
Proceedings of Machine Learning Research vol 99:1–41, 2019 32nd Annual Conference on Learning Theory

Sorted Top-k in Rounds

Mark Braverman MBRAVERM@CS.PRINCETON.EDU
Princeton University

Jieming Mao MAOJM517@GMAIL.COM
University of Pennsylvania

Yuval Peres YPERES@GMAIL.COM

Editors: Alina Beygelzimer and Daniel Hsu

Abstract
We consider the sorted top-k problem whose goal is to recover the top-k items with the correct order
out of n items using pairwise comparisons. In many applications, multiple rounds of interaction
can be costly. We restrict our attention to algorithms with a constant number of rounds r and try to
minimize the sample complexity, i.e. the number of comparisons.

When the comparisons are noiseless, we characterize how the optimal sample complexity de-
pends on the number of rounds (up to a polylogarithmic factor for general r and up to a constant
factor for r = 1 or 2). In particular, the sample complexity is Θ(n2) for r = 1, Θ(n

√
k+n4/3) for

r = 2 and Θ̃
(
n2/rk(r−1)/r + n

)
for r ≥ 3.

We extend our results of sorted top-k to the noisy case where each comparison is correct with
probability 2/3. When r = 1 or 2, we show that the sample complexity gets an extra Θ(log(k))
factor when we transition from the noiseless case to the noisy case.

We also prove new results for top-k and sorting in the noisy case. We believe our techniques
can be generally useful for understanding the trade-off between round complexities and sample
complexities of rank aggregation problems.
Keywords: rank aggregation, sorting, top-k ranking, round complexity, noisy comparisons

c© 2019 M. Braverman, J. Mao & Y. Peres.

SORTED TOP-k IN ROUNDS

1. Introduction

Rank aggregation is a fundamental problem which finds numerous applications in recommendation
systems, web search, social choice, peer grading and crowdsourcing. The most studied problem
in rank aggregation is sorting. It aims to find the total ordering of all items. People also consider
the top-k problem when it is only necessary to recover the set of top-k items. However, for some
applications, the rank aggregation task required is neither sorting nor top-k. For example, when a
recommendation system shows the user a list of items, it might want to display these items in the
order of recommendation. As another example, in a tournament, people usually care about the exact
rankings of top players but not others.

These examples motivate us to study the sorted top-k problem which lies between sorting and
top-k. In this problem, we have n items with an underlying order and the goal is to recover the top-k
items with the correct order using pairwise comparisons.

In many applications, multiple rounds of interaction are costly. For example, if we collect
comparison data via crowdsourcing, the comparisons can be done in parallel by different crowd
workers and the total amount of time spent is mainly decided by the number of rounds. Therefore we
consider the sorted top-k problem in the parallel comparison model introduced by Valiant (1975).
In this model, an algorithm performs a set of comparisons in each round and the actual set can
depend on comparison results of previous rounds. The goal is to solve the task in bounded number
of rounds while minimizing the sample complexity, i.e. the total number of comparisons.

Parallel comparison algorithms have been intensively studied around 30 years ago. Much of the
attention has been put into two problems: sorting Häggkvist and Hell (1981); Ajtai et al. (1983);
Bollobás and Thomason (1983); Kruskal (1983); Leighton (1984); Bollobás and Hell (1985); Alon
(1985); Alon et al. (1986); Azar and Vishkin (1987); Pippenger (1987); Alon and Azar (1988b,a);
Akl (1990) and top-k Valiant (1975); Reischuk (1981); Ajtai et al. (1986); Pippenger (1987); Alon
and Azar (1988b,a); Azar and Pippenger (1990); Bollobás and Brightwell (1990). While being very
related to sorting and top-k, sorted top-k has not been studied in the parallel comparison model.

Without the constraint on the number of rounds, sorted top-k can be easily solved by combining
sorting and top-k algorithms: we can first use a top-k algorithm to find the set of top-k items and
then use a sorting algorithm to sort these k items. If we are using sorting and top-k algorithms
with optimal sample complexities, one can easily show that the combination gives a sorted top-k
algorithm with optimal sample complexity (up to a constant factor).

However, if we only have bounded number of rounds, such combining algorithm might not give
the optimal sample complexity. The adaptiveness of such combining procedure splits the rounds
into rounds used by the top-k algorithm and the rounds used by the sorting algorithm. As we will
see later, this is not the optimal way to solve sorted top-k in bounded number of rounds.

In this paper, we show optimal sample complexity bounds (up to poly logarithmic factors) of
sorted top-k in r rounds for any constant r, as shown in Table 1. Our bounds are tight up to constant
factors when r = 1 or 2.

2

SORTED TOP-k IN ROUNDS

Number of Rounds Upper Bound Lower Bound
1-round O(n2) Ω(n2)

2-round O(n
√
k + n4/3) Ω(n

√
k + n4/3)

(r ≥ 3)-round O((n2/rk(r−1)/r + n)polylog(n)) Ω(n2/rk(r−1)/r + n)

Table 1: Sorted top-k with noiseless comparisons

We further extend our results to sorted top-k in the noisy case where each comparison is correct
with probability 2/3. This is a very simple and basic noise model. As shown in Table 1, we get tight
bounds (up to a constant factor) when r = 1 or 2. Compared with the sample complexity in the
noiseless case, the sample complexity in the noisy case just has an extra log(k) factor when r = 1
or 2.

Number of Rounds Upper Bound Lower Bound
1-round O(n2 log(k)) Ω(n2 log(k))

2-round O((n
√
k + n4/3) log(k)) Ω((n

√
k + n4/3) log(k))

(r ≥ 3)-round O((n2/rk(r−1)/r + n)polylog(n)) Ω(n2/rk(r−1)/r + n)

Table 2: Sorted top-k with noisy comparisons

Our techniques also give new results for top-k and sorting in the noisy case. Our sorted top-k
algorithms are based on our top-k algorithms. For top-k in the noisy case, we show the tight sample
complexity bounds are Θ(n2) for r = 1 and Θ(n4/3) for r = 2. On the other hand, sorting is a
sub-case of sorted top-k by picking k = n. Our sorted top-k results imply tight bounds for sorting
in the noisy case: Θ(n2 log(n)) for r = 1 and Θ(n3/2 log(n)) for r = 2.

1.1. Related Work

Sorted top-k is first discussed in Chambers (1971) and is referred as “partial sorting”.
The parallel comparison model is introduced by Valiant (1975). Two problems which are related

to sorted top-k have been widely studied in this model: sorting Häggkvist and Hell (1981); Ajtai
et al. (1983); Bollobás and Thomason (1983); Kruskal (1983); Leighton (1984); Bollobás and Hell
(1985); Alon (1985); Alon et al. (1986); Azar and Vishkin (1987); Pippenger (1987); Alon and Azar
(1988b,a); Akl (1990) and selection Valiant (1975); Reischuk (1981); Ajtai et al. (1986); Pippenger
(1987); Alon and Azar (1988b,a); Azar and Pippenger (1990); Bollobás and Brightwell (1990).
Selection (i.e. finding the item of rank exactly k) has been shown to be very similar to top-k in
Braverman et al. (2016).

The noisy comparison model was introduced by Feige et al. (1994). Recently, there are several
work studying top-k with noisy comparisons in bounded number of rounds Braverman et al. (2016);
Agarwal et al. (2017); Cohen-Addad et al. (2018). Braverman et al. (2016) shows that the sample
complexity of top-k in the noisy case is Θ̃(n) when r = 3 and Θ(n log(n)) when r ≥ 4 and
max(k, n − k) = Ω(n). Cohen-Addad et al. (2018) gives tight sample complexity bound for
general k and r > 4. The sample complexity of top-k in the noisy case for r = 1 and 2 is not
addressed in previous work.

3

SORTED TOP-k IN ROUNDS

Rank aggregation with noisy comparisons is also widely studied without the round constraint
and with various noise models: Kenyon-Mathieu and Schudy (2007); Ailon et al. (2008); Braverman
and Mossel (2008, 2009); Ailon (2011); Jamieson and Nowak (2011); Lu and Boutilier (2011);
Makarychev et al. (2013); Wauthier et al. (2013); Rajkumar and Agarwal (2014); Chen and Suh
(2015); Shah and Wainwright (2015); Mohajer and Suh (2016); Negahban et al. (2017); Chen et al.
(2017); Shah et al. (2017); Suh et al. (2017); Chen et al. (2018).

2. Model and Preliminaries

We consider the sorted top-k problem together with two related problems: sorting and top-k. In
these problems, there is a set of n items N with an underlying order and the goals are different:

• Sorted top-k: output the sorted list of k items with highest ranks.

• Sorting: output the ranks of all items.

• Top-k: output the set of k items with highest ranks.

Algorithms are allowed to make pairwise comparisons. And we want the algorithm to minimize
the sample complexity, i.e. the total number of comparisons. We have two cases, with respect to
comparisons: the noiseless case and the noisy case. In the noiseless case, comparisons results are
always consistent with the underlying order. In the noisy case, each pairwise comparison is correct
(consistent with the underlying order) with some constant probability> 1/2 independently. Without
loss of generality, we assume each comparison is correct with probability 2/3 independently.

We consider algorithms with bounded number of rounds. In each round, an algorithm needs
to perform all comparisons simultaneously. We use r to denote the number of rounds and we only
consider cases when r is a fixed constant.

We allow algorithms to use randomness. In the noiseless case, the algorithm needs to be always
correct and the sample complexity is the expected total number of comparisons. In the noisy case,
because of the noise, no algorithms can always be correct. The algorithm needs to be correct with
probability≥ 2/3 and the sample complexity is the worst-case total number of comparisons. Notice
that the requirement in the noiseless case is stronger as the always correct algorithm with expected
number of comparisons s can be easily made into an algorithm which succeeds with probability
2/3 and worst-case number of comparisons O(s) by halting the algorithm when making too many
comparisons.

3. Main Results and Proof Overviews

In this section, we show our main results and give overviews of our proof techniques.

3.1. Sorted Top-k in the Noiseless Case

In this sub-section, we show our results for sorted top-k in the noiseless case. All the detailed
discussions and proofs can be found in Section A.

When we only have 1 round (i.e. r = 1), it is not hard to show that comparing all pairs of items
using Θ(n2) comparisons gives optimal sample complexity (up to a constant factor). We formally
discuss this in the beginning of Section A. For r ≥ 2, we have the following two main theorems for
upper and lower bounds.

4

SORTED TOP-k IN ROUNDS

Theorem 1 For r ≥ 3, there exists an r-round algorithm that solves sorted top-k with Õ(n2/rk(r−1)/r+
n)) comparisons in expectation. There exists a 2-round algorithm that solves sorted top-k with
O(n
√
k + n4/3) comparisons in expectation.

The main idea of the algorithm in Theorem 1 is to use “pivot items”. These pivot items are
compared to all items. From these comparisons, we learn not only their ranks but also which items
rank between two pivot items. After that, items are partitioned into chunks and we just need to solve
sub problems inside chunks. See Figure 1 for a graphical view of pivot items.

chunk

pivot items other items
rank order

Figure 1: Pivot items.

Suppose we plan to use Θ(αn) comparisons. The most naive way of using pivot items is to pick
α pivot items at random in the first round and compare them to all items in the same round. After
this round, we will be left with chunks of items partitioned by pivot items. Since now we know the
ranks of pivot items, we know which chunks have top-k items and we only need to care about these
chunks. We use the remaining r− 1 round to run the (r− 1)-round sorting algorithm of Alon et al.
(1986) in each such chunk in parallel. This approach with proper setting of α matches the optimal
sample complexity bound (up to a constant factor) if r = 2 or k is larger than the expected chunk
size (i.e. k = Ω(n/α)). It is formally described in Algorithm 2 in Section A. See also Figure 2 for
a graphical view of the algorithm.

top-k items rank order

Chunks to sort in parallel in the remaining r − 1 rounds

Figure 2: Noiseless sorted top-k algorithm when k is large.

However, when r > 3 and k is small enough so that the first chunk is likely to have size much
larger than k (see Figure 3), the above approach becomes sub-optimal. At a high level, the reason
is that the random pivot items chosen in the first round are not good enough to partition the top-k
items into small chunks. Therefore, instead of running the sorting algorithm on the first chunk in the
remaining r − 1 rounds, we spend one more round (round 2) to compare items to more “accurate”
pivot items, partition them into smaller chunks and sort each chunk in the remaining r − 2 rounds.
These new pivot items are better than the random pivot items for two reasons: (i) We can spend some
comparisons in the first round to choose these pivot items. So they have better structural guarantees
than the random pivot items. In particular, we extend the algorithmic technique of Braverman

5

SORTED TOP-k IN ROUNDS

et al. (2016) to pick pivot items which are roughly Θ
(√

n
α

)
apart. (ii) Since these pivot items are

compared to other items in the second round, we can use comparison results of the random pivot
items. Knowing the fact that all top-k items are in the first chunk partitioned by the random pivot
items, we just need to compare new pivot items to items in that chunk. This is important for getting
good sample complexity. The whole process of this paragraph is formally described in Algorithm 3
in Section A. See also Figure 3 for a graphical view of the algorithm.

top-k rank order

First chunk zoom in : more ”accurate” pivot items

Chunks to sort in parallel in the remaining r − 2 rounds

Figure 3: Noiseless sorted top-k when k is small.

