v;(a) = 0 for all 7. This means that

W=z, i) = Z a; (v — vy, fig) > ZZaid(v*,vi)At > Aglv* — x| + Ay
i i
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Algorithm 3 Fixed budget algorithm for combinatorial identification
1: Input: V, set of arm [K |, {n:}q
Sett+ 1, A1 < 0, Ry < 0
fort=1,2,3,..., K do
Sample arms in [K]\(A; U R;) for ny — ny—1 times. For a € A, use sample value 1 and for
a € Ry use sample value —1 (i.e., hallucinate samples).
Update /i, and find & = arg max,ey (v, fir).

Rl

dt = argmaxae[K]\(AtuRt) At,a-

If a; € ¥4, then At+1 =AU {&t}, RtJrl = Ry, else At+1 = At, RtJrl =R U {&t}
end for
return Ax

A A

The last inequality is due to Lemma 12 and the fact that Vi, d(v*,v;) > 1. This contradicts the
guarantee in Theorem 3, which means that D1S(a, 1 — 0¢(a), Ay, fi¢) cannot return TRUE. [

We use the Lemma 8 from Antos et al. (2010).

Fact 14 (Lemma 8 from Antos et al. (2010)) Let a > 0, for any t > 2 max{(log 1 — b),0}, we
have at + b > logt.

Appendix E. Proof of Theorem 5

In the fixed budget setting, we follow a classic rejection strategy used by many algorithms in
other settings (e.g., Successive Rejects Audibert and Bubeck (2010), SAR Bubeck et al. (2013),
CSAR Chen et al. (2014) and also the algorithm of Gabillon et al. (2016)).

We require several new definitions. First recall that our definition of the gap for arm a is A,.
Let A be the j™ largest element in {Aa}ae(k)- Then the main complexity measure is H =

max;(K +1— 5)(AU))~2, For short hand we define the partial harmonic sum loAé(t) =3t 1/i
Assume that the total budget is 7', and define

ne= | = , ng =20
log(K)(K +1—1)

which will be related to the number of queries issued in each round of our algorithm. As before,
let /i; be the empirical mean at round ¢ of the algorithm and let o; = argmax, (v, i) be the
empirical maximizer. Define the empirical gaps at round ¢ for hypotheses and arms respectively as
Atvzwa Ata: min Atv-
’ d(?)t, 'U) ’ a€dov

With these definitions, we are now ready to describe the fixed budget algorithms, with pseu-
docode in Algorithm 3. The algorithm maintains a set of “accepted” and “rejected” arms, A; and
R; in the pseudocode at round ¢, and once an arm is marked “accept” or “reject” it is never queried
again. At each round ¢ we issue several queries to all surviving arms, ensuring that each arm has
ny total queries, and then we find the arm with the largest empirical gap Am and accept it if it is
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included in the ERM 9. Otherwise we reject. Note that the algorithm is not oracle efficient, since
computing the empirical arm gaps is not amenable to linear optimization.

Proof [Proof of Theorem 5] First, note that in each round we eliminate one arm and sample the rest
for ny — ny—; times. Thus after round ¢ we have sampled each surviving arm n; times, and exactly
one arm is sampled n; times for each ¢ € [K]. Thus the total number of samples is

K K
Z T-K w Z T-K e

|Vlog(K)(K—|—1—t =1 K)(K+1-1)
Second, define fi; as before to be the mean of the all samples up to and including round ¢, taking
into account the hallucination. fi(a) is an average of n; terms where if at round i < ¢ we place
a € A;, then the last n; — n; terms are just 1. Similarly if at round n; we place @ € R; then the last
ng — n; terms are —1. Otherwise all terms are simply p(a). Formally,

1 K

firla) = — > (ny —n-1) [pl{a ¢ R-UA}+1{a € A;} — 1{a € R;}].

T=1

Note that this is different but related to our definition in the fixed confidence proof. We define the
high probability event:

E A [Vt e [K],Yv eV, |[(v—v* fi — ir)] < cd(v, v )ADY,

where ¢ < 1 is a constant that we will set later. Now we show that £ holds with high probability:

) 2d(v, v*) (AW 2T — K)d(v,v*
ngzzexp{_ L MO K } Ko {20 K

t vey IOg( vey IOg(
20 _ _ 2
<K Z exp {—C(NTK)I{; + log ]B(k,v*)} < K?exp {\I’ <<I> - (71K)~c> } :
he[] log(K)H log(K)H

We proceed to show that, conditioned on event £, Ax 1 = v*. At round ¢, define

ay = argmax A,
a€[K]\(AtUR:)

where A; and R, are the accepted and reject arms at the beginning of round ¢ and A, is the true arm
complexity. Further assuming (inductively) that A; C v* and R; U v* = (), we establish five facts:
Fact 1. At the beginning of round ¢, a} satisfies A, > AW If this statement does not hold at round
t, then we must have eliminated all of the the ¢ arms A(l), cey A® . However, since we eliminate
exactly one arm in each round, we can only eliminate ¢ — 1 arms before round ¢, which produces a
contradiction since a;} is the maximizer.

