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Abstract
We study the pointwise maximum likelihood estimation rates for a class of Gaussian mixtures that
are invariant under the action of some isometry group. This model is also known as multi-reference
alignment, where random rotations of a given vector are observed, up to Gaussian noise. We
completely characterize the speed of the maximum likelihood estimator, by giving a comprehensive
description of the likelihood geometry of the model. We show that the unknown parameter can
always be decomposed into two components, one of which can be estimated at the fast rate n−1/2,
the other one being estimated at the slower rate n−1/4. We provide an algebraic description and a
geometric interpretation of these facts.
Keywords: Asymptotic rates, Gaussian mixtures, Maximum likelihood, Group actions

1. Introduction

In practical situations, when one has access to many noisy observations of an object, that object
may have been rotated, or shifted, across the observations. This can be the case, for instance, in
chemistry or nanobiology: If the goal is to learn the structure of a molecule from many samples,
the molecule is very likely to move or, even, to appear as one of its isomers, in each sample. Then,
the main challenge, on top of denoising the data, is to align all the observations together. When the
configuration of the unknown object in each observation is itself random, the observation scheme
can be modeled as a mixture of distributions, where each component of the mixture is centered
around a modified version of the unknown object. When these versions are all isometric trans-
formations of each other, the problem is also called the multi-reference alignment problem, see
Sorzano et al. (2010); Singer and Shkolnisky (2011); Bandeira et al. (2014, 2017a); Perry et al.
(2017); Wein (2018) and the references therein. To fix the ideas, we formalize the model as follows.
Let the unknown object be represented by a vector θ∗ ∈ Rd and assume that we have access to n
independent observations yi = giθ

∗ + σεi, i = 1, . . . , n where gi ∈ G is possibly random, G is
a finite subgroup of isometries, σ > 0 is known and εi is a standard Gaussian vector. Here, we
assume that σ is known, in order to simplify the exposition: Our focus is only on understanding
the challenges in learning θ∗ and we might as well assume that σ2 = 1, for the sake of simplicity.
Here, we let G be finite. It seems that our proof techniques could be extended in order to cover the
case of closed (hence, compact) subgroups of isometries (discussed in Bandeira et al. (2017a,b)),
because they are necessarily unimodular, and so they admit a left and right-imvariant Haar measure.
However, some of the arguments would become significantly more involved, and we leave the case
of general groups for further research. We focus on the Gaussian noise setup because when the gi’s
are i.i.d., the model amounts to a mixture of Gaussian distributions, which is an extremely impor-
tant model in modern learning theory and it still generates very active research, see e.g. Dasgupta
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(1999); Sanjeev and Kannan (2001); Kalai et al. (2010); Moitra and Valiant (2010); Azizyan et al.
(2013); Hsu and Kakade (2013); Hardt and Price (2015); Améndola et al. (2016); Balakrishnan et al.
(2017); Wu and Yang (2018) and the references therein. Moreover, by multiplying each observation
yi by an independent element of the group G, chosen uniformly at random, one can always assume
that our observations come from a Gaussian mixture with uniform weights, which we assume in
the sequel (although nonuniform distributions exhibit significantly different behaviors in the low
signal-to-noise ratio regime (see Abbe et al. (2018a)). However, we believe that in that setup, our
results could be extended to mixtures of more general families with a location parameter.

For θ ∈ Rd, denote by Pθ the mixture of Gaussians with means gθ, g ∈ G, identity covariance

matrix and uniform weights, that is, Pθ =
1

|G|
∑
g∈G
N (gθ, I). In this model, θ is not identified since

Pθ = Pgθ, for all g ∈ G. Hence, θ can only be estimated up to the action of the group G. It is
important to note that the bigger G is, the less information the model carries about θ. Consider the
following two extremes: When G = {I} and when G = O(d) (the group of all isometries). In the
former case, θ is fully identified, hence, all its d components can be learned. In the latter case, only
the Euclidean norm of θ is identified, which is a one dimensional parameter and the estimation of
‖θ‖ becomes a much easier problem.

There are two most popular strategies for learning mixtures of Gaussians: Maximum likelihood
estimation and methods of moments. The maximum likelihood estimator (MLE), which we focus on
in this work, is usually implemented via the expectation-maximization (EM) algorithm. We refer to
Balakrishnan et al. (2017) who recently showed some asymptotic guarantees for the EM algorithm
by analysing its behavior at the population level. More generally, we emphasize the importance
of understanding a statistical model in depth at a population level (which amounts to studying its
asymptotics as the sample size grows to infinity), which is what motivates our work. The method
of moments is algorithmically more feasible, with more algorithmic guarantees, see Wu and Yang
(2018) and the references therein.

In this work, we are interested in pointwise rates for the estimation of the parameter θ∗, i.e.,
the estimation of the centers of the mixture Pθ∗ . In Chen (1995); Heinrich and Kahn (2015); Ho
et al. (2016), pointwise rates are obtained (together with minimax rates) for the estimation of Pθ∗ ,
which are similar to ours (n−1/2 and n−1/4). More general rates (of the form n−1/(2r), r ≥ 1) are
obtained in Ho and Nguyen (2016) under specific singularity assumptions on the unknown mixture).
They measure the accuracy of their estimators in terms of distances between distributions (e.g.,
Hellinger, or Wasserstein metrics, the latter proving to be a natural choice for mixtures because
of the lack of identifiability Nguyen et al. (2013)). However in practice, these metrics between
distributions do not easily translate into a geometric distance between their parameters, hence, in
our setup, they can not provide a subtle enough description of the pointwise estimation rates for
the centers of the mixture. The main difficulty, in general, is that there is no natural metric for
the parameter space due to the lack of identifiability of the parameters. Here, the mixtures exhibit
a specific structure associated with the group G and the identifiable set for θ∗ (i.e., the collection
of all vectors θ such that Pθ = Pθ∗) is Θ(θ∗) = {gθ∗ : g ∈ G}. Hence, there is a natural
metric on the identifiable sets which translates into a geometric metric between the centers, namely,
ρ̃(Θ(θ),Θ(θ′)) = mint∈Θ(θ),t′∈Θ(θ′) ‖t − t′‖ = ming∈G ‖gθ − θ′‖. Thus, we can measure the
learning error in terms of the Euclidean norm in the parameter space, which allows us to break down
our analysis to the individual rates for each component of θ∗ separately. By this, we mean that we
can show that some components of θ∗ can be estimated at a given rate, whereas other components of
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the same θ∗ may be estimated at a faster rate (this will be made precise in Theorem 12). In Bandeira
et al. (2017a); Perry et al. (2017), the focus is on the minimax rates for the estimation of θ∗, only
when G is the group of coordinate cyclic shifts. Interestingly, as already pointed out by Heinrich
and Kahn (2015), there may be a huge discrepancy between pointwise and minimax rates, due to
the non uniformity of the pointwise rates. In Bandeira et al. (2017a) and Perry et al. (2017), it is
assumed that all the centers gθ∗, g ∈ G are separated away from each other, which yields n−1/2

rates: There, the focus is rather on the dependence of the optimal rates on σ2, which matters a
lot in applications where the signal-to-noise ratio can be very small, e.g., cryo-elctron microscopy
(see also Abbe et al. (2018b)). However, imposing that all the centers are pairwise distinct can be
interpreted as assuming that θ∗ does not exhibit any symmetry that would be encoded in G, which,
in practice, is debatable.