In Section A, we combine the above two approaches to prove Theorem 1. Both approaches
use pivot items and then bounded-round sorting. Although the sample complexity keeps decreasing
when we increase the number of rounds, we have at most 2 rounds that are different from sorting
no matter how large the total number of rounds is. One may wonder why we don’t use more rounds
before we apply bounded-round sorting. At a high level, the reason is that what we do before sorting
is more similar to a top-k algorithm and more than 3 rounds of interaction do not help much with
the sample complexity for top-k, e.g. Braverman et al. (2016) shows a 3-round noiseless top-k
algorithm with nearly optimal sample complexity O(n · polylog(n)).

Theorem 2 For r ≥ 3, r-round algorithm needs Ω(n2/rk(r−1)/r + n) comparisons in expectation
to solve sorted top-k. Any 2-round algorithm needs Ω(n

√
k + n4/3) comparisons in expectation to

solve sorted top-k.

Theorem 2 gives matching (up to constant or polylog factors) lower bounds compared to upper
bounds in Theorem 1. The start point of the proof is to reduce from top-k or sorting to sorted top-k.
Indeed, sorted top-k is no easier than sorting k items or finding top-k items over n items. However,
this reduction is not good enough to give us tight lower bounds.

Let us we go back to our sorted top-k algorithm in Theorem 1 and compare how it is different
from an algorithm which is given the set of top-k items and just sorts these k items. The main
difference is that our sorted top-k algorithm spends a big fraction of comparisons in the first one
or two rounds on items which are not top-k items. These comparisons are not useful for sorting
the top-k items. Moreover, we can show that, without knowing the set of top-k items, not only our
algorithm but also any other algorithms will make a good amount of comparisons outside top-k in
the first one or two rounds. For example, it is not hard show that in expectation at most O(k2/n2)

6

SORTED TOP-k IN ROUNDS

fraction of first-round comparisons are between two items in top-k. The argument for the second
round is more complicated.

This is the critical point of our proof. Now we know that sorted top-k is no easier than sorting k
items with unbalanced number of comparisons in rounds (fewer comparisons in the first one or two
rounds). In the rest of proof, we adapt the lower bound of bounded-round sorting (Theorem 2.1 of
Alon and Azar (1988b)) to our unbalanced setting. For details, see Section A.2.

3.2. Warm-up: Top-1 in the Noisy Case

Now we proceed to the noisy case. First of all, one could easily adapt a noiseless algorithm into the
noisy case by repeating each comparison Θ(log(n)) times and use union bound in the analysis. So
the interesting question here is whether the sample complexity gets an extra Θ(log(n)) factor or not
or something in-between, when we transition from the noiseless case to the noisy case.

In this sub-section, we show an 1-round algorithm for finding top-1 in the noisy case with
O(n2) comparisons. The sample complexity does not get a Θ(log(n)) blow-up in the noisy case.
This algorithm is simpler than and different from our 1-round algorithms for top-k and sorted top-k
in the noisy case. We offer it here as a warm-up for the noisy case.

Without loss of generality, we assume n is a power of 2. If n is not a power of 2, we could add
fewer than n dummy items to make the total number of items a power of 2. This only increase the
number of comparisons by a constant factor.

In Algorithm 1, we show our main recursive procedure of finding the top-1 item in some set S of
size s. We will show by induction in Lemma 3 that it usesO(s2 log(1/δ)) comparisons and succeeds
with probability at least 1−δ. If we run FindMax(N,n, 1/9), we will get an algorithm for finding
top-1 within n items with probability at least 8/9 in the noisy case usingO(n2) comparisons. Notice
that although the procedure is defined recursively, no pair of items in an comparison depends on
other comparisons’ results. So all the comparisons can be done in 1-round.

This recursive procedure basically partitions set S into two set S1 and S2 of equal sizes and
then find the max in each set recursively: item i∗ and item j∗. After that it compares i∗ and j∗ some
times to find the max of this two. In order to make all comparisons in 1 round, we actually compare
all pairs of items (i, j) for i ∈ S1 and j ∈ S2.

In order to make this recursive procedure to succeed with probability 1 − δ, we want that the
following three steps all succeed with probability 1 − δ/3 and we take a union bound: (1) finding
the max of S1: item i∗ (2) finding the max of S2: item j∗ (3) finding the max of i∗ and j∗. As
you will see in the proof, the critical point of the argument is to show that the growth in the success
probability (from 1 − δ to 1 − δ/3) has much less effect on the sample complexity compared with
the decrease of the set size (from |S| to |S1| = |S2| = |S|/2).

Lemma 3 Let δ ≤ 1/9. FindMax(S, s, δ) and its descendants use at most 100n2 log(1/δ)) com-
parisons. FindMax(S, s, δ) succeeds to output the top-1 in S with probability at least 1− δ.

Proof We know that |S| = s is always a power of 2, i.e. s = 2t. We prove the lemma by induction
on t. The base case t = 0 is trivial.

Let’s assume the lemma is true for t − 1, let’s consider the case for t. By induction hypothe-
sis, we know the number of comparisons in FindMax(S1, s/2, δ/3) and its descendants is at most
100(s/2)2 log(3/δ). Same for FindMax(S2, s/2, δ/3). Therefore, the total number of comparisons

7

SORTED TOP-k IN ROUNDS

Algorithm 1 FindMax(S, s, δ)
1: if s = 1 then
2: Return the single item in S.
3: else
4: Partition S arbitrarily into set S1 and S2 of equal sizes, i.e. |S1| = |S2| = s/2, S1 ∩ S2 = ∅

and S1 ∪ S2 = S.
5: For each item i ∈ S1 and j ∈ S2, compare them 100 log(1/δ) times.
6: i∗ ← FindMax(S1, s/2, δ/3).
7: j∗ ← FindMax(S2, s/2, δ/3).
8: Return i∗ if item i∗ wins the majority of comparisons between item i∗ and item j∗. Return

j∗ otherwise.
9: end if

used by FindMax(S, s, δ) and its descendants is

2 · 100(s/2)2 log(3/δ) + 100 log(1/δ) · (s/2)2

=100 · s
2

4
· log(1/δ)

(
2 +

2 log(3)

log(1/δ)
+ 1

)
≤100s2 log(1/δ).

In the case that i∗ is the top-1 of S1, j∗ is the top-1 of S2 and the majority of comparisons
between i∗ and j∗ is consistent with their true ordering, FindMax(S, s, δ) succeeds to output
the top-1 in S. By induction hypothesis, each of the first two events happens with probabil-
ity at least 1 − δ/3. By Chernoff bound, the third event happens with probability at least 1 −
exp

(
(1/4)2 · (1/2) · (2/3) · 100 log(1/δ)

)
≥ 1− δ/3. Therefore, by union bound, FindMax(S, s,

δ) succeeds to output the top-1 in S with probability at least 1− δ.

3.3. Top-k in the Noisy Case

In this sub-section, we discuss top-k in the noisy case. All the detailed discussions and proofs about
this sub-section can be found in Section B.

As discussed in the related work, top-k in the noisy case has been studied in prior work when
r ≥ 3. Nothing is known when r = 1 or 2. On the other hand, if we go back to the noiseless case, it
has been shown in prior work that the sample complexity of top-k is Θ(n2) for r = 1 and Θ(n4/3)
for r = 2.

We show top-k algorithms in the noisy case in Theorem 4 for r = 1 or 2. These upper bounds
are tight up to a constant factor as they even match the lower bounds in the noiseless case. In other
words, for top-k in 1 round or 2 rounds, the sample complexity does not get an extra Θ(log(n))
factor when we go from the noiseless case to the noisy case.

Theorem 4 For top-k in the noisy case, there is an 1-round algorithm with sample complexity
O(n2) and a 2-round algorithm with sample complexity O(n4/3).

Our 1-round algorithm starts by the simple idea of comparing two items Θ(log(n)) times. The
majority of these comparison is consistent with the true ordering with probability 1 − 1/poly(n).

8

SORTED TOP-k IN ROUNDS

By taking a union bound later in the analysis, Θ(log(n)) noisy comparisons between the same pair
of two items can be considered as one noiseless comparison between them.

Since we plan to repeat each comparison Θ(log(n)) times and we have onlyO(n2) comparisons,
we cannot compare all pairs of items. So we use pivot items again. We pick Θ(n/ log(n)) pivot
items at random and compare them to all items Θ(log(n)) times. We can partition items into chunks.
For items rank before or after the chunk which contains the k-th item, we can easily classify them as
in the top-k or outside top-k. For items inside this chunk, we don’t know which ones are in top-k.
Since each chunk has Θ(log(n)) items in expectation, the number of such items is Θ(log(n)) in
expectation.

How do we deal with these Θ(log(n)) items? We use more random pivot items. We pick
Θ(n/ log log(n)) random pivot items and further partition items into chunks of size Θ(log log(n))
in expectation. We call these new pivot items as second-level pivot items and previous pivot items as
first-level pivot items (see Figure 4). Here comes to the critical point of the argument: since second-
level pivot items are only used to partition Θ(log(n)) items and in the analysis we are taking union
bound over polylog(n) events, we don’t need to repeat the comparison between each pair Θ(log(n))
times. Instead, we just need to repeat each comparison Θ(log log(n)) times. And our total number
comparisons will still be O(n2).

Finally we generalize this idea to have log∗(n) levels of pivot items and we can classify all items
into top-k or bottom-(n−k). Moreover, although these pivot items are divided into different levels,
they are all chosen at random and compared to all items. So all the comparisons can be placed in
a single round. The whole algorithm is formally described in Algorithm 4 in Section B. See also
Figure 4 for a graphical view of the algorithm.

top-k rank order

··
·

zoom in : 2nd level pivot items

: 1st level pivot items

Figure 4: The noisy 1-round top-k algorithm.

Now we proceed to describing our 2-round top-k algorithm in the noisy case. It is the most
sophisticated algorithm in this paper. We are going use O(n4/3) comparisons.

It would be good to first understand the 2-round top-k algorithm in the noiseless case with
O(n4/3) comparisons. The idea is quite simple: we pick n1/3 random pivot items in the first round

9

SORTED TOP-k IN ROUNDS

and partition items into chunks of size Θ(n2/3) in expectation. And in the second round, we just
need to focus on the chunk containing the k-th item. It has size Θ(n2/3) in expectation and we can
just compare all pairs of items in this chunk.

Now in the noisy case, how do we still use only O(n4/3) comparisons to find top-k in 2 rounds?
Repeating each comparison Θ(log(n)) times does not seem to work since it reduces the num-
ber of random pivot items to Θ(n1/3/ log(n)) and we will leave a chunk of too many items (i.e.
Θ(n2/3 log(n)) items) to the second round.

In our 2-round algorithm, we still use Θ(n1/3) random pivot items in the first round. We can
only compare them to all items constant times as we only have O(n4/3) comparisons in total. We
partition items into chunks as following (see also Figure 5 for a graphical view). We first put pivot
items in the order of their ranks. We get this order correctly with probability 1 − 1/poly(n) after
the first round by having Θ(log(n)) comparison between each pair of pivot items in parallel with
other comparisons. For each item i, we keep a counter and compare it to pivot items one by one.
The counter is increased by one if the pivot item wins the majority of comparisons with item i and
decreased by one otherwise. In the end, we put the item into the chunk next to the pivot item where
its counter reaches its maximum. The analysis of this process is similar to a biased random walk.
Notice that item i’s counter has higher chance of increasing before it reaches its actual chunk and
it has higher chance of decreasing after it reaches its actual chunk. We can show that although we
may fail to put item i into its actual chunk, the probability it is placed l chunks away from its actual
chunk can be bounded by exp(−Ω(l)).

rank orderX X
1 2 1 0counter:

Figure 5: The first round of the noisy 2-round top-k algorithm.

After the first round, we partition items into chunks of size Θ(n2/3) in expectation. As discussed
above, this partition is not perfectly correct but items won’t be placed too far away from their actual
chunks. If the partition is perfectly correct, then we can directly use our previous 1-round top-
k algorithm described above as a blackbox to deal with the chunk containing the k-th item. But
since the partition is not perfectly correct, we have to modify the 1-round algorithm to use in the
second round of our 2-round algorithm. The whole algorithm is formally described in Algorithm 5
in Section B.

3.4. Sorted Top-k in the Noisy Case

In this sub-section, we show our results for sorted top-k in the noisy case. All the detailed discus-
sions and proofs can be found in Section C. In the noisy case for round number r ≥ 3, as described
in the previous sub-section, we can adapt our noiseless algorithm into a noisy algorithm with sample
complexity O((n2/rk(r−1)/r +n)polylog(n)). For r = 1, 2, we show tight (up to a constant factor)
sample complexity bounds in Theorem 5.

Theorem 5 The sample complexity of sorted top-k in the noisy case is Θ(n2 log(k)) for r = 1 and
Θ((n

√
k + n4/3) log(k)) for r = 2.

10

SORTED TOP-k IN ROUNDS

Both of our sorted top-k algorithms in Theorem 5 are based on our top-k algorithms. Our
1-round sorted top-k algorithm is relatively simple given our 1-round top-k algorithm. We just
compare all pairs Θ(log(k)) times and also runs the 1-round algorithm for top-k of Theorem 4 in
the same round. After we make the comparisons, we learn the set of top-k items. The majority
of Θ(log(k)) comparisons between each pair is consistent to the actual rankings with probability
1− 1/poly(k). Since we only focus on k items, we can take the union bound to show our algorithm
is correct with probability at least 2/3. For details, see Algorithm 8.