Fact 2. Under the inductive hypothesis, for all v € V, we have (fi;, v* — v) > (u, v* — v). This is
similar to the argument we used in the fixed confidence proof. For any arm a, if a ¢ A; U R, then
the corresponding terms are equal. If a € A; then since by induction we know a € v*, the term for
v* is as high as possible and analogously if a € R; the term for v* is as low as possible.
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Fact3. a} € 0; <= a} € v*. Assume for the sake of contradiction that a} € 9; and a} ¢ v*. The
proof is the same for the other case. We have

A~

* *
Ay = min U0 (vt
¢ arevov  d(vF,v) d(v*,vy)

< ’{)t _U*>

Thus we have < —Ag;. By the previous fact we know A, > A® since af is the

d(v*,0¢)
maximizer. Now, conditioned on &:
</lt7{}t - U*> </jt7’l/)t - ’U*> + CA(t) < <:u7@t - ’U*> + CA(t) < A(t) _ Aaf <0.

d(ﬁt, ’U*) d(’f)t, ’U*) - d(ﬁt, U*)

The first inequality is by event £, the second is by Fact 2 and the final one is by Fact 1 and the
definition of aj. This results in a contradiction.

Fact 4. Let Ut qr be the set that witnesses At,ai’ ie. Utar = argminvza;eveﬁt Atw- We have that
(fig; v* — Dy qr) > 0. To see why, note that a;y € 0; © Uy,; and by Fact 3 we have aj € v* © Uy q;.
Conditioning on & and using the fact that the true gap A, involves minimizing over v € V we get

</lt7 7)* - f}t,a;> (ﬂt) U* - 6t,a;>
d(’U*7 ﬁt:a?) - d(v*, i}t,a;‘)

<M7 v* — rDt,a;> _
d(’U*, th,a;)

The last step here uses Fact 1.
Fact 5. a; € 0y <= a; € v*. Assume for the sake of contradiction that a; € v, a; ¢ v*. We have

N . </lt7 ’[)t - U> </2ta {}t - 'U*>
Apa = <
Lo = i enae d(onv)  — d(6r,v”)

As above, let U 4 be the set that witnesses Ay 4x. Since a¢ maximizes Ay, over all surviving arms
a and since aj is surviving by definition, we have

A N i <,&t7'f)t —U> <ﬂt7®t — U a*>
Ata > Dpgr = = 5
tﬂlt - t7at a;Ienf}tIlev d(ﬁt’ U) d('f}t’ 'Dt7az)
<ﬂt7 f)t — ’U*> + </lt7 V¥ — {]tﬂ:) > min </lt7 @t - ’U*> <lata v* — 6757(1:)
T d(0n,vr) +d(vt, Tre) d(i,v*) T d(v*, Dpap)

£ min{a, b}.

The last inequality holds since both terms in the numerator are non-negative as we have shown
above in Fact 4. Since we previously upper bounded At,&t by what we are now calling a, we have
a > min{a, b}. If a < b, then all of the inequalities are actually equalities, so we must have a = b.
The other case is that a > b, so we can address both cases by considering a > b. Expanding the
definition and applying the concentration inequality, we have

(g, v — Upaz) _ (4o 0" = Trag)
d(’U*, {)t,a:) - d(U*, @ta;)

=

— AW > Ay — AW,

On the other hand,

a (e, 0 — %) (p, O — v*) t) (t)
L < AW < AW,
Ao = dLer) T8¢

a
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Both of these calculations also require Fact 2. Setting ¢ = 1/3, we have
Agr < 2eAD < Al

which contradicts Fact 1 and the definition of a;.