In Section 2, we describe the likelihood geometry of the model, for any finite group of isome-
tries G. At the population level, we characterize the set of θ’s for which the Fisher information is
invertible and, in general, we give a full description of the null space of the Fisher information in
terms of θ∗ and its interaction with G and we study higher order derivatives of the population log-
likelihood function. As a consequence, in Section 3, we derive statistical properties of the MLE and
we characterize the pointwise rates of convergence of this estimator, when projected on orthogonal
subspaces. In brief, we show that θ∗ can always be decomposed into two components: One for
which the MLE achieves the parametric rate n−1/2 and one for which it achieves the slower rate
n−1/4, and we give a precise description of this decomposition. As a byproduct, we show that the
pointwise estimation rate of MLE is never worse than n−1/4. Some of the proofs and intermedi-
ate lemmas are deferred to the appendix, where we also illustrate our results by considering some
examples of groups of isometries.

Notation In this work, the ambient dimension is denoted by d. The Euclidean norm in Rd is
denoted by ‖ · ‖ and the transpose of a vector u ∈ Rd is u>.

The complement of a set or an eventA is denoted byA{ and the cardinality of a setA is denoted
by |A|.

If f : Rd → R is a smooth function, we denote by dkf(x) its k-th differential at a point
x ∈ Rd: It is a symmetric function of k d-dimensional variables. When f : Rd × Rd → R is
a function of two variables y and θ that is smooth with respect to θ, we denote by ∂kθ f(y, θ) its
k-th differential with respect to θ at the point (y, θ): This is also a symmetric function of k d-

dimensional variables. When k = 1 (resp. k = 2), we also write ∂θ(y, θ)(u) = u>
∂f

∂θ
(y, θ) (resp.

∂2
θ (y, θ)(u, v) = u>

∂2f

∂θ∂θ>
(y, θ)v).

We let G be a subgroup of isometries, which we suppose fixed and known. For θ ∈ Rd, we

denote by Pθ =
1

|G|
∑
g∈G
N (gθ, I), where N is the symbol for Gaussian distributions and I is

the identity matrix in Rd×d. The corresponding expectation, variance and covariance operators are
denoted by Eθ, Varθ and covθ, respectively.

3



GAUSSIAN MIXTURES WITH ISOMETRY GROUP INVARIANCE

2. Likelihood geometry of the model

Let θ∗ ∈ Rd be fixed and consider a sequence Y, Y1, Y2, . . . of i.i.d. random vectors distributed
according to Pθ∗ . The corresponding log-likelihood is defined, for all positive integer n, as

Ψ̂n(θ) =
1

n

n∑
i=1

logL(Yi, θ), ∀θ ∈ Rd, (1)

where L(y, θ) is the density of Pθ with respect to the Lebesgue measure on Rd:

L(y, θ) =
1

|G|(2π)d/2

∑
g∈G

e−
1
2
‖y−gθ‖2 , ∀y, θ ∈ Rd. (2)

In general, the factor 1/n does not appear in the definition of the log-likelihood, but we include it
so the expectation of Ψ̂(θ) is the population log-likelihood of the parametric model, given by

Ψ(θ) = Eθ∗ [logL(Y, θ)]. (3)

Then, the Fisher information of the model is defined as I(θ∗) = −d2Ψ(θ∗).
Denote by H the stabilizer of θ∗, i.e., the collection of all elements g ∈ G such that gθ∗ = θ∗,

and by H̄ =
1

|H|
∑
g∈H

g. Note that H is always nonempty since at least the identity belongs to H ,

hence, H̄ is always well defined. Moreover, it is easy to check that H is a subgroup of G.

Theorem 1 The null space of I(θ∗) coincides with the null space of H̄ , i.e.,

∀u ∈ Rd, u>I(θ∗)u = 0 ⇐⇒ H̄u = 0. (4)

Moreover, if u is in the nullspace of I(θ∗), then d4Ψ(θ∗)(u, u, u, u) = 0 only if u = 0.

For instance, ifG is the group {−I, I}, thenH = {I} and H̄ = I if θ∗ 6= 0,H = G and H̄ = 0
otherwise. Therefore, the Fisher information is definite if and only if θ∗ 6= 0. More examples are
given in Section A in the appendix.

The proof of Theorem 1 relies on the following result, the first two conclusions of which are
folklore in parametric statistics. The third conclusion of the next lemma is essential in our analysis,
since it drives the statistical rates that we discuss in Section 3. This lemma is quite technical, hence,
we defer its proof to the appendix. However, it is easy to check that the assumptions are all satisfied
in our Gaussian mixture model.

Lemma 2 Let (Qθ)θ∈Θ be a family of probability distributions on some abstract space Y , where
Θ ⊆ Rd and let θ∗ be in the interior of Θ. Let Eθ∗ and Varθ∗ stand for the expectation and the
variance operators associated with Qθ∗ , respectively. Assume that there exists a measure µ on Y
and a neighborhood V of θ∗ in Θ such that the following holds:

• Qθ is absolutely continuous with respect to µ for all θ ∈ V;

• The support of Qθ does not depend on θ;
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• The density L(y, θ) =
dQθ

dµ
(y), y ∈ Y, θ ∈ Θ, is five times differentiable with respect to

θ ∈ V , for µ-almost all y ∈ Y;

• For µ-almost all y ∈ Y , the first four derivatives of L(y, ·) with respect to θ are uniformly
bounded on V by µ-integrable functions and the first four derivatives of logL(y, θ) with
respect to θ are uniformly bounded on V by Qθ∗-integrable functions.

Denote by Ψ(θ) = Eθ∗ [ logL(Y, θ) ], for all θ ∈ V . Then,

(i)
∂Ψ

∂θ
(θ∗) = Eθ∗

[
∂ logL

∂θ
(Y, θ∗)

]
= 0;

(ii) For all u ∈ Rd, d2Ψ(θ∗)(u, u) = −Varθ∗
[
u>

∂ logL

∂θ
(Y, θ∗)

]
;

(iii) For all w ∈ Rd such that d2Ψ(θ∗)(w,w) = 0, it holds that d3Ψ(θ∗)(w,w,w) = 0 and that
d4Ψ(θ∗)(w,w,w,w) = −3Varθ∗

[
1

L(Y,θ∗)w
> ∂2L
∂θ∂θ>

(Y, θ∗)w
]
.

Before giving the proof of Theorem 1, we state one more lemma, which gives a better descrip-
tion of the operator H̄ that characterizes the nullspace of the Fisher information. We let ∼ be the
equivalence relation on G defined by g ∼ g′ ⇐⇒ gθ∗ = g′θ∗ ⇐⇒ g−1g′ ∈ H and we denote by
E = G/H the set of equivalence classes. In other words, E partitions G into subsets such that any
two elements g, g′ ∈ G are in the same set S ∈ E if and only if gθ∗ = g′θ∗. For example, H ∈ E
and any S ∈ E is of the form S = gH = {gh : h ∈ H} for some g ∈ G (or, more precisely, for
any g ∈ S). As a consequence, all the sets in E have the same cardinality: |S| = |H| for all S ∈ E.
For all S ∈ E, let S̄ = 1

|S|
∑

g∈S g.

Lemma 3

(i) The map H̄ is the orthogonal projection onto the set of all vectors u ∈ Rd that are stabilized
by H , i.e., {u ∈ Rd : hu = u,∀h ∈ H}.

(ii) For all S ∈ E and g ∈ S, S̄ = gH̄ .

(iii) Let v, w ∈ Rd such that H̄v = v and H̄w = 0. Then, for all S ∈ E and any g ∈ S, S̄v = gv
and S̄w = 0.