Interestingly, although sorted top-k is no easier than top-k, getting tight bounds of sorted top-
k could be easier. Our 2-round sorted top-k algorithm is much simpler than our 2-round top-k
algorithm, and it only depends on our 1-round top-k algorithm. When k is not tiny (≥ n1/10), since
log(k) = Θ(log(n)), we just use the sorted top-k algorithm in the noiseless case (Theorem 1) and
repeat each comparison Θ(log(n)) times. When k is tiny (< n1/10), we partition all items into
random groups; find the top-1 of each group in the first round (using the 1-round top-k algorithm of
Theorem 4) and then find the sorted top-k of all these top-1’s in the second round. For details, see
Algorithm 9.

Now we start to describe how we prove the matching lower bounds. We start with the 1-round
lower bound. The main idea of the lower bound is to show that if an algorithm does not make enough
comparisons in one round, there must exist Ω(k) pairs of items who have consecutive ranks and are
in top-k, such that they are compared fewer than log(k)/2 times. For any one such pair of items,
if we just swap their ranks, the order of items in top-k changes and we can show that the chance of
seeing the same comparison result would at most decrease by a factor of 2log(k)/2. As long as the
number of such pairs is much larger than this factor, we can show that an 1-round algorithm with
not enough comparisons outputs incorrectly with large probability. For details, see Lemma 25.

For the 2-round lower bound, we still want to show that if an algorithm does not make enough
comparisons in two rounds, there must exist enough pairs of items who have consecutive ranks and
are in top-k, such that they are compared fewer than c · log(k) times for some small constant c.
The proof is more complicated as the a 2-round algorithms have adaptiveness, i.e. which items
are compared in the second round depend on the comparison results of the first round. The main
idea of the proof is to show that bounded amount of first round comparisons won’t be helpful to
figure out which items are consecutively ranked. We explain proof steps in the case when k > n2/3

here. We divide top-k items into chunks of size n√
k

. We show that after the first round, in a
typical chunk, constant fraction of items are compared to any items in the same chunk fewer than
0.1 log(k) times. We can then show that, given the first round comparison results, there are Ω(n

√
k)

pairs of items who could be a consecutively ranked pair with not small chance. As the algorithm has
O(n
√
k log(k)) (with a small enough constant factor) comparisons, we can conclude the algorithm

could miss to compare many consecutively ranked pairs c · log(k) times. The rest of the argument
is similar to the 1-round lower bound. For details, see Lemma 27.

4. Conclusion and Open Problems

In this paper, we characterize the optimal trade-off between the sample complexity and the round
complexity of sorted top-k in both the noiseless case and the noisy case. For a fixed number of
rounds, our sample complexity bound is tight up to a polylogarithmic factor.

When r = 1 or 2, we can make our sample complexity bound of sorted top-k tight up to a
constant factor. We extend these results to top-k and sorting. These bounds also allow us to study

11

SORTED TOP-k IN ROUNDS

the blow up in the sample complexity when we transition from the noiseless case to the noisy case.
Interestingly, for r = 1 or 2, this blow up is different in different rank aggregation problems: Θ(1)
in top-k, Θ(log(k)) in sorted top-k and Θ(log(n)) in sorting.

There are mainly two obstacles to getting tighter bounds for top-k, sorting and sorted top-k
when we have more than 2 rounds. We list them as open problems here. The first one is that we
don’t have tight (up to a constant factor) sample complexity bounds even in the noiseless case.

Open Problem 6 Get tight (up to a constant factor) sample complexity bounds for the noiseless
case when r > 2.

In particular, the first step is to consider 3-round top-k in the noiseless case. Braverman et al. (2016)
shows its sample complexity is O(n · polylog(n)). Bollobás and Brightwell (1990) shows that no
3-round algorithm with Θ(n) comparisons can find top-k correctly with probability 1− o(1). If we
only want to succeed with constant probability (for example 2/3), the best lower bound is the trivial
one: Ω(n).

Once we have a good understanding of the noiseless case, we can start to think about the noisy
case for r > 2.

Open Problem 7 Extend our techniques for r = 1 or 2 in the noisy case to the case when we have
more than 2 rounds.

In the noisy case, our 2-round bounds are very different and more complicated compared to 1-round
bounds. Even if we have tight bounds in the noiseless case, getting tight bounds for more than 2
rounds could be more difficult and might require new techniques.

Acknowledgments

We would like to thank Claire Mathieu for earlier discussions of this problem.

References

Arpit Agarwal, Shivani Agarwal, Sepehr Assadi, and Sanjeev Khanna. Learning with limited rounds
of adaptivity: Coin tossing, multi-armed bandits, and ranking from pairwise comparisons. In Pro-
ceedings of the 30th Conference on Learning Theory, COLT 2017, Amsterdam, The Netherlands,
7-10 July 2017, pages 39–75, 2017.

N. Ailon. Active learning ranking from pairwise preferences with almost optimal query complexity.
In Advances in Neural Information Processing Systems, 2011.

N Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information: ranking and cluster-
ing. Journal of the ACM, 55(5):23:1–23:27, 2008.

M Ajtai, J Komlos, W L Steiger, and E Szemeredi. Deterministic selection in o(loglog n) parallel
time. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC
’86, pages 188–195, New York, NY, USA, 1986. ACM. ISBN 0-89791-193-8. doi: 10.1145/
12130.12149. URL http://doi.acm.org/10.1145/12130.12149.

12

http://doi.acm.org/10.1145/12130.12149

SORTED TOP-k IN ROUNDS

Miklós Ajtai, János Komlós, and Endre Szemerédi. An o(n log n) sorting network. In Pro-
ceedings of the 15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983,
Boston, Massachusetts, USA, pages 1–9, 1983. doi: 10.1145/800061.808726. URL http:
//doi.acm.org/10.1145/800061.808726.

Selim G. Akl. Parallel Sorting Algorithms. Academic Press, Inc., Orlando, FL, USA, 1990. ISBN
0120476800.

Noga Alon. Expanders, sorting in rounds and superconcentrators of limited depth. In Proceedings
of the 17th Annual ACM Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode
Island, USA, pages 98–102, 1985. doi: 10.1145/22145.22156. URL http://doi.acm.org/
10.1145/22145.22156.

Noga Alon and Yossi Azar. Sorting, approximate sorting, and searching in rounds. SIAM J. Dis-
crete Math., 1(3):269–280, 1988a. doi: 10.1137/0401028. URL http://dx.doi.org/10.
1137/0401028.

Noga Alon and Yossi Azar. The average complexity of deterministic and randomized parallel
comparison-sorting algorithms. SIAM J. Comput., 17(6):1178–1192, 1988b. doi: 10.1137/
0217074. URL http://dx.doi.org/10.1137/0217074.

Noga Alon, Yossi Azar, and Uzi Vishkin. Tight complexity bounds for parallel comparison sorting.
In 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 Octo-
ber 1986, pages 502–510, 1986. doi: 10.1109/SFCS.1986.57. URL http://dx.doi.org/
10.1109/SFCS.1986.57.

Yossi Azar and Nicholas Pippenger. Parallel selection. Discrete Applied Mathematics, 27(1-2):
49–58, 1990. doi: 10.1016/0166-218X(90)90128-Y. URL https://doi.org/10.1016/
0166-218X(90)90128-Y.

Yossi Azar and Uzi Vishkin. Tight comparison bounds on the complexity of parallel sorting. SIAM
J. Comput., 16(3):458–464, 1987. doi: 10.1137/0216032. URL https://doi.org/10.
1137/0216032.

Béla Bollobás and Graham Brightwell. Parallel selection with high probability. SIAM J. Discrete
Math., 3(1):21–31, 1990. doi: 10.1137/0403003. URL http://dx.doi.org/10.1137/
0403003.

Béla Bollobás and Pavol Hell. Sorting and graphs. In Ivan Rival, editor, Graphs and Order,
volume 147 of NATO ASI Series, pages 169–184. Springer Netherlands, 1985. ISBN 978-94-
010-8848-0. doi: 10.1007/978-94-009-5315-4 5. URL http://dx.doi.org/10.1007/
978-94-009-5315-4_5.

Béla Bollobás and Andrew Thomason. Parallel sorting. Discrete Applied Mathematics, 6(1):1 – 11,
1983. ISSN 0166-218X. doi: http://dx.doi.org/10.1016/0166-218X(83)90095-1. URL http:
//www.sciencedirect.com/science/article/pii/0166218X83900951.

Mark Braverman and Elchanan Mossel. Noisy sorting without resampling. In Proceedings of the
Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’08, pages 268–276,

13

http://doi.acm.org/10.1145/800061.808726
http://doi.acm.org/10.1145/800061.808726
http://doi.acm.org/10.1145/22145.22156
http://doi.acm.org/10.1145/22145.22156
http://dx.doi.org/10.1137/0401028
http://dx.doi.org/10.1137/0401028
http://dx.doi.org/10.1137/0217074
http://dx.doi.org/10.1109/SFCS.1986.57
http://dx.doi.org/10.1109/SFCS.1986.57
https://doi.org/10.1016/0166-218X(90)90128-Y
https://doi.org/10.1016/0166-218X(90)90128-Y
https://doi.org/10.1137/0216032
https://doi.org/10.1137/0216032
http://dx.doi.org/10.1137/0403003
http://dx.doi.org/10.1137/0403003
http://dx.doi.org/10.1007/978-94-009-5315-4_5
http://dx.doi.org/10.1007/978-94-009-5315-4_5
http://www.sciencedirect.com/science/article/pii/0166218X83900951
http://www.sciencedirect.com/science/article/pii/0166218X83900951

SORTED TOP-k IN ROUNDS

Philadelphia, PA, USA, 2008. Society for Industrial and Applied Mathematics. URL http:
//dl.acm.org/citation.cfm?id=1347082.1347112.

Mark Braverman and Elchanan Mossel. Sorting from noisy information. CoRR, abs/0910.1191,
2009. URL http://arxiv.org/abs/0910.1191.

Mark Braverman, Jieming Mao, and S. Matthew Weinberg. Parallel algorithms for select and par-
tition with noisy comparisons. In Proceedings of the Forty-eighth Annual ACM Symposium on
Theory of Computing, STOC ’16, pages 851–862, New York, NY, USA, 2016. ACM. ISBN 978-
1-4503-4132-5. doi: 10.1145/2897518.2897642. URL http://doi.acm.org/10.1145/
2897518.2897642.

J. M. Chambers. Algorithm 410: Partial sorting. Commun. ACM, 14(5):357–358, May 1971.
ISSN 0001-0782. doi: 10.1145/362588.362602. URL http://doi.acm.org/10.1145/
362588.362602.

X. Chen, S. Gopi, J. Mao, and J. Schneider. Competitive analysis of the top-k ranking problem. In
Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), 2017.

Xi Chen, Yuanzhi Li, and Jieming Mao. A nearly instance optimal algorithm for top-k ranking
under the multinomial logit model. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, 2018.

Yuxin Chen and Changho Suh. Spectral MLE: top-k rank aggregation from pairwise comparisons.
In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, pages 371–380, 2015. URL http://jmlr.org/proceedings/
papers/v37/chena15.html.

Vincent Cohen-Addad, Frederik Mallmann-Trenn, and Claire Mathieu. Instance-optimality in the
noisy value-and comparison-model — accept, accept, strong accept: Which papers get in? arXiv
preprint arXiv:1806.08182, 2018.

Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy information.
SIAM J. Comput., 23(5):1001–1018, 1994. doi: 10.1137/S0097539791195877. URL https:
//doi.org/10.1137/S0097539791195877.

Roland Häggkvist and Pavol Hell. Parallel sorting with constant time for comparisons. SIAM J.
Comput., 10(3):465–472, 1981. doi: 10.1137/0210034. URL http://dx.doi.org/10.
1137/0210034.

K. Jamieson and R. Nowak. Active ranking using pairwise comparisons. In Advances in Neural
Information Processing Systems, 2011.

C. Kenyon-Mathieu and W. Schudy. How to rank with few errors. In Proceedings of the Symposium
on Theory of computing (STOC), 2007.

Clyde P. Kruskal. Searching, merging, and sorting in parallel computation. IEEE Trans. Comput-
ers, 32(10):942–946, 1983. doi: 10.1109/TC.1983.1676138. URL https://doi.org/10.
1109/TC.1983.1676138.

14

http://dl.acm.org/citation.cfm?id=1347082.1347112
http://dl.acm.org/citation.cfm?id=1347082.1347112
http://arxiv.org/abs/0910.1191
http://doi.acm.org/10.1145/2897518.2897642
http://doi.acm.org/10.1145/2897518.2897642
http://doi.acm.org/10.1145/362588.362602
http://doi.acm.org/10.1145/362588.362602
http://jmlr.org/proceedings/papers/v37/chena15.html
http://jmlr.org/proceedings/papers/v37/chena15.html
https://doi.org/10.1137/S0097539791195877
https://doi.org/10.1137/S0097539791195877
http://dx.doi.org/10.1137/0210034
http://dx.doi.org/10.1137/0210034
https://doi.org/10.1109/TC.1983.1676138
https://doi.org/10.1109/TC.1983.1676138

SORTED TOP-k IN ROUNDS

Frank Thomson Leighton. Tight bounds on the complexity of parallel sorting. In Proceedings of
the 16th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1984, Washington,
DC, USA, pages 71–80, 1984. doi: 10.1145/800057.808667. URL http://doi.acm.org/
10.1145/800057.808667.