Wrapping up. To conclude the proof, we proceed by induction. Clearly the base case that
Ap C v* and Ry N v* = () is true. Now conditioning on £ and assuming the inductive hypothesis,
we have that by Fact 5, the arm a; € 9y <= a; € v*. This directly proves the inductive step since
the algorithm’s rule for accepting an arm agrees with v*. |

Appendix F. Proof of Theorem 6

Recall that in the main concentration argument in Lemma 10, we proved that

. tes(v, v* 5)
P[3t e N,Jv € V, [(v* — Z i) > e(v,v*,0)] <2ZZGXP{ T 8d(v,v*) }

i= teN vey

Setting

N 8d(v,v* B(d(v,v*),v*)|m2 Kt?
(0,07, 8) = 1 21D o 1B 0D WP KE

we have that the probability of this event is at most §. Previously we set each hypothesis to have the
same confidence interval A; which provided an upper bound on €,(v, v*, d) for all v. This enabled
us to write the disagreement region as a polyhedral set in V, but to obtain a more refined bound,
we would like to use €(v,v*, d) directly. However, note that e,(v,v’,5) # €(v',v,0) unless the
hypothesis space is symmetric. We symmetrize ¢; by defining

D(v,v") £ max{log |B(d(v,v"),v)|,log |B(d(v,v"),v")|} = D(¥',v),

and the symmetric confidence interval

/ 2 2
el (v,0/,8) 2 \/Sd(?”) <log T 3{? + D(v,v’)). 11)

Define the hypothesis complexity measures, for v # v*

Hél) _ d(v,v*) 7 HE) _ d(v,v*)D(v,v*)
(b, v* —v)? (u, v* = v)?
The arm complexity measures, defined previously, are H,gl) = MaXgepou* Hf,l) and ng) =

MaXy:gepsu* H52). The main difference here is that we are not normalizing by d(v, v*)2 as we
did in the proof of Theorem 4 but rather just d(v, v*). In some sense we replace the term depending

on ¥ with Hc(ll) and the term depending on ¢ with Hf).
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Algorithm 4 Inefficient fixed confidence algorithm
1: Input: V, set of arms [K], 0

2: SetV; =V

3: fort=1,2,3,... do

4. At = (Z)

5: for a € [K] do

6: if v, v’ € V; such that v(a) # v'(a) then

7: A = Ay Ua, query a, set ye(a) ~ N (u(a), 1)
8: end if

9: end for

10: Update /i; = % Zi:l Yt.

11: Ri<{veV|ueV,u#v, (u—uv ) > e(uv,d)}
12: Update Vit < Vi \ R+

13: If |V+1| = 1 return the single element v € V; ;.

14: end for

To prove Theorem 6, we construct an inefficient fixed confidence algorithm, with pseudocode
in Algorithm 4. The algorithm is essentially identical to Algorithm 1, except we use the new defini-
tion € in the confidence bounds defining the version space, which forces us to do explicit enumera-
tion. One other minor difference is that we are now explicitly enforcing monotonicity of the version
space, so we need not use hallucination as we did before. We now turn to the proof.

Proof [Proof of Theorem 6] In a similar way to Lemma 10 we can prove that

X A tei(v,v*,0)
P [¥t,Y0 € Vi, (v — v, fie — )| > (v, 0,0)] <23 ) "exp { dev)}

t wveVy

The important thing here is that if v € V; then we must query every a € v © v* and moreover
since we are explicitly enforcing monotonicity (i.e. V; C V;_1), we also queried all of these arms
in all previous rounds. Thus we are obtaining unbiased samples to evaluate these mean differences.
Using the definition of €} in (11), this probability is at most 4.

Next we prove that when the algorithm terminates, the output is v*. We work conditional on the
1—§ event that the concentration inequality holds. We argue that v* is never eliminated, or formally
v* ¢ R, for all t. To see why observe that Vv € V;_; # v*, we have

(i, v —v*) < {p,v —v*) + € (v,v*, ).
This means that no surviving v € V; can eliminate v*. This verifies correctness of the algorithm,
since v* is never eliminated, so it must be the single element in V; when the algorithm terminates.

We now turn to the sample complexity. We argue here that if ¢t > 320V log(m?Kt2/(36)) +

32H, 52) then from round ¢ onwards, arm a will not be sampled again. This condition on ¢ implies
that for all v € V such that a € v © v*, we have

e, (v*,v,6) = \/Sd(vt,v*) (log(m2Kt2/(38)) + D(v,v*)) < (u,v* —v)/2,

by the definitions of Hél) and H((f). Using this simpler fact we argue that a cannot be sampled
again. Working toward a contradiction, assume that a is sampled at round ¢ + 1, which means there
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exists two hypotheses vy, vy € Vi1 such that vi(a) # va(a). Since v* € V4 this implies that
there exists v € V;1; such that v*(a) # v(a). But we clearly have

(W — v, i) > (v —v,u) — (v, v,8) > e (v*,v,0)

which is a contradiction since v must have been eliminated at round ¢. This proves that a ¢ A1,
and since V1 is monotonically shrinking, so is A;, which means that a is never sampled again.

To summarize, we have now shown that for each arm a, the arm will be sampled at most ¢,
times, where ¢, is the smallest integer satisfying

ta > 32H log(m2 K2 /(36)) + 32H.

The final result now follows from an application of Fact 14. |
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