The proof of Lemma 3 is deferred to the appendix. We are now in a right position to give the
proof of Theorem 1.
Proof [Proof of Theorem 1] First, note that the assumptions of Lemma 2 are easily verified for the
family (Pθ)θ∈Rd . Therefore, for all u ∈ Rd,

Eθ∗
[
u>

∂ logL

∂θ
(Y, θ∗)

]
= 0. (5)

Now, u is in the null space of I(θ∗) if and only if u>I(θ∗)u = 0, since I(θ∗) is positive semidefinite,
i.e., if and only if Varθ∗

[
u> ∂ logL

∂θ (Y, θ∗)
]

= 0, again by Lemma 2. Hence, the random variable
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u>
∂ logL

∂θ
(Y, θ∗) must be constant Pθ∗-almost surely and by (5), it must be zero. In other words,

u>
∂ logL

∂θ
(y, θ∗) = 0, for all y ∈ Rd. A straightforward computation shows that this is equivalent

to ∑
g∈G

e−
1
2
‖y−gθ∗‖2(y − gθ∗)>gu = 0,

for all y ∈ Rd which, by Lemma 3, can be rewritten as∑
S∈E

e−
1
2
‖y−S̄θ∗‖2(y − S̄θ∗)>S̄u = 0. (6)

As a straightforward consequence of Lemma 3, for all S ∈ E, ‖S̄θ∗‖2 = ‖θ∗‖2 and (6) becomes∑
S∈E

ey
>S̄θ∗(y − S̄θ∗)>S̄u = 0. (7)

In particular, taking y = 0 yields that
∑
S∈E

(S̄θ∗)>S̄u = 0. For all S ∈ E, write S̄ as gH̄ for (any)

g ∈ S, as we have seen above; Then, S̄>S̄ = H̄>g>gH̄ = H̄>H̄ = H̄ , yielding that (θ∗)>u = 0
and (7) becomes ∑

S∈E
ey
>S̄θ∗y>S̄u = 0. (8)

From Lemma 3, it is clear that the vectors S̄θ∗ are pairwise distinct. Now, fix S0 ∈ E and let
C0 =

{
y ∈ Rd : y>S̄0θ

∗ > y>S̄θ∗,∀S ∈ E,S 6= S0

}
: This is an open, nonempty set. Let us show

that for all y ∈ C0, y>S̄0u = 0. This will yield that S̄0u is necessarily in the orthogonal of C0,
which is {0} since C0 is open. Let y ∈ C0. Then, (8) implies that

0 = lim
t→∞

ety
>S̄0θ∗

∑
S∈E

ety
>S̄θ∗y>S̄u = y>S̄0u, (9)

which is what we wanted to prove.
Conversely, if H̄u = 0, then S̄u = 0 for all S ∈ E, it is true that (6) must hold. Therefore,

reverse-engineering the previous computations yields that u>
∂ logL

∂θ
(Y, θ∗) = 0 Pθ∗-almost surely,

yielding that d2Ψ(θ∗)(u, u) = 0, which concludes the proof of the first part of the theorem.
Now, let u ∈ Rd such that H̄u = 0. Then, by Lemma 2, d4Ψ(θ∗)(u, u, u, u) = 0 if and

only if the random variable
1

L(Y, θ∗)
u>

∂2L

∂θ∂θ>
(Y, θ∗)u is constant Pθ∗-almost surely. Since its

expectation with respect to Pθ∗ is zero, then it must be equal to zero Pθ∗-almost surely. In other

words, u>
∂2L

∂θ∂θ>
(y, θ∗)u = 0, for all y ∈ Rd. Up to some constant factor C > 0,

u>
∂2L

∂θ∂θ>
(y, θ∗)u = C

∑
g∈G

e−
1
2
‖y−gθ∗‖2u>

(
g>(y − gθ∗)(y − gθ∗)>g − gg>

)
u

= C
∑
S∈E

∑
g∈S

e−
1
2
‖y−S̄θ∗‖2u>

(
g>(y − S̄θ∗)(y − S̄θ∗)>g − I

)
u

= C
∑
S∈E

e−
1
2
‖y−S̄θ∗‖2

∑
g∈S

(
u>g>(y − S̄θ∗)(y − S̄θ∗)>gu− ‖u‖2

)
,
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hence, for all y ∈ Rd, it must hold that∑
S∈E

e−
1
2
‖y−S̄θ∗‖2

∑
g∈S

(
u>g>(y − S̄θ∗)(y − S̄θ∗)>gu− ‖u‖2

)
= 0. (10)

Note that for all S ∈ E and g ∈ S, S̄>gu = H̄>g>gu = H̄>u = H̄u = 0, where we used the
facts that S̄ = gH̄ and that H̄ is symmetric, by Lemma 3. Thus, also noting that for all S ∈ E,
‖S̄θ∗‖2 = ‖θ∗‖2, (10) yields∑

S∈E
ey
>S̄θ∗

∑
g∈S

(
u>g>yy>gu− ‖u‖2

)
= 0,

for all y ∈ Rd. In particular, for y = 0, this directly yields that ‖u‖2 = 0, i.e., u = 0.

As a second important consequence of Lemma 3, the following corollary holds.

Corollary 4 For all fixed θ∗ ∈ Rd, the Fisher information I(θ∗) is definite if and only if all the
modes gθ∗, g ∈ G, of Pθ∗ are pairwise distinct.

Proof By Theorem 1 and the first part of Lemma 3, I(θ∗) is definite ⇐⇒ the projection H̄ is
invertible ⇐⇒ its rank is equal d ⇐⇒ its trace is equal to d. Since the trace of any isometry is at
most d, Tr(H̄) = 1

|H|
∑

g∈H Tr(g) ≤ d with equality if and only if Tr(g) = d for all g ∈ H ⇐⇒
g = I for all g ∈ H ⇐⇒ H = {I}, i.e., gθ∗ 6= θ∗, for all g ∈ G \ {I}, i.e., the modes of Φ are
pairwise distinct.

Geometrically, assuming that all the gθ∗, g ∈ G are pairwise distinct can be interpreted as as-
suming that θ∗ exhibits no symmetries or rotational invariances that are encoded in G: For instance,
if G contains a reflexion around some subspace, saying that the centers of Pθ∗ are pairwise distinct
implies that θ∗ can not be symmetric with respect to that subspace.

Remark 5 The operator H̄ has the following geometric interpretation, in the likelihood landscape
of the model. For θ ∈ Rd, let Θ(θ) = {gθ : g ∈ G} be the identified set associated with θ,
deg(θ) = |Θ(θ)| its cardinality, which we call degree of identifiability of θ and H(θ) = {g ∈ G :
gθ = θ}. It is easy to see that deg(θ) = |G|/|H(θ)|: The degree of identifiability of θ is always
a divider of |G|. For instance, deg(θ) = 1 means that θ is uniquely identified, in the sense that
for all θ′ ∈ Rd, Pθ′ = Pθ ⇒ θ′ = θ, and the larger deg(θ) is, the less θ is identifiable in the
model. Now, let U = {u ∈ Rd : deg(θ∗ + tu) > deg(θ∗) when |t| is small enough}: This is the
set of directions in which a small perturbation of θ∗ increases the degree of identifiability. Now,
note that for all u ∈ Rd and t ∈ R with small enough |t|, H(θ∗ + tu) is a subgroup of H(θ∗).
If u = 0, this is trivial. If u 6= 0, let |t| < (2‖u‖)−1 ming∈G\H(θ∗) ‖gθ∗ − θ∗‖; Then, for all
g ∈ G\H(θ∗), ‖g(θ∗+ tu)− (θ∗+ tu)‖ ≥ ‖gθ∗−θ∗‖−|t|‖gu−u‖ ≥ ‖gθ∗−θ∗‖−2|t|‖u‖ > 0,
implying g /∈ H(θ∗ + tu). Therefore, U is the set of directions u ∈ Rd such that if |t| is small
enough, H(θ∗ + tu) is a strict subgroup of H(θ∗). Geometrically, this means that U is the set
of directions u ∈ Rd that pushes away the colliding modes of the log-likelihood: If we denote by
Ψθ(·) = Eθ[logL(Y, ·)], then some of the colliding modes of Ψθ∗(·) (i.e., the hθ∗, h ∈ H) become
distinct modes for Ψθ∗+tu(·), for small enough |t|, while no other modes merge. Now, we can rewrite
U = {u ∈ Rd : if |t| is small enough, ∃h ∈ H,h(θ∗+ tu) 6= θ∗+ tu} = {u ∈ Rd : ∃h ∈ H,hu 6=
u} = Rd \ im(H̄): This is the complement of the range of H̄ .
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Applied to Gaussian mixtures with group invariance, Lemma 2 also yields the following impor-
tant corollary.