T. Lu and C. Boutilier. Learning mallows models with pairwise preferences. In Proceedings of the
International Conference on Machine Learning (ICML), 2011.

Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Sorting noisy data with
partial information. In Proceedings of the 4th Conference on Innovations in Theoretical Computer
Science, ITCS ’13, pages 515–528, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1859-
4. doi: 10.1145/2422436.2422492. URL http://doi.acm.org/10.1145/2422436.
2422492.

S. Mohajer and C. Suh. Active top-k ranking from noisy comparisons. In Proceedings of the 54th
Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2016.

S. Negahban, S. Oh, and D. Shah. Rank centrality: Ranking from pair-wise comparisons. Opera-
tions Research, 65(1):266–287, 2017.

Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge coloring via an
extension of the chernoff–hoeffding bounds. SIAM J. Comput., 26(2):350–368, April 1997.
ISSN 0097-5397. doi: 10.1137/S0097539793250767. URL https://doi.org/10.1137/
S0097539793250767.

Nicholas Pippenger. Sorting and selecting in rounds. SIAM J. Comput., 16(6):1032–1038, 1987.
doi: 10.1137/0216066. URL https://doi.org/10.1137/0216066.

A. Rajkumar and S. Agarwal. A statistical convergence perspective of algorithms for rank aggre-
gation from pairwise data. In Proceedings of the International Conference on Machine Learning
(ICML), 2014.

Rüdiger Reischuk. A fast probabilistic parallel sorting algorithm. In 22nd Annual Symposium
on Foundations of Computer Science, Nashville, Tennessee, USA, 28-30 October 1981, pages
212–219, 1981. doi: 10.1109/SFCS.1981.6. URL http://dx.doi.org/10.1109/SFCS.
1981.6.

N. B. Shah and M. Wainwright. Simple, robust and optimal ranking from pairwise comparisons.
arXiv preprint arXiv:1512.08949, 2015.

N. B. Shah, S. Balakrishnan, A. Guntuboyina, and M. J. Wainright. Stochastically transitive models
for pairwise comparisons: Statistical and computational issues. IEEE Transactions on Informa-
tion Theory, 63(2):934–959, 2017.

C. Suh, V. Tan, and R. Zhao. Adversarial top-k ranking. IEEE Transactions on Information Theory,
63(4):2201–2225, 2017.

Leslie G. Valiant. Parallelism in comparison problems. SIAM J. Comput., 4(3):348–355, 1975. doi:
10.1137/0204030. URL http://dx.doi.org/10.1137/0204030.

15

http://doi.acm.org/10.1145/800057.808667
http://doi.acm.org/10.1145/800057.808667
http://doi.acm.org/10.1145/2422436.2422492
http://doi.acm.org/10.1145/2422436.2422492
https://doi.org/10.1137/S0097539793250767
https://doi.org/10.1137/S0097539793250767
https://doi.org/10.1137/0216066
http://dx.doi.org/10.1109/SFCS.1981.6
http://dx.doi.org/10.1109/SFCS.1981.6
http://dx.doi.org/10.1137/0204030

SORTED TOP-k IN ROUNDS

F. Wauthier, M.Jordan, and N. Jojic. Efficient ranking from pairwise comparisons. In Proceedings
of the International Conference on Machine Learning (ICML), 2013.

Appendix A. Sorted Top-k in the Noiseless Case

In this section, we show upper and lower bounds on the sample complexity for solving sorted top-k
in the noiseless case.

First of all, it’s easy to observe that the sample complexity for solving sorted top-k in 1 round is
Θ(n2). For the upper bound, we just need to compare all pairs (there are

(
n
2

)
of them). For the lower

bound, first observe that we can wlog assume the algorithm is deterministic. Then if the algorithm
uses fewer than

(
n
2

)
comparisons, it misses the comparison between the best item and the second

best item with positive probability and therefore the algorithm cannot even guarantee to solve top-1.
For more than 1 round, we show algorithms in Section A.1 and lower bounds in Section A.2.

A.1. Algorithms

Our algorithmic results are stated in Corollary 8 (for 2 rounds) and Corollary 9 (for ≥ 3 rounds).
They are based on two sub-routines: Algorithm 2 and Algorithm 3. Both of them use the sorting
algorithm in Alon et al. (1986) as a blackbox (Theorem 10).

Algorithm 2 is used when k is large (k > n(2r−2)/(2r−1)). In the first round, we pick a random
set of size α = k(r−1)/rn(2−r)/r (call them “pivot items”) and partition the entire set into α + 1
chunks by comparing all items to the pivot items. In the remaining r− 1 rounds, we use the sorting
algorithm in Alon et al. (1986) for each chunk that has top-k items. We prove Algorithm 2 works in
Lemma 11.

Algorithm 3 is used when k is small. Compared with Algorithm 2, we pick the pivot items more
carefully in Algorithm 3. In the first round, we extend the result of Braverman et al. (2016) (stated
in Theorem 12 and Corollary 13) to find pivot items. In the second round, we partition the entire set
into chunks by comparing all items to the pivot items. In the remaining r − 2 rounds, we use the
sorting algorithm in Alon et al. (1986) for each chunk that has top-k items. We prove Algorithm 3
works in Lemma 14.

We first provide the final statements of our algorithmic results for sorted top-k in the noiseless
case:

Corollary 8 There exists a 2-round algorithm solves sorted top-k with O(n
√
k + n4/3) compar-

isons in expectation.

Proof There are two cases:

• When k > n2/3, run Algorithm 2 to find the sorted top-k. This takes O(n
√
k) = O(n

√
k +

n4/3) comparisons in expectation.

• When k ≤ n2/3, run Algorithm 2 to find the sorted top-n2/3 and then output sorted top-k.
This takes O(n4/3) = O(n

√
k + n4/3) comparisons in expectation.

16

SORTED TOP-k IN ROUNDS

Corollary 9 For r ≥ 3, there exists an r-round algorithm solves sorted top-k with Õ(n2/rk(r−1)/r+
n)) comparisons in expectation.

Proof There are three cases:

• When k > n(2r−2)/(2r−1), run Algorithm 2 to find the sorted top-k. This takesO(n2/rk(r−1)/r) =
Õ(n2/rk(r−1)/r + n)) comparisons in expectation.

• When 10n(r−2)/(r−1) ≤ k ≤ n(2r−2)/(2r−1): run Algorithm 3 to find the sorted top-k. This
takes Õ(n2/rk(r−1)/r) = Õ(n2/rk(r−1)/r + n)) comparisons in expectation.

• When k < 10n(r−2)/(r−1), run Algorithm 3 to find the sorted top-10n(r−2)/(r−1) and then
output sorted top-k. This takes Õ(n) = Õ(n2/rk(r−1)/r + n)) comparisons in expectation.

Now we start to show two sub-routines: Algorithm 2 and Algorithm 3.

Theorem 10 (Alon et al. (1986)) For any fixed r > 0, there exists an r-round algorithm which
sorts n items with O(n1+1/r) comparisons in expectation.

Algorithm 2 r-round noiseless algorithm for sorted top-k when k > n(2r−2)/(2r−1) and r ≥ 2

1: Let α = k(r−1)/rn(2−r)/r.
2: Round 1: Pick a set S of α random items (with repetition). Compare each item in N to each

items in S.
3: Round 2 to Round r: Let items in S have ranks s1 ≤ s2 ≤ · · · ≤ sα. For notation convenience,

define sα+1 = n + 1 and s0 = 0. Let l be the smallest number such that sl ≥ k. Define Ni to
be set of items that are worse than si−1 and better than si for i = 1, ..., l. Use the algorithm in
Theorem 10 to sort each set Ni in r − 1 rounds in parallel. Now we have the sorted top-sl, just
output the sorted top-k.

Lemma 11 For k > n(2r−2)/(2r−1) and r ≥ 2, Algorithm 2 is always correct and usesO(n2/rk(r−1)/r)
comparisons in expectation.

Proof The correctness of the algorithm is easy to check. To prove the lemma, it suffices to bound
the expected number of comparisons used by the algorithm. In the first round, the algorithm uses
αn = n2/rk(r−1)/r comparisons. From round 2 to round r, by Theorem 10, the algorithm uses
E[
∑l

i=1 |Ni|1+1/(r−1)] comparisons in expectation. It suffices to prove that E[
∑l

i=1 |Ni|1+1/(r−1)] =
O(n2/rk(r−1)/r). Notice that l and Ni’s are random variables depending on the randomness of the
algorithm.

For i < sl, define g(i) such that i is in Ng(i). We have

E

[
l∑

i=1

|Ni|1+1/(r−1)

]
= E

[
|Nl|1+1/(r−1) +

l−1∑
i=1

|Ni|1+1/(r−1)

]

≤ E

[
|Ng(k)|1+1/(r−1) +

k∑
i=1

|Ng(i)|1/(r−1)
]
.

17

SORTED TOP-k IN ROUNDS

For each i ≤ k, we will upper bound E[|Ng(i)|β] for 0 < β ≤ 2. We start by considering Ng(i) ∩
{j|j ≤ i} (the set of items that have ranks no worse than item i and are put into the same partitioned
set as item i). The size of this set is exactly i− sg(i)−1 + 1. For 1 ≤ β ≤ 2,

E[|Ng(i) ∩ {j|j ≤ i}|β] ≤
n∑
j=1

(jβ − (j − 1)β)(1− j/n)α ≤
∫ n

0
βxβ−1(1− x/n)αdx.

When β = 1, we have ∫ n

0
xβ−1(1− x/n)αdx =

n

α+ 1
<
n

α
.

When β = 2, we have∫ n

0
xβ−1(1− x/n)αdx =

n2

α+ 1
− n2

α+ 2
=

n2

(α+ 2)(α+ 1)
<
(n
α

)2
.

When 1 < β < 2, by concavity of xβ−1 for x > 0, we have∫ n

0
xβ−1(1− x/n)αdx =

(∫ n

0
(1− x/n)αdx

)(∫ n
0 x(1− x/n)αdx∫ n
0 (1− x/n)αdx

)β−1
<
(n
α

)β
.

So for 1 ≤ β ≤ 2, we have

E[|Ng(i) ∩ {j|j ≤ i}|β] ≤ β
(n
α

)β
.

For β < 1, by the concavity of xβ we have

E[|Ng(i) ∩ {j|j ≤ i}|β] ≤ E[|Ng(i) ∩ {j|j ≤ i}|]β ≤
(n
α

)β
.

By symmetry, we can also get the same upper bound on E[|Ng(i) ∩ {j|j ≥ i}|β]. Therefore, for
0 < β ≤ 2:

E[|Ng(i)|β] ≤ E[(|Ng(i) ∩ {j|j ≤ i}|+ |Ng(i) ∩ {j|j ≥ i}|)β]

≤ E[(2|Ng(i) ∩ {j|j ≤ i}|)β] + E[(2|Ng(i) ∩ {j|j ≥ i}|)β]

≤ O
((n

α

)β)
.

Notice that nα = n(2r−2)/r

k(r−1)/r ≤ k. To sum up, we get

E

[
l∑

i=1

|Ni|1+1/(r−1)

]
= O

((n
α

)1+1/(r−1)
+ k ·

(n
α

)1/(r−1))
= O(n2/rk(r−1)/r).

18

SORTED TOP-k IN ROUNDS

Algorithm 3 r-round noiseless algorithm for sorted top-k when n(2r−2)/(2r−1) ≥ k ≥
10n(r−2)/(r−1) and r > 2

1: Let α = k(r−1)/rn(2−r)/r.
2: Round 1: Pick a set S of α ln(n) random items (with repetition). Compare each item in N to

each item in S.
3: Round 1(run in parallel with the previous step): Run the algorithm of Corollary 13 to get

items p1, ..., pα2+1 such that with probability at least 1 − 1/n, ∀i ∈ [α2 + 1], pi ranks in
[i·k
α2 − 1

3 ·
√

n
α ,

i·k
α2 + 1

3 ·
√

n
α].

4: Round 2: Let s be an item in S whose rank is in [2n/α, 3n/α]. If such s does not exist, declare
FAIL and proceed to round 3. Let N ′ be the set of items that are better than s. Compare items
in N ′ to p1, ..., pα2+1. If ∃i ∈ [α2 + 1] such that pi beats more than i·k

α2 + 1
3 ·
√

n
α or less than

i·k
α2 − 1

3 ·
√

n
α items in N ′, declare FAIL.

5: Round 3-r: If the algorithm declares FAIL in round 2, compare all pairs of items and out-
put the sorted top-k. Otherwise assume p1, ..., pα2 partition items worse than pα2+1 into sets
N1, ..., Nα2 . Use the algorithm in Theorem 10 to sort each set Ni in r − 2 rounds in parallel.
Now we have the sorted top-pα2+1, output the sorted top-k.

Algorithm 5 in Appendix C.1.1 of Braverman et al. (2016) can be easily extended to show the
following theorem. In that algorithm, for their purpose, only pi for i = n/2 is explicitly computed
after one round (denoted as x in their pseudocode). However, it is not hard to see that pi’s for all
i ∈ [n] can be computed in the same way using the same set of comparisons. The only change is
that the failure probability is multiplied by a factor of n because of union bound.

Theorem 12 (Braverman et al. (2016)) There exists an 1-round algorithm with O(n) compar-
isons which outputs a list of item pi’s for all i ∈ [n] such that with probability at least 1 − 1/n,
∀i ∈ n, pi’s rank is at most C(n) ·

√
n away from i for some C(n) = polylog(n).