Corollary 6 Let θ ∈ Rd and g0 ∈ G such that ‖g0θ− θ∗‖ = ming∈G ‖gθ− θ∗‖. Write g0θ− θ∗ =
v+w, where v, w ∈ Rd satisfy H̄v = v and H̄w = 0. Then, there exists a positive constant C such
that if ‖v‖ and ‖w‖ are small enough,

Ψ(θ)−Ψ(θ∗) ≤ −C
(
‖v‖2 + ‖w‖4

)
.

Note that the vectors v and w in Corollary 6 are uniquely defined: v = H̄(g0θ − θ∗) and
w = (I − H̄)(g0θ − θ∗).
Proof A Taylor expansion yields:

Ψ(θ)−Ψ(θ∗) = dΨ(θ∗)(u) +
1

2
d2Ψ(θ∗)(u, u) +

1

6
d3Ψ(θ∗)(u, u, u)

+
1

24
d4Ψ(θ∗)(u, u, u, u) + o(‖u‖4)

=: I + II + III + IV + o(‖v‖2 + ‖w‖4). (11)

Since θ∗ is a maximum of Ψ and Ψ is differentiable, I = 0 in (11). For the second term, one has

d2Ψ(θ∗)(u, u) = u>
∂2Ψ

∂θ∂θ>
(θ∗)u

= v>
∂2Ψ

∂θ∂θ>
(θ∗)v + 2v>

∂2Ψ

∂θ∂θ>
(θ∗)w + w>

∂2Ψ

∂θ∂θ>
(θ∗)w.

Since H̄w = 0, w is in the null space of the negative semidefinite matrix
∂2Ψ

∂θ∂θ>
(θ∗), by Theorem

1, yielding II = v>
∂2Ψ

∂θ∂θ>
(θ∗)v = −Varθ∗

[
v>
∂ logL

∂θ
(Y, θ∗)

]
. For the third term in (11), one

has

d3Ψ(θ∗)(u, u, u) = d3Ψ(θ∗)(v, v, v) + 3 d3Ψ(θ∗)(v, v, w)

+ 3 d3Ψ(θ∗)(v, w,w) + d3Ψ(θ∗)(w,w,w).

In the right hand side of the last display, the last term is zero, by Theorem 1. Moreover, the first two
terms are o(‖v‖2), hence, in (11), III = 3 d3Ψ(θ∗)(v, w,w) + o(‖v‖2). Finally, for the fourth term
in (11), write, in the same fashion as for the other terms,

d4Ψ(θ∗)(u, u, u, u) = 4 d4Ψ(θ∗)(v, w,w,w) + d4Ψ(θ∗)(w,w,w,w) + o(‖v‖2)

= 4 d4Ψ(θ∗)(v, w,w,w)− 3Varθ∗
[
w>

∂2 logL

∂θ∂θ>
(Y, θ∗)w

]
+ o(‖v‖2),

where we used Theorem 1 for the last equality.

8
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Wrapping up, one obtains from (11) and the intermediate computations,

Ψ(θ)−Ψ(θ∗) =− 1

2
Varθ∗

[
v>
∂ logL

∂θ
(Y, θ∗)

]
+

1

2
d3Ψ(θ∗)(v, w,w)

− 1

8
Varθ∗

[
w>

∂2 logL

∂θ∂θ>
(Y, θ∗)w

]
+

1

6
d4Ψ(θ∗)(v, w,w,w) (12)

+ o(‖v‖2 + ‖w‖4). (13)

Now, we make use of the following result:

Lemma 7

d3Ψ(θ∗)(v, w,w) = −covθ∗
(
v>
∂ logL

∂θ
(Y, θ∗), w>

∂2 logL

∂θ∂θ>
(Y, θ∗)w

)
and

d4Ψ(θ∗)(v, w,w,w) = 0.

Thus, (13) implies that

Ψ(θ)−Ψ(θ∗) =− 1

8
Varθ∗

[
2v>

∂ logL

∂θ
(Y, θ∗) + w>

∂2 logL

∂θ∂θ>
(Y, θ∗)w

]
+ o(‖v‖2 + ‖w‖4).

We conclude the proof by invoking the following lemma, which we prove in the appendix.

Lemma 8 There exists a constant C > 0 that does not depend on v and w such that

Varθ∗
[

2v>
∂ logL

∂θ
(Y, θ∗) + w>

∂2 logL

∂θ∂θ>
(Y, θ∗)w

]
≥ C

(
‖v‖2 + ‖w‖4

)
.

3. Statistical rates

Now that we have understood the likelihood geometry of the statistical model, we are in a position
to state some statistical results about the MLE θ̂n. Recall that the MLE maximizes Ψ̂n(θ), which
was defined in (1). As we have already explained in the introduction, we measure the performance
of θ̂n by ρ(θ̂n, θ

∗) = min
g∈G
‖gθ̂n − θ∗‖. The first result is that θ̂n is pointwise consistent.

Theorem 9 For all θ∗ ∈ Rd, ρ(θ̂n, θ
∗) −→

n→∞
0 in Pθ∗-probability.

Proof

9
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Let C = ‖θ∗‖2 + d + 1 and consider the event A when
1

n

n∑
i=1

‖Yi‖2 ≤ C. Then, since

‖Y1‖2, . . . , ‖Yn‖2 are i.i.d subexponential random variables with mean C − 1, Pθ∗ [A ] → 1, as
n→∞. Let the event A hold. Then, for all θ ∈ Rd with ‖θ‖ >

√
3C,

Ψ̂n(θ) =
1

n

n∑
i=1

log

 1

(2π)d/2|G|
∑
g∈G

e−
1
2
‖Yi−gθ‖2


= −d

2
log(2π) +

1

n

n∑
i=1

log

 1

|G|
∑
g∈G

e−
1
2
‖Yi−gθ‖2


≤ −d

2
log(2π) +

1

n

n∑
i=1

log
(
e−

3C
2

+‖Yi‖2
)

= −d
2

log(2π)− 3C

2
+

1

n

n∑
i=1

‖Yi‖2,

where we used, in the first inequality, that ‖gθ‖ = ‖θ‖ for all g ∈ G and ‖Yi− gθ‖2 ≥ 3C
2 −‖Yi‖

2.

Now, note that Ψ̂n(0) = −d
2

log(2π)− 1

2n

n∑
i=1

‖Yi‖2. Hence, if A holds, then Ψ̂n(θ) < Ψ̂n(0) for

all θ ∈ Rd with ‖θ‖ >
√

3C. Thus, if A holds, it must be true that ‖θ̂n‖ ≤
√

3C. Hence, for all
ε > 0,

Pθ∗
[
ρ(θ̂, θ∗) > ε

]
≤ Pθ∗

[
ρ(θ̂, θ∗) > ε, ‖θ̂n‖ ≤

√
3C
]

+ Pθ∗
[
A{
]
.

The first term goes to zero as n → ∞ by (Vaart, 1998, Theorem 5.14) and we have already estab-
lished that the second term goes to zero, which ends the proof of the lemma.

Hence, when the Fisher information is invertible, (Vaart, 1998, Theorem 5.41) yields the asymp-
totic normality of θ̂n, in the following sense.

Corollary 10 Let θ∗ ∈ Rd be such that for all g ∈ G with g 6= I , gθ∗ 6= θ∗. Then, there exists a
(random) sequence gn ∈ G such that

√
n(θ̂n − gnθ∗) −→

n→∞
N ( 0, I(θ∗) ) ,

where I(θ∗) ∈ Rd×d is the Fisher information matrix.

In particular, it is possible to get asymptotic confidence regions around θ̂n that contain a version
of θ∗ (i.e., some gθ∗) with high probability asymptotically.

By Theorem 1, the Fisher information is not always invertible. However, Theorem 1 suggests
that in any case, the rate for estimation of θ∗ should not be too slow, since the log-likelihood always
have some nonzero curvature, at least at the fourth order. Moreover, since Ψ has some positive
second order curvature at least along some directions, these directions should define subspaces
along which θ∗ can be estimated at the standard rate n−1/2. The following version of (Kosorok,
2008, Lemma 14.4) allows to get different rates for the components of one and the same θ∗. By
components of θ∗ we mean the orthogonal projections of θ∗ onto linear subspaces that are given
by the null space of the Fisher information I(θ∗) and its orthogonal. We denote by E∗ the outer
expectation.

10
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Lemma 11 Let (Mn)n ≥ 1 be a sequence of real valued stochastic processes defined on a space
Θ and let M : Θ → R be a given function. Let Θ be equipped with a semimetric ρ, i.e., a function
that satisfies all the axioms of a distance but the definiteness. Let θ∗ ∈ Θ and ρθ∗ be a nonnegative
function defined on Θ such that ρθ∗(θ∗) → 0 as ρ(θ, θ∗) → 0. Assume that there exist positive
constants c1, c2 and δ0 > 0 such that the following holds:

• M(θ)−M(θ∗) ≤ −c1ρθ∗(θ
∗)2, for all θ ∈ Θ with ρ(θ, θ∗) ≤ δ0;

• E∗
[

sup
ρθ∗ (θ∗)≤δ

√
n|(Mn −M)(θ)− (Mn −M)(θ∗)|

]
≤ c2δ, for all δ ∈ (0, δ0) and n large

enough.

If θ̂n ∈ Θ satisfies Mn(θ̂n) = supθ∈ΘMn(θ) for all n large enough, and if θ̂n converges to θ∗ in
outer probability, then √

nρθ∗(θ̂n) = OP(1).

Unlike standards results (see, e.g., (Vaart, 1998, Chapter 5), Lemma 11 allows to get different
rates simultaneously for one and the same unknown vector θ∗. In our setting, Mn(θ) = Ψ̂n(θ) and
M(θ) = Ψ(θ) and we let ρ(θ, θ′) = min

g∈G
‖gθ1 − θ2‖ and ρθ∗(θ)2 = ‖H̄(g0θ − θ∗)‖2 + ‖(I −

H̄)(g0θ − θ∗)‖4 where g0 ∈ G is the minimizer of ‖gθ − θ∗‖ for g ∈ G. The consequence of
this lemma, in our setting, is as follows. The unknown vector θ∗ has two components, one in the
range of H̄ and one in its orthogonal. The former is estimated at the usual parametric speed n−1/2,
whereas the latter is estimated at the slower, but not too slow, speed n−1/4. This is made formal in
the following theorem.

Theorem 12 Let θ∗ ∈ Rd and let Y1, Y2, . . . be a sequence of i.i.d. random variables distributed
according to Pθ∗ . For n ≥ 1, let θ̂n be the MLE of θ∗ obtained from Y1, . . . , Yn. Then, there exists
a sequence (gn)n≥1 of elements of G, such that

(i) n1/2‖H̄(gnθ̂n − θ∗)‖ = OPθ∗ (1);

(ii) n1/4‖(I − H̄)(gnθ̂n − θ∗)‖ = OPθ∗ (1).

Proof
In order to prove this theorem, we check that the assumptions from Lemma 11 are satisfied.
The first assumption is proven in Corollary 6 and the consistency of θ̂n with respect to ρ is

ensured by Theorem 9
Finally, let δ > 0 and Fδ = {logL(·, θ) − logL(·, θ∗) : θ ∈ Rd, ρθ∗(θ) ≤ δ}. Recall the

definition of ρθ∗(θ): Let g0 ∈ G such that ‖g0θ−θ∗‖ = min
g∈G
‖gθ−θ∗‖ and write g0θ−θ∗ = v+w,

where v, w ∈ Rd with H̄v = v and H̄w = 0. Then, ρθ∗(θ)2 = ‖v‖2 + ‖w‖4. The next lemma is
proved in the appendix.

Lemma 13 There exists F ∈ L2(Pθ∗) such that, for δ > 0 small enough and for all f ∈ Fδ,
|f | ≤ δF .

11
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Therefore, the second assumption of Lemma 11 is satisfied, thanks to (Vaart, 1998, Lemma
19.38). We have proven that all the assumptions of Lemma 11 are satisfied, which yields Theorem
12.

Perhaps surprinsingly, these rates do not depend on the size of H and this theorem shows that
any θ∗ could be estimated, up to identifiability, at least at the rate n−1/4 via the MLE. However,
Theorem 12 does not provide uniform bounds. In fact, the OPθ∗ signs contain constants that depend
on θ∗ and may become arbitrarily large. For instance, one expects that the constants hidden in the
n1/2 should blow up when two modes θ∗ and gθ∗, for g /∈ H , are distinct but arbitrarily close to
each other.

4. Conclusion

In this work, we have exhibited two different pointwise rates for the estimation of the parameter of a
mixture of Gaussian distributions with uniform weights, under the invariance of an isometry group
action: n−1/2 and n−1/4. Even in the second regime, we have shown that some components of θ∗

could still be estimated at the fast rate n−1/2, and we have provided an algebraic description and a
geometric interpretation of this fact, in terms of colliding modes of the population log-likelihood.
These rates are consistent with the usual pointwise rates obtained known in the literature, even
though here, we focused on parameter estimation (as opposed to distribution learning) with respect
to the Euclidean loss.

As expected for general mixtures Chen (1995), the slow regime n−1/4 occurs when the actual
number of components in the mixture is strictly less than the number predicted by the model, here,
|G|. In other words, for general mixtures, slower rates occur when the model is overparametrized.
However, here, this analogy should be made carefully because the presence of symmetries in θ∗ is
not necessarily implying an overparametrization.

The projection H̄ depends on θ∗. Therefore, even if Theorem 12 states that some components of
θ∗ are estimated at the parametric rate n−1/2 while the other components are estimated at the slower
rate n−1/4, the linear subspaces corresponding to these components are unknown. The problem of
recovering H̄ or, more generally, H , is somewhat equivalent to learning the symmetries of θ∗. If
one assumes that infg/∈H ‖gθ∗ − θ∗‖ is bounded away from zero by some known constant, then H
can be recovered easily. In general, the estimation of H is a more challenging problem, which we
leave for further work.
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Appendix A. Examples of groups of isometries

Here, we review four important examples, not to mention the trivial case when G = {I}, where the
previous results yield, as expected, the definiteness of the Fisher information, no matter the value of
θ∗.