Using Theorem 12, we can get the following corollary.

Corollary 13 For any α > 1, there exists an 1-round algorithm with Õ(αn) comparisons which
outputs a list of pi’s for all i ∈ [n] such that with probability at least 1 − 1/n, ∀i ∈ n, pi’s rank is
at most 1

3 ·
√

n
α away from i.

Proof Set β to be some value larger than 9α · (C(βn))2(C(n) is the one in the statement of
Theorem 12). It suffices to pick some β = polylog(n). For each item, create β copies. Run the 1-
round algorithm of Theorem 12 on these copies (βn items). If the algorithm compares the copies of
different items, we make an actual comparison between these two items. If the algorithm compares
the copies of the same item, we just decide the comparison result based on some arbitrarily fixed
order between the copies of the same item. Suppose the 1-round algorithm outputs q1, ..., qβn. We
output pi = qβ·i. It’s easy to check that with probability at least 1 − 1/n, ∀i ∈ n, the difference
between pi’s rank and i is at most

C(βn)
√
βn

β
≤ 1

3
·
√
n

α
.

19

SORTED TOP-k IN ROUNDS

Lemma 14 For n(r−2)/(r−1) < k ≤ n(2r−2)/(2r−1) and r ≥ 3, Algorithm 3 is always correct and
uses Õ(n2/rk(r−1)/r) comparisons in expectation.

Proof We first prove the correctness of Algorithm 3. If the algorithm declares FAIL in round 2,
then all the pairs of items get compared. The algorithm definitely outputs the sorted top-k correctly.
Now we consider the case when the algorithm does not declare FAIL. First the set N ′ will have all
the items in top-s for some s ∈ [2n/α, 3n/α]. Since n/α ≥ k, N ′ contains all the items in top-k.
We also have

k

α2
≥
√
n

α
⇔ n2r−6 ≥ kr−3.

Since r ≥ 3, we have k
α2 ≥

√
n
α . For all i ∈ [α2 + 1], we have i·k

α2 + 1
3 ·
√

n
α < k(1 + 1

2 +
1
3) < s. Therefore if the algorithm does not declare FAIL, we have ∀i ∈ [α2 + 1], pi ranks in
[i·k
α2 − 1

3 ·
√

n
α ,

i·k
α2 + 1

3 ·
√

n
α]. Therefore we know that all these pi’s are in N ′. We also have

pα2+1 ≥
(α2+1)·k

α2 − 1
3 ·
√

n
α >

(α2+1)·k
α2 − 1

3 ·
k
α2 ≥ k. This means the top-k is inside the top-pα2+1.

Since the algorithm gets sorted top-pα2+1, it can output sorted top-k correctly.
Now we want to bound the expected number of comparisons of the algorithm. In the first round,

both steps use Õ(αn) = Õ(n2/rk(r−1)/r) comparisons. In the second round, the algorithm uses at
most (α2 + 1) · 3nα = O(αn) = O(n2/rk(r−1)/r) comparisons. In the third round, if the algorithm
does not declare FAIL, each Ni will have size at most 2k

α2 . By Theorem 10, the algorithm will use
at most (

2k

α2

)1+1/(r−2)
· α2 = O(k1+1/(r−2) · α−2/(r−2)) = O(n2/rk(r−1)/r)

comparisons in expectation. If the algorithm declares FAIL, the algorithm will use O(n2) com-
parisons. We know the probability of FAIL is at most 1/n + (1 − 1

α)α ln(n) < 2/n. Therefore in
expectation, FAIL will cause at most O(n) = O(n2/rk(r−1)/r) comparisons.

A.2. Lower Bounds

We prove lower bounds in Lemma 16 (for≥ 3 rounds) and Lemma 17 (for 2 rounds). The main idea
is to show that there are not many comparisons between top-k items in the first 1 or 2 rounds and
then reduce from sorting k items for the remaining r−1 or r−2 rounds. Similarly as our algorithms,
we use the lower bound for sorting (Theorem 2.1 of Alon and Azar (1988b)) as a blackbox. We state
their theorem (Theorem 15) in the format which is enough for our proof.

Theorem 15 (Alon and Azar (1988b)) Suppose there are 2 disjoint sets of item, denoted Z and
Y . |Y | = y. The rank of each item in Z is known. The set of y ranks in Y is known but all the
y! orders of the items of the set are equally likely. Suppose in the first round the algorithm already
makes e comparisons between 2 items in Y and e′ comparisons between an item in Y and an item
in Z. Let f = e+ e′/2. The expected number of comparisons to sort all the items in r more rounds
is at least

r ·

(
y1+1/r

c · gr(y, f)
− y

)
.

20

SORTED TOP-k IN ROUNDS

for some constant c. Here gr(y, f) is defined as

gr(y, f) =


1, f = 0,(
c
4

)1/r
, 0 ≤ f

y ≤
1
4 ,(

cf
y

)1/r
, f

y ≥
1
4 .

Lemma 16 For r ≥ 3, r-round algorithm needs Ω(n2/rk(r−1)/r + n) comparisons in expectation
to solve sorted top-k.

Proof Wlog we assume the algorithm gives each item a label in [n]. As the algorithm has no
information about the ordering, the list of these labels (the label of the rank-1 item, the label of
the rank-2 item,...) is a uniformly random permutation of [n]. After that, notice that an r-round
randomized algorithm is just a distribution over r-round deterministic algorithms. To prove a lower
bound on the expected number of comparisons, it suffices to only consider deterministic algorithms.
And now the randomness only comes from how items are labeled. There are three cases to consider
depending on the values of n and k:

Case 1: k ≥ n(2r−2)/(2r−1). If in the first round, the algorithm is using at least n2/rk(r−1)/r

comparisons, then we already have the lower bound. Now assume that in the first round, the al-
gorithm is using fewer than n2/rk(r−1)/r comparisons. In expectation, only O(k

2

n2) fraction of
comparisons in the first round are between two items in top-k (we call them useful comparisons).
Therefore in expectation, the algorithm has fewer than O(n2/rk(r−1)/r · (kn)2) useful comparisons.
By giving some extra useful comparisons to the algorithm’s first round, we can make sure that the
algorithm always have at least k/4 useful comparisons in the first round and the expected number
of useful comparisons in the first round is O(n2/rk(r−1)/r · (kn)2 + k) = O(n2/rk(r−1)/r · (kn)2).

Now consider the case that we tell the algorithm the set of top-k items after the first round and
the algorithm just need to sort the set of k items in the remaining r− 1 rounds. By Theorem 15 and
the convexity of f(x) = 1/x for x > 0, the number of comparisons we need to use in the last r− 1
rounds is at least

Ω

(
k1+1/(r−1)

(n2/rk(r−1)/r · (kn)2 · 1k)1/(r−1)

)
= Ω(n2/rk(r−1)/r).

Case 2: n(r−2)/(r−1) ≤ k < n(2r−2)/(2r−1). Set w = n(2r−2)/r

k(r−1)/r . If in the first round, the
algorithm is using at least 1

8 · n
2/rk(r−1)/r comparisons, then we already have the lower bound.

Now assume that in the first round, the algorithm is using less than 1
8 · n

2/rk(r−1)/r comparisons.
In this case the expected number of comparisons between 2 items in top-w is at most

1

8
· n2/rk(r−1)/r ·

(
w
2

)(
n
2

) ≤ 1

8
· n2/rk(r−1)/r · w

2

n2
≤ 1

8
· w.

Define W to be the set of items in top-w that have no comparisons with any other items in top-w
in the first round. Define K to be the set of items in top-k that have no comparisons with any
other items in top-w in the first round. We have E[|W |]] ≥ w − 1

8 · w · 2 ≥ 3w/4 and E[|K|] =

E[|W |] · kw ≥ 3k/4. Then by Markov inequality, we have that with probability 1−1/3−1/3 = 1/3,
both |W | ≥ w/2 and |K| ≥ k/2.

21

SORTED TOP-k IN ROUNDS

Fix the comparison results of the first round. Now we will focus on the situation when |W | ≥
w/2 and |K| ≥ k/2. It suffices to show that in this case, the algorithm needs Ω(n2/rk(r−1)/r)
comparisons in expectation to solve sorted top-k in r − 1 rounds. We remove some items from K
and W such that K ⊆ W , |K| = k/2 and |W | = w/2. We also tell the algorithm the rank of each
item in [n]\W . Now consider the next round of the algorithm (the second round). If the algorithm
uses at least n2/rk(r−1)/r comparisons in expectation, then we are done. Now assume the algorithm
uses fewer than n2/rk(r−1)/r comparisons in expectation in the second round. Call comparisons
involving at least one item in K as useful comparisons. Since the algorithm has no information
about which items in W are in K, the algorithm has at most n2/rk(r−1)/r · 2kw = 2k(3r−2)/r

n(2r−4)/r useful
comparisons in expectation. By giving some extra useful comparisons to the algorithm’s second
round, we can make sure that the algorithm always have at least k/2 useful comparisons in the
second round and the expected number of useful comparisons in the second round is O(k

(3r−2)/r

n(2r−4)/r +

k) = O(k
(3r−2)/r

n(2r−4)/r).
By Theorem 15 and the convexity of f(x) = 1/x for x > 0, the number of comparisons we

need to use in the last r − 2 rounds is at least

Ω

 k1+1/(r−2)(
k(3r−2)/r

n(2r−4)/r · 1k
)1/(r−2)

 = Ω(n2/rk(r−1)/r).

Case 3: k < n(r−2)/(r−1). In this case, we have n2/rk(r−1)/r < n. We know that just to find
the set of top-k without round constraint we need at least Ω(n) comparisons. This simply gives the
lower bound.

Lemma 17 Any 2-round algorithm needs Ω(n
√
k + n4/3) comparisons in expectation to solve

sorted top-k.

Proof Similarly as Lemma 16, it suffices to prove the lower bound only for deterministic algorithms.
There are two cases:

Case 1: k ≥ n2/3. Notice that this case is the same as Case 1 in the proof of Lemma 16 and
that proof also works when r = 2. So from that we get a lower bound Ω(n

√
k) = Ω(n

√
k + n4/3).

Case 2: k < n2/3. In this case we have n4/3 > n
√
k. Notice that if an algorithm solves sorted

top-k, it also finds top-1. Alon and Azar (1988b) claims in the concluding remark that a 2-round
algorithm which finds top-1 needs Ω(n4/3) = Ω(n

√
k + n4/3) comparisons in expectation. This

directly implies the lemma in this case.

Appendix B. Top-k in the Noisy Case

In this section, we show algorithms for top-k in the noisy case. In particular, we show an 1-round
top-k algorithm with sample complexity O(n2) in Section B.1 and a 2-round top-k algorithm with
sample complexity O(n4/3) in Section B.2.

22

SORTED TOP-k IN ROUNDS

B.1. 1-Round Top-k Algorithm in the Noisy Case

In this sub-section, we show an 1-round top-k algorithm with sample complexity O(n2) (Lemma
18).

Algorithm 4 1-round algorithm for top-k with noisy comparisons

1: Set c = 18 · 48, l0 = n and li = max

log ... log︸ ︷︷ ︸
i times

(n), 1

 for i = 1, ..., log∗(n) .

2: For i = 1, ..., log∗(n), pick a set Si of n/l2i random items.
3: Round 1:
4: for i = 1 to log∗(n) do
5: For each item in N and each item in Si, compare them c · li times.
6: end for
7: Output procedure:
8: Set N1 = [n], T0 = ∅ and k1 = k.
9: for i = 1 to log∗(n) do

10: For each item j ∈ Si and item j′ ∈ Ni, if j wins the majority of comparisons among
c · li comparisons between j and j′ in the i-th iteration, say j beats j′ in the i-th iteration.
Otherwise say j′ beats j in the i-th iteration.

11: For each item j ∈ Si ∩Ni, define ri(j) as the number of items in Ni which are not beaten
by item j in the i-th iteration.

12: Let ai = argminj∈Si∩Ni,ri(j)≤ki |ri(j) − ki| and Ai be the set of items in Ni which are
not beaten by item ai in the i-th iteration. If ai does not exist, set Ai = ∅.

13: Let bi = argminj∈Si∩Ni,ri(j)>ki |ri(j)− ki| and Bi be the set of items in Ni which don’t
beat item bi in the i-th iteration. If bi does not exist, set Bi = ∅.

14: Ti = Ti−1 ∪Ai.
15: Ni+1 = Ni\(Ai ∪Bi)
16: ki+1 = ki − |Ai|.
17: end for
18: Output Tlog∗(n) as the top-k set.

Lemma 18 Algorithm 4 uses O(n2) comparisons and outputs top-k correctly with probability at
least 2/3.

23

SORTED TOP-k IN ROUNDS

Proof The number of comparisons used is at most

cn2 +

log∗(n)−1∑
i=1

n · n
l2i
· c · li

= cn2 ·

1 +

log∗(n)−1∑
i=1

1

li


≤ cn2 ·

1 +

log∗(n)−1∑
i=1

1

2i−1


= O(n2).

Now we are going to show Algorithm 4 is correct with probability at least 2/3. Consider event W
as the intersection of the following events:

• W1: For each i = 1, ..., log∗(n) − 1, either k − 4l3i < 1 or there exists an item j ∈ Si such
that item j ranks between k − 4l3i and k.

• W2: For each i = 1, ..., log∗(n) − 1, either k + 4l3i > n or there exists an item j ∈ Si such
that item j ranks between k + 1 and k + 4l3i .