A.1. If G = {−I, I}

In this case, H can be either the trivial subgroup, when θ∗ 6= 0 or G itself, when θ∗ = 0. In the first
case, H̄ = I , hence θ∗ is estimated at the parametric speed n−1/2 by the MLE. In the second case,
H̄ = 0 and all components of θ∗ are estimated at the slower rate n−1/4.

Here, θ∗ is to be recovered up to a global sign flip.

A.2. If G = {Diag(ω1, . . . , ωd) : ω1, . . . , ωd ∈ {−1, 1}}

Here, G is the isometry subgroup spanned by all the reflexions with respect to the hyperplanes of
the form {(u1, . . . , ud)

> ∈ Rd : uj = 0}, j = 1, . . . , d. Let B = {j = 1, . . . , d : θ∗j = 0} and
let p = |B|. Then, H = {Diag(ω) : ω ∈ {−1, 1}d, ωi = 1,∀i /∈ B} and H̄ = Diag(η∗), where
η∗i = 0 for all i ∈ B and η∗i = 1 for all i /∈ B. Hence, the rank of H̄ is d− p.

Here, θ∗ is to be recovered up to independent sign flips of its coordinates. In other words, the
challenge is to recover the vector (|θ∗1|, . . . , |θ∗d|)>. The d − p nonzero entries of this vector are
estimated at the rate n−1/2 by the MLE, whereas the zero coordinates are only estimated at the rate
n−1/4.

A.3. If G is the group of coordinate cyclic shifts

Denote by R the elementary coordinate cyclic shift, i.e., for all u = (u1, . . . , ud)
> ∈ Rd, Ru =

(u2, u3, . . . , ud, u1)>. Here, G = {I,R,R2, . . . , Rd−1} is a cyclic group. Let θ∗ ∈ Rd and p =
min{k ≥ 1 : Rkθ∗ = θ∗}. Then, p is a divider of d and H = {I,Rp, R2p, . . . , R(d/p−1)p}. More-

over, for all u = (u1, . . . , ud)
> ∈ Rd, the coordinates of H̄u are given by (H̄u)j =

d

p

∑
k=j mod p

uk,

for all j = 1, . . . , d, and H̄u = 0 if and only if
∑

k=j mod p

uk = 0, for all j = 1, . . . , d. In particular,

the dimension of the component of θ∗ that can be estimated at the fast rate (i.e., the dimension of
the range of H̄) is d − p. Note that in that case, any constant vector θ∗ is as hard to estimate via
maximum likelihood as the null vector.

A.4. If G is the group of coordinate permutations

Denote by Sd the symmetric group of order d and for all σ ∈ Sd, let gσ be the isometry that maps
a vector u = (u1, . . . , ud)

> ∈ Rd to gσ(u) = (uσ(1), uσ(2), . . . , uσ(d))
>. Partition [d] into sets

B1, . . . , Bp, where p is the cardinality of the set {θ∗1, . . . , θ∗d} and for each k = 1, . . . , p and every
i, j ∈ Bk, θ∗i = θ∗j . Then, H̄ is the set of all gσ’s for which every orbit of σ is contained in some
Bk, for some k ∈ [p], i.e., θ∗i = θ∗σ(i), for all i = 1, . . . , d. In particular, for all u ∈ Rd and j ∈ [d],
(H̄u)j = 1

|Bkj |
∑

i∈Bkj
ui, where kj ∈ [p] is such that j ∈ Bkj . Therefore, the rank of H̄ is d− p.

Again in this case, any constant vector θ∗ is as hard to estimate via maximum likelihood as the null
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vector. Also note that in this case, estimating θ∗ amounts to estimating the multiset {θ∗1, . . . , θ∗d}
(by multiset, we mean the set where we keep track of repetitions).

Appendix B. Proof of the main lemmas

B.1. Proof of Lemma 2

The main key to this lemma is to note that for all θ ∈ V ,∫
Y
L(y, θ) dµ(y) = 1. (14)

By dominated convergence, differentiating (14) up to four times leads to the following identities,
for all θ ∈ V and u ∈ Rd: ∫

Y
u>

∂ logL

∂θ
(y, θ)L(y, θ) dµ(y) = 0;

∫
Y
u>
(
∂2 logL

∂θ∂θ>
(y, θ) +

∂ logL

∂θ
(y, θ)

∂ logL

∂θ>
(y, θ)

)
uL(y, θ) dµ(y) = 0;

∫
Y

[
∂3
θ (logL)(y, θ)(u, u, u) + 3∂θ(logL)(y, θ)(u)∂2

θ (logL)(y, θ)(u, u)

+ ( ∂θ(logL)(y, θ)(u) )3
]
L(y, θ) dµ(y) = 0;

∫
Y

[
∂4
θ (logL)(y, θ)(u, u, u, u) + 3

(
∂2
θ (logL)(y, θ)(u, u)

)2
+ 4∂θ(logL)(y, θ)(u)∂3

θ (logL)(y, θ)(u, u, u)

+ 4∂2
θ (logL)(y, θ)(u, u) ( ∂θ(logL)(y, θ)(u) )2

+ ( ∂θ(logL)(y, θ)(u) )4
]
L(y, θ) dµ(y) = 0.

Taking θ = θ∗ in each of the above displays yields, for all u ∈ Rd:

Eθ∗
[
u>

∂ logL

∂θ
(Y, θ∗)

]
= 0; (15)

Eθ∗
[
u>

∂2 logL

∂θ∂θ>
(Y, θ∗)u

]
= −Varθ∗

[
u>

∂ logL

∂θ
(y, θ∗)

]
; (16)

Eθ∗
[
∂3
θ (logL)(Y, θ∗)(u, u, u)

]
= −Eθ∗

[
3∂θ(logL)(Y, θ∗)(u)∂2

θ (logL)(Y, θ∗)(u, u) + ( ∂θ(logL)(Y, θ∗)(u) )3
]

; (17)

and
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Eθ∗
[
∂4
θ (logL)(Y, θ∗)(u, u, u, u)

]
= −3Eθ∗

[ (
∂2
θ (logL)(Y, θ∗)(u, u)

)2 ]
− 4Eθ∗

[
∂θ(logL)(Y, θ∗)(u)∂3

θ (logL)(Y, θ∗)(u, u, u)
]

− 4Eθ∗
[
∂2
θ (logL)(Y, θ∗)(u, u) ( ∂θ(logL)(Y, θ∗)(u) )2

]
− Eθ∗

[
( ∂θ(logL)(Y, θ∗)(u) )4

]
. (18)

Now, by dominated convergence, for all θ ∈ V ,

∂Ψ

∂θ
(θ) = Eθ∗

[
∂ logL

∂θ
(Y, θ∗)

]
=

∫
Y

∂L

∂θ
(y, θ∗) dµ(y) = 0,

by (15), which proves the first part of the lemma. The second part is straightforward using (16).

Now, let u ∈ Rd such that d2Ψ(θ∗)(u, u) = 0. Then, by the second part of the lemma, Varθ∗
[
u>

∂ logL

∂θ
(Y, θ∗)

]
=

0, i.e., the random variable u>
∂ logL

∂θ
(Y, θ∗) must be constant, Qθ∗-almost surely. Since its expec-

tation is zero, by the first part of the lemma, it must hold that u>
∂ logL

∂θ
(Y, θ∗), Qθ∗-almost surely.