• W3: For each i = 1, ..., log∗(n) and each pair of items j and j′ such that j ∈ Si and both
j and j′ rank between min

(
1, k − 4l3i−1

)
and max

(
n, k + 4l3i−1

)
, whether j beats j′ in the

i-th iteration is consistent with the true ordering.

AssumingW happens, it is easy to check by induction that the following is true, for i = 1, ..., log∗(n):

• Ni is a subset of items rank between min
(
1, k − 4l3i−1

)
and max

(
n, k + 4l3i−1

)
. Items in Ni

have consecutive ranks. The ki-th item in Ni is the k-th item of the entire set.

• ri(j) is the true rank of item j in Ni.

• Items in Ai are all in top-k and items in Bi are all in bottom-(n− k).

Finally notice that in the last iteration Slog∗(n) = [n] and Nlog∗(n)+1 = ∅. Therefore all items are

placed in some Ai or Bi. Since Tlog∗(n) =
⋃log∗(n)
i=1 Ai, the algorithm outputs correctly. To sum up,

so far we have that, W implies the algorithm outputs correctly.
Now it suffices to show that W happens with probability at least 2/3. We are going to analyze

W1,W2,W3 and then take a union bound.

• The probability that W1 does not hold (i.e. 1− Pr[W1]) is at most

log∗(n)−1∑
i=1

(1− 4l3i /n)
n

l2
i ≤

log∗(n)−1∑
i=1

e−4li ≤ 2e−4llog∗(n)−1 ≤ 2e−4.

• Similarly as the previous bullet, Pr[W2] ≥ 1− 2e−4.

24

SORTED TOP-k IN ROUNDS

• In the i-th iteration, for each pair of items j and j′ such that j ∈ Si and both j and j′ rank
between min

(
1, k − 4l3i−1

)
and max

(
n, k + 4l3i−1

)
, there are c · li comparisons between j

and j′. By Chernoff bound, the majority of these comparisons differs from the true ordering
with probability at most

exp

(
−2

3
c · li ·

(
1

4

)2

· 1

2

)
= exp(−c · li/48).

By union bound,

1− Pr[W3] ≤
log∗(n)∑
i=1

(8l3i−1)
2 · exp(−c · li/48)

≤
log∗(n)∑
i=1

(8l3i−1)
2 · 1

211 · l7i−1
≤ 2 · 1

25 · llog∗(n)−1
≤ 1

16
.

To sum up, by union bound,

Pr[W] ≥ 1− (1− Pr[W1])− (1− Pr[W2])− (1− Pr[W3]) ≥ 1− 4

e4
− 1

16
> 2/3.

B.2. 2-Round Top-k Algorithm in the Noisy Case

In this sub-section, we show a 2-round top-k algorithm with sample complexity O(n4/3) (Corollary
19).

For convenience we will assume min(k, n−k) ≥ 40·log(n)·n2/3. When min(k, n−k) is small,
we can add Θ(log(n) ·n2/3) dummy items as the top and bottom ones and then the problem reduces
to the case when min(k, n− k) is large. This procedure only blows up the sample complexity by a
constant factor.

Algorithm 5 2-round algorithm for top-k with noisy comparisons

1: Halt the algorithm whenever it uses more than c0 · n4/3 comparisons. c0 is a constant specified
in the proof.

2: Round 1: Run Algorithm 6.
3: Round 2: Run Algorithm 7.
4: Output Tlog∗(n) as the top-k set.

25

SORTED TOP-k IN ROUNDS

Algorithm 6 First round of Algorithm 5
1: Comparisons:
2: (a) Pick a set S of n1/3 random items. For each item in N and each item in S, compare them

c1 = 72 · 32 times.
3: (b) For each pair of items in S, compare them 100 log(n) times.
4: Sort items in S according to comparisons in (b): label items in S as s1, ..., sn1/3 such that for

each i < j, si wins the majority of comparisons between si and sj in (b). If such labeling does
not exist, label them arbitrarily.

5: For each i ∈ N and sj ∈ S, set Xi,j = 1 if j wins the majority of the comparisons in step (a).
Otherwise set Xi,j = −1. Let p(i) = arg maxJ

∑J
j=1Xi,j for each i 6∈ S. For each sj ∈ S,

set p(sj) = j. Let Pj = {i|p(i) = j}.
6: Let m be the minimum J such that

∑J
j=1 |Pj | ≥ k.

Algorithm 7 Second round of Algorithm 5

1: Set li = max

log ... log︸ ︷︷ ︸
i times

(n), 1

 for i = 1, ..., log∗(n) and l0 = n. Pick a set Si of

|
⋃m+li
j=m−li Pj |/l

4
i random items in

⋃m+li
j=m−li Pj for i = 1, ..., log∗(n).

2: Comparisons:
3: for i = 1 to log∗(n) do
4: For each item in

⋃m+li
j=m−li Pj and each item in Si, compare them c2 · li times.

5: end for
6: Set N1 =

⋃m+li
j=m−li Pj , T0 =

⋃m−l1−1
j=0 Pj and k1 = k −

∑m−l1−1
j=0 |Pj |.

7: for i = 1 to log∗(n) do
8: For each item j ∈ Si and item j′ ∈ Ni, if j wins the majority of comparisons among

c2 · li comparisons between j and j′ in the i-th iteration, say j beats j′ in the i-th iteration.
Otherwise say j′ beats j in the i-th iteration.

9: For each item j ∈ Si ∩ Ni, define ri(j) = number of items in Ni which are not beaten by
item j in the i-th iteration.

10: Let ai = argminj∈Si∩Ni,ri(j)≤ki |ri(j) − ki| and Ai be the set of items in Ni which are not
beaten by item ai. If ai does not exist, set Ai = ∅.

11: Let bi = argminj∈Si∩Ni,ri(j)>ki |ri(j) − ki| and Bi be the set of items in Ni which don’t
beat item bi. If bi does not exist, set Bi = ∅.

12: Ti = Ti−1 ∪Ai.
13: Ni+1 = Ni\(Ai ∪Bi)
14: ki+1 = ki − |Ai|.
15: end for

We prove the following corollary for Algorithm 5. It’s based on Lemma 22 (for the first round
of the algorithm) and Lemma 23 (for the second round of the algorithm).

Corollary 19 Algorithm 5 uses O(n4/3) comparisons and outputs top-k correctly with probability
at least 2/3.

26

SORTED TOP-k IN ROUNDS

Proof First of all, since the algorithm halts whenever it uses more than c0 · n4/3 comparisons, the
total number of comparisons used is always at most O(n4/3).

By Lemma 22 and Lemma 23, we have

Pr[W1 ∩W2] ≥ 1− 1/6− 1/6 ≥ 2/3.

When both W1 and W2 hold, W1,6, W2,3 and W2,4 imply that the algorithm outputs correctly.

B.2.1. FIRST ROUND OF THE 2-ROUND ALGORITHM

We first analyze the first round of the algorithm. Consider W1 as the intersection of the following
events (W1 happens when all of them happen):

• W1,1: Items in S are correctly sorted.

• W1,2: sm’s rank is between k − n2/3/20 and k − 6n2/3.

• W1,3: sm+1’s rank is between k + n2/3/20 and k + 6n2/3.

• W1,4: ∀i = 1, ..., log∗(n), |
⋃m+li
j=m−li Pj | ≤ 100 · li · n2/3.

• W1,5: ∀i = 1, ..., log∗(n)− 1, {k − 6l5i + 1, ..., k + 6l5i } ⊆
⋃m+li+1

j=m−li+1
Pj

• W1,6:
⋃
j<m−l1 Pj ⊆ {1, ..., k} and

⋃
j>m+l1

Pj ⊆ {k + 1, ..., n}

We use W1 to indicate the success of the first round. We show in Lemma 22 that W1 happens with
probability at least 1− 1/6.

Before proving Lemma 22, we first prove Lemma 20 and Lemma 21 which analyze the biased
random walk and are used in the proof of Lemma 22.

Lemma 20 Suppose S are correctly sorted. For each J , sJ ≤ i < sJ+1 and t, Pr[p(i)−J = t] ≤
α|t| and Pr[|p(i)− J | ≥ |t|] ≤ 3α|t| where α = 1/e15.

Proof When t = 0, the inequality. By symmetry, it suffices to prove the case when t > 0. If
J + t > n1/3, Pr[p(i)− J = t] = 0. Now let’s focus on the case when j + t ≤ n1/3. We have

Pr[p(i)− J = t] ≤ Pr

 J∑
j=1

Xi,j ≤
J+t∑
j=1

Xi,j

 = Pr

 J+t∑
j=J+1

Xi,j ≤ 0

 .
For each j ∈ {J + 1, ..., J + t}, by Chernoff bound, we know Pr[Xi,j = 1] > 1− e−32 .

By Chernoff bound again, we have

Pr

 J+t∑
j=J+1

Xi,j ≤ 0

 ≤ exp(−D(1/2‖1− e−22) · t) =

(
1

4(1− e−22)e−22

)−t/2
≤ e−15t.

Finally we have

Pr[|p(i)− J | ≥ |t|] ≤ 2α|t|

1− α
≤ 3α|t|.

27

SORTED TOP-k IN ROUNDS

Lemma 21 Suppose S are correctly sorted. For each J , let CJ =
∑

j<J |Pj | = |{i|p(i) < J}|.
For any β > 0, we have Pr[|CJ − sJ | > β · n2/3] ≤ 1

5000β .

Proof By symmetry, it suffices to prove that Pr[CJ−sJ > β ·n2/3] ≤ 1
10000β . Define ∆J = {i|i <

sJ , p(i) ≥ J} and δJ = |∆J |. We have CJ − sJ ≤ δJ . We will first give an upper bound on E[δJ].
By Lemma 20 and Chu-Vandermonde identity, we have

E[δJ] ≤
sJ−1∑
i=1

∑
t

Pr[{i+ 1, ..., sJ − 1} ∩ S| = t] · αt+1

=

sJ−1∑
i=1

n1/3−1∑
t=0

(
sJ−i−1

t

)
·
(n−sJ+i
n1/3−t−1

)(n−1
n1/3−1

) · αt+1

≤
n1/3−1∑
t=0

αt+1 ·
sJ−1∑
i=0

(
sJ−i−1

t

)
·
(n−sJ+i
n1/3−t−1

)(n−1
n1/3−1

)
=

n1/3−1∑
t=0

αt+1 ·
(
n

n1/3

)(n−1
n1/3−1

)
≤ αn2/3

1− α
.

Since random variable δJ ≥ 0, by Markov inequality, we have

Pr[δJ ≥ β · n2/3] ≤
αn2/3

1−α
β · n2/3

≤ 2α

β
<

1

10000β
.

Lemma 22 W1 happens with probability at least 1− 1/6.

Proof The randomness in the first round of the algorithm comes from three independent compo-
nents:

(i) Randomness used to pick the random set S.

(ii) Randomness in the noise of comparisons in comparisons (b). These comparisons are used to
sort items in S.

(iii) Randomness in the noise of comparisons in comparisons (a). These comparisons are used to
compute p(i).

They together decide whether W1 happens. We are going to analyze (i) and (ii) separately and
then analyze (iii) when fixing the randomness of (i) and (ii).

For (ii), the related event in W1 is W1,1. For each pair si, sj ∈ S, by Chernoff bound, the
majority of comparisons between si and sj in comparisons (b) is consistent with the true ordering
with probability at least 1− 1/n2. By union bound, Pr[W1,1] ≥ 1− 1/n.

For (i), consider W ′1 as the intersection of following events. They are all about the random set
S. Later we will use W ′1 to analyze W1.

28

SORTED TOP-k IN ROUNDS

• W ′1,1: S ∩ {k − n2/3/40 + 1, ..., k + n2/3/40} = ∅.

• W ′1,2: S ∩ {k − 6n2/3, ..., k − n2/3/40} 6= ∅.

• W ′1,3: S ∩ {k + n2/3/40 + 1, ..., k + 6n2/3} 6= ∅.

• W ′1,4: ∀i = 1, ..., log∗(n), |S ∩ {k − 40 · li · n2/3 + 1, ..., k}| ≥ li and |S ∩ {k + 1, ..., k +

40 · li · n2/3}| ≥ li.

Now we analyze the probability W ′1 holds (i.e. Pr[W ′1]). We have

Pr[W ′1,1] =

(n−n2/3/20

n1/3

)(
n

n1/3

) ≥

(
n− n1/3 − n2/3/20

n− n1/3

)n1/3

≥ (1− n−1/3/10)n
1/3 ≥ 1− 1/10.

We also have

Pr[W ′1,2] = Pr[W ′1,3] ≥ 1−
(n−5n2/3

n1/3

)(
n

n1/3

) ≥ 1−

(
n− 5n2/3

n

)n1/3

≥ 1− e−5.

For W ′1,4, define Xi to be the indicator variable of whether i 6∈ S (i.e. Xi = 1 if i 6∈ S and Xi = 0

otherwise). We have that for any subset N ′ ⊆ N , Pr[
∧
i∈N ′ Xi = 1] ≤ (1 − 1/n2/3)|N

′|. By
generalized Chernoff bound (Theorem 28), we have

Pr[|S ∩ {k − 40 · li · n2/3 + 1, ..., k}| < li]

= Pr

 ∑
a∈{k−40·li·n2/3+1,...,k}

Xa ≥
(

1− 1

40n2/3

)
· 40 · li · n2/3


≤ exp

(
−40 · li · n2/3 · De

(
1− 1

40n2/3
‖1− 1

n2/3

))
.

By Fact D.1, we have

De
(

1− 1

40n2/3
‖1− 1

n2/3

)
≥
(

1

n2/3
− 1

40n2/3

)2

/
2

n2/3
≥ 19

40n2/3
.

Therefore
Pr[|S ∩ {k − 40 · li · n2/3 + 1, ..., k}| < li] ≤ exp(−19li).

By union bound

Pr[W ′1,4] ≥ 1− 2

log∗(n)∑
i=1

exp(−19li) ≥ 1− e−16.

By union bound again,

Pr[W ′1] ≥ 1−(1−Pr[W ′1,1])−(1−Pr[W ′1,2])−(1−Pr[W ′1,3])−(1−Pr[W ′1,4]) ≥ 1−1/10−2/e5−1/e16.

29

SORTED TOP-k IN ROUNDS

For (iii), we are going to fix the randomness of (i) and (ii) and condition on W1,1 ∩W ′1. By
W ′1,2, S ∩ {k− 6n2/3, ..., k− n2/3/40− 1} is not empty and set J such that sJ has the lowest rank
in S ∩{k− 6n2/3, ..., k−n2/3/40− 1}. By W ′1,1 and W ′1,3, we know that sJ+1 ∈ {k+n2/3/40 +

1, ..., k + 6n2/3}. Consider event W ′′1 as the intersection of following events:

• W ′′1,1: |sJ − CJ | ≤ n2/3/40 and |sJ+1 − CJ+1| ≤ n2/3/40.

• W ′′1,2: ∀i = 1, ..., log∗(n), |sJ−li − CJ−li | ≤ li · n2/3 and |sJ+1+li − CJ+1+li | ≤ li · n2/3.

• W ′′1,3: ∀i = 1, ..., log∗(n)− 1, a ∈ {k − 6l5i + 1, ..., k + 6l5i }, |p(a)− J | ≤ li+1.

• W ′′1,4: ∀i ∈ N , suppose sj ≤ i < sj+1, then |p(i)− j| ≤ l1.

Now we analyze the probability W ′′1 holds (i.e. Pr[W ′′1]). For W ′′1,1, by Lemma 21, we have

Pr[W ′′1,1|W1,1 ∩W ′1] ≥ 1− 2 · 1

5000
· 40 ≥ 1− 1/50.

For W ′′1,2, by Lemma 21 again, we have

Pr[W ′′1,2|W1,1 ∩W ′1] ≥ 1− 2 ·
log∗(n)∑
i=1

1

5000li
≥ 1− 1/500.

For W ′′1,3, by Lemma 20, we have

Pr[W ′′1,3|W1,1 ∩W ′1] ≥ 1−
log∗(n)−1∑

i=1

2 · 6 · l5i · 3 · e−15li+1 ≥ 1−
log∗(n)−1∑

i=1

1

e5 · li
≥ 1− e−4.

For W ′′1,4, by Lemma 20 again, we have

Pr[W ′′1,4|W1,1 ∩W ′1] ≥ 1− n · 3 · e−15l1 ≥ 1− 3/n14.

By union bound, we have

Pr[W ′′1 |W1,1 ∩W ′1]
≥ 1− (1− Pr[W ′′1,1|W1,1 ∩W ′1])− (1− Pr[W ′′1,2|W1,1 ∩W ′1])
− (1− Pr[W ′′1,3|W1,1 ∩W ′1])− (1− Pr[W ′′1,4|W1,1 ∩W ′1])
≥ 1− 1/50− 1/500− 1/e4 − 3/n14.

Then we have

Pr[W1,1 ∩W ′1 ∩W ′′1] ≥ Pr[W1,1 ∩W ′1] · Pr[W ′′1 |W1,1 ∩W ′1]
≥ 1− 1/n− 1/10− 2/e5 − 1/e16 − 1/50− 1/500− 1/e4 − 3/n14

≥ 1− 1/6.

Finally we show that conditioned on W1,1 ∩W ′1, W ′′1 implies W1.

30

SORTED TOP-k IN ROUNDS

• W1,2 and W1,3: By W ′′1,1, we know that
∑

j<J |Pj | = CJ < k and
∑

j<J+1 |Pj | = CJ+1 ≥
k. Therefore m = J and then W1,2 and W1,3 hold.

• W1,4: By W ′′1,2 and W ′1,4, we know that Cm−li ≥ k − 41 · li · n2/3 and Cm+li+1 ≤ k + 41 ·
li · n2/3v. Then |

⋃m+li
j=m−li Pj | = Cm+li+1 − Cm−li ≤ 100 · li · n2/3.

• W1,5: By W ′′1,3, we know that, ∀i = 1, ..., log∗(n) − 1, a ∈ {k − 6l5i + 1, ..., k + 6l5i },
|p(a)−m| ≤ li+1 and therefore a ∈

⋃m+li+1

j=m−li+1
Pj .

• W1,6: By W ′′1,4, we know that ∀i ≤ k, p(i) ≤ k + l1 and therefore i 6∈
⋃
j>m+l1

Pj . This
means

⋃
j>m+l1

Pj ⊆ {k + 1, ..., n}. The same argument will also give
⋃
j<m−l1 Pj ⊆

{1, ..., k}.

Therefore Pr[W1] ≥ Pr[W1,1 ∩W ′1 ∩W ′′1] ≥ 1− 1/6.

B.2.2. SECOND ROUND OF THE 2-ROUND ALGORITHM

Now we are going to assume W1 holds and analyze the second round of the algorithm. Consider
event W2 to be:

• W2,1: ∀i = 1, ..., log∗(n), Ni ⊆
⋃m+li
j=m−li Pj .

• W2,2: ∀i = 2, ..., log∗(n), Ni ⊆ {k − 6l5i + 1, ..., k + 6l5i }.

• W2,3: ∀i = 1, ..., log∗(n), Ai ⊆ {1, ..., k} and Bi ⊆ {k + 1, ..., n}.

• W2,4: Nlog∗(n)+1 = ∅.

We use W2 to indicate the success of the second round. We show in Lemma 23 that conditioned
on W1, W2 happens with probability at least 1− 1/6.

Lemma 23 Pr[W2|W1] ≥ 1− 1/6.

Proof Assume W1 holds. We first show that the algorithm does not halt. The first round of the
algorithm uses c1n4/3 + 10n2/3 log(n) comparisons. In the second round, by W1,4, the number of
comparisons used by the algorithm is

log∗(n)∑
i=1

∣∣∣∣∣∣
m+li⋃
j=m−li

Pj

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

m+li⋃
j=m−li

Pj

∣∣∣∣∣∣ /l4i
 · c2li ≤ 10000 · c2 ·

log∗(n)∑
i=1

1

li
· n4/3 ≤ 20000 · c2 · n4/3.

Therefore picking c0 to be a large enough constant will make sure that the algorithm does not halt
conditioned on W1.

Consider event W ′2 to be the intersection of the following two events:

• W ′2,1: ∀i = 1, ..., log∗(n)−1, |Si∩{k−6l5i +1, ..., k}| > 0 and |Si∩{k+1, ..., k+6l5i }| > 0.

• W ′2,2: ∀i = 1, ..., log∗(n) and each pair of item j, j′ ranks in {k− 6l5i−1 + 1, ..., k+ 6l5i−1} ∩⋃m+li
j=m−li Pj and j ∈ Si, if j and j′ are compared in the i-th iteration, then whether j beats j′

in the i-th iteration of the second round is consistent with the true ordering.

31

SORTED TOP-k IN ROUNDS

Now let’s analyze Pr[W ′2|W1]. We start withW ′2,1. ByW1,5, we know that ∀i = 1, ..., log∗(n)−
1, we have {k − 6l5i + 1, ..., k + 6l5i } ⊆

⋃m+li+1

j=m−li+1
Pj . Therefore,

Pr[W ′2,1|W1] ≥ 1−2

log∗(n)−1∑
i=1

(1−1/l4i)
6l5i ≥ 1−2

log∗(n)−1∑
i=1

e−6li ≤ 1−4e−6llog∗(n)−1 ≤ 1−4e−6.

In the i-th iteration, for each pair of item j, j′ ranks in {k−6l5i−1+1, ..., k+6l5i−1}∩
⋃m+li
j=m−li Pj

and j ∈ Si, if j and j′ are compared in the i-th iteration, then there are c2 · li comparisons between
j and j′. By Chernoff bound, the majority of these comparisons differs from the true ordering with
probability at most

exp

(
−2

3
c2 · li ·

(
1

4

)2

· 1

2

)
= exp(−c2 · li/48).

By union bound,

1− Pr[W ′2,2|W1] ≤
log∗(n)∑
i=1

(12l6i−1)
2 · exp(−c2 · li/48)

≤
log∗(n)∑
i=1

(12l6i−1)
2 · 1

211 · l7i−1
≤ 2 · 1

25 · llog∗n−1
≤ 1

16
.

By union bound again,

Pr[W ′2|W1] ≥ 1− (1− Pr[W ′2,1])− (1− Pr[W ′2,1]) ≥ 1− 1/6.

Now we are going to show that W1 and W ′2 imply W2. Define W i
2,1 to be the event that Ni ⊆⋃m+li

j=m−li Pj , W
i
2,2 to be the event that Ni ⊆ {k− 6l5i + 1, ..., k+ 6l5i } and W i

2,3 to be the event that
Ai ⊆ {1, ..., k} and Bi ⊆ {k + 1, ..., n}. Now assume W1 and W ′2 hold.

• W i
2,1 ⇒ W i+1

2,2 , W i
2,1 ⇒ W i

2,3: By W i
2,1, we know that all the items in Ni are compared to

all the items in Ni ∩ Si in the i-th iteration. Then by W ′2,2 we know that, ∀j ∈ Si ∩ Ni,
ri(j) is j’s correct rank in Ni. By W2,1, we know that either ai ∈ {k − 6l5i + 1, ..., k} or
we have ai does not exist and Ni ∩ {1, ..., k − 6l5i } = ∅. In both cases, we have Ai ⊆
{1, ..., k} and Ni+1 ∩ {1, ..., k − 6l5i } = ∅. Similarly, we get Bi ⊆ {k + 1, ..., n} and
Ni+1 ∩ {k + 6l5i + 1, ..., n} = ∅. So we get W i+1

2,2 and W i
2,3.

• W i
2,2 ⇒ W i

2,1: By W1,5, we know that {k − 6l5i + 1, k + 6l5i } ⊆
⋃m+li
j=m−li Pj . Then W i

2,2

simply implies W i
2,1.

SinceW 1
2,1 holds, by induction we know thatW2,1,W2,2 andW2,3 hold. Also notice that llog∗(n) = 1

and thus Nlog∗(n) ⊆ Slog∗(n). Since W log∗(n)
2,1 implies rlog∗(n)(j) is j’s correct rank in Nlog∗(n) for

∀j ∈ Nlog∗(n), we know that alog∗(n) and blog∗(n) will rank at klog∗(n) and klog∗(n) + 1 in Nlog∗(n).
And therefore we have Nlog∗(n)+1 = ∅ (event W2,4).

To sum up, we have
Pr[W2|W1] ≥ Pr[W ′2|W1] ≥ 1− 1/6.

32

SORTED TOP-k IN ROUNDS

Appendix C. Sorted Top-k in the Noisy Case

In this section, we consider sorted top-k in the noisy case. In particular, we show that the sample
complexity of 1-round algorithms is Θ(n2 log(k)) (in Section C.1) and the sample complexity of
2-round algorithms is Θ(n4/3 log(k)) (in Section C.2).

When k = 1, sorted top-k is equivalent to top-k. In this section, we only consider cases when
k > 1.

C.1. 1-Round Sorted Top-k in the Noisy Case

In this sub-section, we show an 1-round algorithm in Lemma 24 and a matching lower bound in
Lemma 25.

Algorithm 8 1-round algorithm for sorted top-k with noisy comparisons
1: Run 3 copies of Algorithm 4 (1-round top-k algorithm) in parallel.
2: In the same round, compare each pair 100(log(k) + 1) time.
3: Let S be the majority answer of the 3 copies of Algorithm 4.
4: For each item i, j ∈ S, say i beats j if i wins the majority of comparisons between i and j

in step 2. Rank items in S in the decreasing order of how many items they beat (break tie
arbitrarily). Output this sorted list of S.

Lemma 24 We have an 1-round algorithm (Algorithm 8) which solves sorted top-k in the noisy
case with O(n2 log(k)) comparisons.

Proof First of all, by the definition of Algorithm 8 and Lemma 18 (which bounds the number of
comparisons of Algorithm 4), we know Algorithm 8 uses O(n2 log(k)) comparisons.

By Lemma 18, we know that the probability that Algorithm 4 outputs top-k correctly with
probability at least 2/3. Therefore S is the set of top-k items with probability at least 1− 7/27.

For each pair of items (i, j), the probability that whether i beats j is consistent with their under-
lying order is at least 1− 1

27k2
. For a fixed S, by union bound,

Pr[∀i, j ∈ S, i beats j is consistent with their underlying order] ≥ 1− 1/27.

By union bound again, Algorithm 8 is correct with probability at least 1− 7/27− 1/27 > 2/3.

Lemma 25 Any 1-round algorithm needs Ω(n2 log(k)) comparisons to output sorted top-k cor-
rectly with probability at least 2/3 in the noisy case.