Plugging this into (17) yields d3Ψ(θ∗)(u, u, u) = 0, which is the third part of the lemma. Finally,
in the same manner, (18) yields, for all u ∈ Rd with d2Ψ(θ∗)(u, u) = 0, that

Eθ∗
[
∂4
θ (logL)(Y, θ∗)(u, u, u, u)

]
= −3Eθ∗

[ (
∂2
θ (logL)(Y, θ∗)(u, u)

)2 ]
. (19)

Since d2Ψ(θ∗)(u, u) = 0 implies that Eθ∗
[
∂2
θ (logL)(Y, θ∗)(u, u)

]
= 0, the right hand side of

(19) is equal to −3Varθ∗
[
∂2
θ (logL)(Y, θ∗)(u, u)

]
. Hence, by dominated convergence,

d4Ψ(θ∗)(u, u, u, u) = −3Varθ∗
[
∂2
θ (logL)(Y, θ∗)(u, u)

]
= −3Varθ∗

[
1

L(Y, θ∗)
u>

∂2(logL)

∂θ∂θ>
(Y, θ∗)u

]
,

using again the fact that
∂(logL)

∂θ>
(Y, θ∗)u = 0, Qθ∗-almost surely. This ends the proof of Lemma

2.

B.2. Proof of Lemma 3

It is easy to see thatH is a subgroup ofG: Indeed, I ∈ H and for all g1, g2 ∈ H , g1θ
∗ = θ∗ = g2θ

∗,
yielding g−1

1 g2θ
∗ = θ∗, i.e., g−1

1 g2 ∈ H . Hence, the map h → h−1 induces a bijection on H , and

H̄ might as well be written H̄ =
1

|H|
∑
h∈H

h−1 =
1

|H|
∑
h∈H

h> = H̄>, where we used the fact that

H is a set of isometries. Hence, H̄ is symmetric. Note also that for all h ∈ H , g 7→ hg also induces
a bijection on H , since H is a subgroup. Therefore, hH̄ = H̄ , for all h ∈ H , yielding

H̄2 =
1

|H|
∑
h∈H

hH̄ =
1

|H|
∑
h∈H

H̄ = H̄.
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Hence, H̄ is an orthogonal projection. Let F be the set of all u ∈ Rd such that hu = u, for all
h ∈ H . It is clear that for all u ∈ F , H̄u = u, yielding that F is contained in the range of H̄ . Now,
let u be in the range of H̄ , i.e., such that H̄u = u. Then, for all h ∈ H , hu = hH̄u = H̄u = u,
where we used that hH̄ = H̄ , for all h ∈ H . This ends the proof of the first part of the lemma.

For the second part of the lemma, note that for all S ∈ E and g ∈ S, S = gH , readily yielding
S̄ = gH̄ .

Finally, for the last part of the lemma, let S ∈ E and g ∈ S. Then, S̄v = gH̄v = gv and
S̄w = gH̄w = 0.

Appendix C. Intermediate lemmas

C.1. Proof of Lemma 7

This lemma also comes from successive differentiations of (14), with respect to θ in the directions v
andw. For simplicity of the notation, we denote by ∂k`(u1, . . . , uk) = ∂kθ (logL)(y, θ)(u1, . . . , uk),
for all k ≥ 1 and u1, . . . , uk ∈ Rd. Then, differentiating (14), first in the direction of v, then in the
direction of w, yields: ∫

∂`(v)L = 0; (20)∫ [
∂2`(v, w) + ∂`(v)∂`(w)

]
L = 0; (21)

∫ [
∂3`(v, w,w) + 2∂2`(v, w)∂`(w) + ∂`(v)∂2`(w,w) + ∂`(v)∂`(w)2

]
L = 0; (22)

∫ [
∂4`(v, w,w,w) + 2∂3`(v, w,w)∂`(w) + 3∂2`(v, w)∂2`(w,w)

+ ∂`(v)∂3`(w,w,w) + ∂2`(v, w)∂`(w)2 + 2∂`(v)∂2`(w,w)∂`(w)
]
L = 0. (23)

Here, all the integrals should be understood with respect to the variable y, whose dependency is not
included in our current notation, again, for the sake of simplicity.

Now, we show that ∂`(w), ∂2`(v, w) and ∂3`(w,w,w) are all equal to zero for all y ∈ Rd, and
for θ = θ∗. The first statement of Lemma 7 will then follow directly from (22) and (23). Note that
for all S ∈ E, S̄w = 0 and for all g ∈ S, gv = S̄v.

∂`(w) = −
∑

S∈E(S̄w)>(y − S̄θ∗)e−
1
2
‖y−S̄θ∗‖2∑

g∈G e
− 1

2
‖y−gθ∗‖2

= 0.

∂2`(v, w) =

∥∥∥∑S∈E(S̄w)>(y − S̄θ∗)e−
1
2
‖y−S̄θ∗‖2

∥∥∥2

(∑
g∈G e

− 1
2
‖y−gθ∗‖2

)2

−
∑

S∈E
(
|H|v>w − (S̄v)>(y − S̄θ∗)(y − S̄θ∗)>S̄w

)
e−

1
2
‖y−S̄θ∗‖2∑

g∈G e
− 1

2
‖y−gθ∗‖2

= 0

18
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and again, it is easy to see that each term in ∂3`(w,w,w) contains a sum over S ∈ E where S̄w
factorizes, yielding ∂3`(w,w,w) = 0.

C.2. Proof of Lemma 8

Denote by F = {v ∈ Rd : H̄v = v} and by F⊥ = {w ∈ Rd : H̄w = 0} its orthogonal. We show
that for all v ∈ F and w ∈ F⊥ with v 6= 0 and w 6= 0,

Varθ∗
[

2v>
∂ logL

∂θ
(Y, θ∗) + w>

∂2 logL

∂θ∂θ>
(Y, θ∗)w

]
6= 0. (24)

This will imply that for all (v, w) ∈ F × F⊥ with v 6= 0 and w 6= 0,

φ(v, w) :=

∣∣∣∣corrθ∗
(

2v>
∂ logL

∂θ
(Y, θ∗), w>

∂2 logL

∂θ∂θ>
(Y, θ∗)w

)∣∣∣∣ 6= 1. (25)

Indeed, if φ(v, w) = 1, then there must exist λ 6= 0 such thatw> ∂
2 logL
∂θ∂θ>

(Y, θ∗)w = λv> ∂ logL
∂θ (Y, θ∗)

Pθ∗-almost surely. This follows from the case of equality in Cauchy-Schwartz inequality, after not-
ing that both v> ∂ logL

∂θ (Y, θ∗) and w> ∂
2 logL
∂θ∂θ>

(Y, θ∗)w are not Pθ∗-almost surely equal to zero, since
by combining Theorem 1 and Lemma 2 (iii), the variance of the first random variable is nonzero, and
the variance of a rescaled version of the second one is also nonzero. Therefore, the pair (−λv,w)
violates (24).

Let us denote by S the unit sphere in Rd. Then, since the fonction φ defined above is continuous
and (F∩S)×(F⊥∩S) is a compact set, (25) implies that there exists c ∈ [0, 1) such that φ(v, w) ≤ c,
for all (v, w) ∈ (F ∩ S)× (F⊥ ∩ S). Hence, by homogeneity, for all (v, w) ∈ F × F⊥ with v 6= 0
and w 6= 0, one still has φ(v, w) ≤ c and∣∣∣∣covθ∗

([
2v>

∂ logL

∂θ
(Y, θ∗), w>

∂2 logL

∂θ∂θ>
(Y, θ∗)w

])∣∣∣∣
≤ c

√
Varθ∗

[
2v>

∂ logL

∂θ
(Y, θ∗)

]
Varθ∗

[
w>

∂2 logL

∂θ∂θ>
(Y, θ∗)w

]
≤ cVarθ∗

[
2v>

∂ logL

∂θ
(Y, θ∗)

]
+ cVarθ∗

[
w>

∂2 logL

∂θ∂θ>
(Y, θ∗)w

]
,

yielding

Varθ∗
[

2v>
∂ logL

∂θ
(Y, θ∗) + w>

∂2 logL

∂θ∂θ>
(Y, θ∗)w

]
= Varθ∗

[
2v>

∂ logL

∂θ
(Y, θ∗)

]
+ Varθ∗

[
w>

∂2 logL

∂θ∂θ>
(Y, θ∗)w

]
+ 2covθ∗

([
2v>

∂ logL

∂θ
(Y, θ∗), w>

∂2 logL

∂θ∂θ>
(Y, θ∗)w

])
≥ (1− c)Varθ∗

[
2v>

∂ logL

∂θ
(Y, θ∗)

]
+ (1− c)Varθ∗

[
w>

∂2 logL

∂θ∂θ>
(Y, θ∗)w

]
. (26)
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Now, by Theorem 1 and by continuity, there exist positive constants c1 and c2 such that Varθ∗
[

2v>
∂ logL

∂θ
(Y, θ∗)

]
≥

c1 and Varθ∗
[
w>

∂2 logL

∂θ∂θ>
(Y, θ∗)w

]
≥ c2, for all v ∈ F ∩ S and w ∈ F⊥ ∩ S. Therefore, (26)

yields the desired result, by homogeneity. Thus, what remains to be proved is (24). For that purpose,
let v ∈ F and w ∈ F⊥ such that (24) does not hold. Let us show that necessarily, v = w = 0.

First, note that it must hold that 2v>
∂ logL

∂θ
(Y, θ∗) + w>

∂2 logL

∂θ∂θ>
(Y, θ∗)w is constant Pθ∗-almost

surely. Since its expectation is zero (the first term has expectation 2 dΨ(θ∗)(v) which is zero since
θ∗ is a local maximum of Ψ and the second term has expectation d2Ψ(θ∗)(w,w) which is zero by
Theorem 1), it must hold that

2v>
∂ logL

∂θ
(y, θ∗) + w>

∂2 logL

∂θ∂θ>
(y, θ∗)w = 0, ∀y ∈ Rd. (27)

Step 1: Computing v>
∂ logL

∂θ
(y, θ∗) Recall that for all y ∈ Rd and θ ∈ Rd,

logL(y, θ) = − log
(

(2π)d/2|G|
)

+ log
∑
g∈G

e−
1
2
‖y−gθ‖2 . (28)

Differentiating (28) with respect to θ in the direction of v, and plugging θ = θ∗ yields

v>
∂ logL

∂θ
(y, θ∗) = −

∑
g∈G e

− 1
2
‖y−gθ∗‖2v>g>(y − gθ∗)∑
g∈G e

− 1
2
‖y−gθ∗‖2

= −
|H|

∑
S∈E e

− 1
2
‖y−S̄θ∗‖2(S̄v)>(y − S̄θ∗)∑

g∈G e
− 1

2
‖y−gθ∗‖2

= −
|H|

∑
S∈E e

− 1
2
‖y−S̄θ∗‖2v>S̄>y∑

g∈G e
− 1

2
‖y−gθ∗‖2

− v>θ∗,

where we used that gv = S̄v for all S ∈ E and all g ∈ S in the second equality and that S̄>S̄θ∗ =
θ∗, for all S ∈ E in the third equality.

Step 2: Computing w> ∂
2 logL
∂θ∂θ>

(y, θ∗)w Now, differentiating (28) twice with respect to θ in the
direction of w, and plugging θ = θ∗ yields

w>
∂2 logL

∂θ∂θ>
(y, θ∗)w =

∥∥∥∑g∈G e
− 1

2
‖y−gθ∗‖2(y − gθ∗)>gw

∥∥∥2

(∑
g∈G e

− 1
2
‖y−gθ∗‖2

)2

−
∑

g∈G e
− 1

2
‖y−gθ∗‖2 (−‖w‖2 + w>g>(y − gθ∗)(y − gθ∗)>gw

)∑
g∈G e

− 1
2
‖y−gθ∗‖2

. (29)

In the first term of the right hand side of (29), the sum inside the squared norm can be rewritten as
|H|

∑
S∈E

e−
1
2
‖y−S̄θ∗‖2(y − S̄θ∗)>S̄w, which is zero, since for any S ∈ E and any arbitrary g ∈ S,
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one can write S̄w = gH̄w = 0. Thus, after trivial simplifications,

w>
∂2 logL

∂θ∂θ>
(y, θ∗)w = ‖w‖2 −

∑
g∈G e

− 1
2
‖y−gθ∗‖2w>g>yy>gw∑

g∈G e
− 1

2
‖y−gθ∗‖2

. (30)

Step 3: Concluding Therefore, (27) implies that, for all y ∈ Rd,

−v>θ∗+‖w‖2−
|H|

∑
S∈E e

− 1
2
‖y−S̄θ∗‖2v>S̄>y∑

g∈G e
− 1

2
‖y−gθ∗‖2

−
∑

g∈G e
− 1

2
‖y−gθ∗‖2w>g>yy>gw∑

g∈G e
− 1

2
‖y−gθ∗‖2

= 0. (31)

Taking y = 0 yields v>θ∗ = ‖w‖2, hence, (31) becomes

∑
S∈E

e−
1
2
‖y−S̄θ∗‖2

 |H|v>S̄>y −∑
g∈S

e−
1
2
‖y−gθ∗‖2(w>g>y)2

 = 0,∀y ∈ Rd. (32)

Now, using a similar argument as in the proof of Theorem 1, this implies that for all S ∈ E and
y ∈ Rd, |H|v>S̄>y −

∑
g∈S

e−
1
2
‖y−gθ∗‖2(w>g>y)2 = 0. Hence, both the linear and the quadratic

terms in y need to be zero, implying v = w = 0.

C.3. Proof of Lemma 13

Proof With the same computations as in the proof of Lemma 8 below, one can show that for all
y ∈ Rd and for v, w ∈ Rd with H̄v = v and H̄w = 0,

w>
∂ logL

∂θ
(y, θ∗) = 0;

∣∣∣∣(v + w)>
∂2 logL

∂θ∂θ>
(y, θ∗)(v + w)

∣∣∣∣ ≤ c‖y‖2(‖v‖2 + ‖w‖2);

sup
0≤t≤1

∂3
θ (logL)(tv + tw, tv + tw, tv + tw)| ≤ c(‖y‖+ ‖y2‖+ ‖y‖3)(‖v‖3 + ‖w‖3),

where c > 0 is some positive constant.
Now, let y ∈ Rd and θ ∈ Θ. Let g0 ∈ G such that ‖g0θ − θ∗‖ = min

g∈G
‖gθ − θ∗‖ and write

g0θ−θ∗ = v+w, where v, w ∈ Rd are such that H̄v = v and H̄w = 0. Then, if ‖v‖2 +‖w‖4 ≤ δ2,
a Taylor expansion yields

|logL(y, θ)− logL(y, θ∗)| ≤ c(1 + ‖y‖+ ‖y‖2 + ‖y‖3)δ,

as long as δ is small enough, independently of y. This ends the proof of the lemma, with F (y) =
c(1 + ‖y‖+ ‖y‖2 + ‖y‖3), y ∈ Rd.
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