Proof For k ≤ 36, the lemma is directly implied by 1-round lower bound of top-k in the noisy case.
In the rest of the proof, we assume k > 36.

Consider any algorithm A with fewer than w = 1
100 · n

2 log(k) comparisons. We are going to
show A outputs sorted top-k incorrectly with probability > 1/3.

Let’s assume A labels items as 1, ..., n. Let Π(i) be the random variable of the actual rank
of item with label i, ∀i ∈ [n]. Before the algorithm makes any comparisons, Π distributed as a
uniform distribution over all permutations of [n]. Wlog we can assume A is deterministic. We use

33

SORTED TOP-k IN ROUNDS

H to denote the random variable of the comparison results and h to denote the realized value of
the comparison results. We use A(h) to denote the sorted top-k outputted by algorithm A given
comparison results h.

For any ranking π, define πi,j as the following:

• πi,j(l) = π(l) if l 6= i, j.

• πi,j(i) = π(j).

• πi,j(j) = π(i).

For l = 1, ..., k−1 and π to be any permutation of [n], define s(l, π) to be the number of compar-
isons between items with label π−1(l) and π−1(l + 1). Define S(π) = {l|s(l, π) ≤ log(k)/2, l ∈
[k − 1]}. We know that for any l ∈ [k − 1], E[s(l,Π)] ≤ w/

(
n
2

)
≤ log(k)/8. Therefore, by

Markov’s inequality, we know that with probability at least 1/2,
∑k−1

l=1 s(l,Π) ≤ (k− 1) log(k)/4.
When

∑k−1
l=1 s(l,Π) ≤ (k − 1) log(k)/4, we know that S(π) ≥ (k − 1)/2 ≥ k/3. Therefore

Pr[S(Π) ≥ k/3] ≥ 1/2.
When |π(i) − π(j)| = 1 and there are s comparisons between items with labels i and j in

algorithm A, we have
Pr[H = h|Π = π]

Pr[H = h|Π = πi,j]
≤
(

2/3

1/3

)s
= 2s.

To sum up, we have

Pr[A outputs correctly]

=
∑
π

∑
h:A(h)=sorted top-k

Pr[Π = π] · Pr[H = h|Π = π].

= Pr[|S(Π)| < k/3] +
∑

π:|S(π)|≥k/3

∑
h:A(h)=sorted top-k

Pr[Π = π] · Pr[H = h|Π = π].

≤1/2 +
∑

π:|S(π)|≥k/3

∑
h:A(h)=sorted top-k(π)

1

|S(π)|
∑

l∈S(π),π′=ππ−1(l),π−1(l+1)

Pr[Π = π′] · Pr[H = h|Π = π′] · Pr[H = h|Π = π]

Pr[H = h|Π = π′]

≤1/2 +
∑
π′

∑
h:A(h)=sorted top-k(π′)

Pr[Π = π′] · Pr[H = h|Π = π′] · 2log(k)/2 · 3

k

<1/2 + Pr[A outputs incorrectly]/2.

Therefore Pr[A outputs incorrectly] > 1/3.

C.2. 2-Round Sorted Top-k in the Noisy Case

In this sub-section, we show a 2-round algorithm in Lemma 26 and a matching lower bound in
Lemma 27.

34

SORTED TOP-k IN ROUNDS

Algorithm 9 2-round algorithm for sorted top-k with noisy comparisons (for k < n1/10)

1: Randomly partition N into n2/3 sets of size n1/3: S1, ..., Sn2/3 .
2: Round 1: For each Si, we run 200 log(k) copies of the 1-round top-1 algorithm (Algorithm 4)

to find the top-1 of Si in parallel and take the majority answer to be item ti.
3: Round 2: Let T be the set of all ti’s. We have |T | = n2/3. Run the 1-round sorted top-k

algorithm (Algorithm 8) to find the sorted top-k of T and output it.

Lemma 26 We have a 2-round algorithm which solves sorted top-k in the noisy case withO((n4/3+
n
√
k) log(k)) comparisons.

Proof When k ≥ n1/10, we have log(k) = Θ(log(n)). We just simply use the 2-round sorted
top-k algorithm (Algorithm 2) in the noiseless case and turn it into a 2-round sorted top-k algorithm
in the noisy case by repeating each comparison Θ(log(n)) times. The algorithm uses O((n4/3 +
n
√
k) log(n)) = O((n4/3 + n

√
k) log(k)) comparisons.

When k < n1/10, we use Algorithm 9. It’s clear that this algorithm uses O(n4/3 log(k)) =
O((n4/3 + n

√
k) log(k)) comparisons. We are going to show that this algorithm succeeds with

probability 2/3. Consider the following events:

• No two items in top-k are placed in the same Si. This event happens with probability at least
1− k2

n2/3 ≥ 1− n1/5−2/3.

• For each Si that contains a top-k item, ti is actually the top-1 of Si. This event happens with
probability 1− k · 1

40k > 1− 1/40.

• In the second round, the output is the correct sorted top-k of T . This happens with probability
at least 1− 8/27.

When all these events happen, it’s easy to check that Algorithm 9 outputs correctly. By union
bound, all of these events happen with probability at least 1− n1/5−2/3 − 1/40− 8/27 > 2/3.

Lemma 27 Any 2-round algorithm needs Ω((n4/3 + n
√
k)log(k)) comparisons to output sorted

top-k correctly with probability at least 2/3 in the noisy case.

Proof For notation convenience, we will wlog assume k is even. For odd k’s, because sorted top-
(k− 1) is an easier task than sorted top-k, we will just apply the lower bound of sorted top-(k− 1).

Consider some algorithm A that uses fewer than c · max(n4/3, n
√
k)log(k) comparisons for

c = 1
104

. We are going to show that A outputs sorted top-k incorrectly with probability > 1/3.
Let’s assume A labels items as 1, ..., n. Let Π(i) be the actual ranking of item with label i, ∀i ∈
[n]. Before the algorithm makes any comparisons, Π distributed as a uniform distribution over all
permutations of [n]. Wlog we can assume A is deterministic. We use H1 to denote the random
variable of the comparison results in the first round and H2 to denote the random variable of the
comparison results in the second round. We use H = (H1, H2) to denote the full history.

DefineW to be the event that there exists k1/4 pairs of items (u, v) such that |Π(u)−Π(v)| = 1,
Π(u) ≤ k , Π(v) ≤ k and (u, v) are compared fewer than 0.2 log(k) times in H . We will first prove
Pr[W] ≥ 2/3, and then we will show that this implies A outputs incorrectly with probability at
least > 1/3.

We first prove Pr[W] ≥ 2/3. We consider two different cases depending on how large k is.

35

SORTED TOP-k IN ROUNDS

• Case 1: k ≥ n2/3. Set m = k3/2

n . Define Si to be the set of items ranked in {(i − 1) ·
n√
k

+ 1, ..., i · n√
k
} for i = 1, ...,m. Si’s are random variables depending on Π. Let Q be the

collection of S1, ..., Sm and Π−1(1),Π−1(3), ...,Π−1(k − 1) (these are labels of top-k items
with odd rankings).

For i ∈ [m], define Gi to be the set of items in Si which satisfy the following:

– Have even rankings.

– Are compared to at most 0.1 log(k) items in Si in the first round of A.

Notice that once Q is fixed, all Gi’s are fixed.

For i ∈ [m], define Ui to be the set of pairs of items u, v such that

– (u, v) are compared more than 0.1 log(k) times in the second round of A.

– u, v ∈ Si.
– u has an even ranking and v has an odd ranking.

Notice that once Q and H1 are fixed, Ui’s are fixed.

Finally for i ∈ [m], define Xi be the number of pairs (u, v) such that

– u, v ∈ Si.
– u, v are compared at most 0.2 log(k) times in the two rounds of A.

– There exists l such that Π(u) = 2l − 1 and Π(v) = 2l.

Clearly, (∃i,Xi ≥ k1/4) implies W , in other words, Pr[W] ≥ Pr[
∑m

i=1Xi ≥ k1/4] ≥
Pr[∃i,Xi ≥ k1/4]. So it suffices to prove that Pr[∃i,Xi ≥ k1/4] ≥ 2/3. Also notice that,
once Q is fixed, Xi’s are independent.

Define WG to be the event in which there are at least 2m/3 i’s with |Gi| ≥ 3n
8
√
k

. Notice
that once Q is fixed, WG is also fixed. We want to show that Pr[WG] ≥ 5/6. First of all,
each comparison in the first round is a comparison between two items in the same Si with
probability at most kn ·

1√
k

. So with probability at least 5/6, the number of such comparisons

is at most 6c ·k log k, as there are at most c ·n
√
klog(k) comparisons in the first round. In this

case, consider the top-k items with even rankings. Since 6c · 2 ≤ 1
240 , we know that at most

k/24 of them are compared to items in the same Si more than 0.1 log(k) times. Therefore, at
most m/3 Gi’s can have |Gi| ≤ n

2
√
k
− n

8
√
k

= 3n
8
√
k

. To sum up, we have Pr[WG] ≥ 5/6.

Now consider Ui’s. We know that there are at most c ·n
√
k log(k) comparisons in the second

round, therefore we have
∑m

i=1 |Ui| ≤
c·n
√
k log(k)

0.1 log(k) = 10c · n
√
k. Since c ≤ 1

10·3·32 , at most

m/3 Ui’s can have |Ui| ≥ n2

32k .

Now we fix Q and H1 such that WG happens. We know that there are at least m/3 i’s
satisfying both |Gi| ≥ n

4
√
k

and |Ui| ≤ n2

32k . Consider any such i. Define Bi to be the set of
items such that for each u ∈ Bi,

– u ∈ Gi.

36

SORTED TOP-k IN ROUNDS

– There are at most n
8
√
k
v’s such that (u, v) ∈ Ui.

By averaging argument, we have |Bi| ≥ |Gi| − |Ui| · 8
√
k

n ≥ n
8
√
k

. Now we throw away
arbitrary items in Bi to make it has size exactly n

8
√
k

.

For each item u ∈ Bi, define Yu to be 1 if (u,Π−1(Π(u)− 1)) 6∈ Ui, otherwise Yu is 0. Here
Π−1(Π(u) − 1)) is just the item ranks right above u in Π. We have Xi ≥

∑
u∈Bi Yu. Since

we have already fix Q, so the items with odd rankings in Si have fixed rankings. Therefore
Yu only depends on Π(u).

Now consider any subset S ⊆ Bi and any u ∈ S. Define S′ = S\{u}. We fix Π(v) for
all v in S′. Now consider the probability such that Yu = 1. For any π such that Yu = 0,
consider u′ such that u′ ∈ Bi, u′ 6∈ S′ and (u, π−1(π(u) − 1)) 6∈ Ui. We have at least
3n
8
√
k
− n

8
√
k
− n

8
√
k

= n
8
√
k

many such u′. Define a different ranking π(u,u
′) such that it is

the same as π except the rankings of u and u′ are swapped. Notice that with the same H1,
switching from Π = π to Π = πu,u

′
does not change Q and Π(v) for all v in S′, but changes

Yu from 0 to 1. We know that each of u and u′ is compared to items in Si at most 0.1 log(k)
times in the first round of A, we have

Pr[H1 = h1|Π = π]

Pr[H1 = h1|Π = πu,u′]
≤

(
2
3
1
3

)0.2 log(k)

≤ k0.2.

As Pr[Π = π] = Pr[Π = πu,u
′
], we have

Pr[Π = π|H1 = h1]

Pr[Π = πu,u′ |H1 = h1]
=

Pr[H1 = h1|Π = π]

Pr[H1 = h1|Π = πu,u′]
≤ k0.2.

We know that each π corresponds to at least n
8
√
k

such πu,u
′

and each πu,u
′

corresponds to at
most n

2
√
k

such π. Therefore,

Pr[Yu = 0|Q,H1,Π(v) ∀v ∈ S′] ≤
n

8
√
k

n
2
√
k
· k0.2

· Pr[Yu = 1|Q,H1,Π(v) ∀v ∈ S′]

So we have
Pr[Yu = 0|Q,H1,Π(v) ∀v ∈ S′] ≤ 1− 1

4k0.2
.

And this implies

Pr[Yu = 0|Q,H1, Yv = 0 ∀v ∈ S′] ≤ 1− 1

4k0.2
.

For any S ⊆ Bi,

Pr

[∧
u∈S

Yu = 0|Q,H1

]
≤
(

1− 1

4k0.2

)|S|
.

37

SORTED TOP-k IN ROUNDS

Then we have

Pr

∑
u∈Bi

Yu ≥ k1/4


≥Pr

∑
u∈Bi

Yu ≥
n

8
√
k
· 1

4k0.2
· 1

2

 (for large enough n)

≥ exp

(
− n

4
√
k
· 1

4k0.2
· 1

2
·
(

1

2

)2
)

(by Theorem 28 and Fact D.1)

≥5/6 (for large enough n)

To sum up, we have

Pr[W] ≥ Pr
[
∃i,Xi ≥ k1/4

]
≥

∑
q,h1:WG happens

Pr[Q = q,H1 = h1] · Pr
[
∃i,Xi ≥ k1/4|Q = q,H1 = h1

]
≥ Pr[WG] · 5

6

≥ 5

6
· 5

6
>

2

3
.

• Case 2: k < n2/3. We are going to use a similar proof strategy as Case 1 (with slight changes).

Define Q to be the set of top-n2/3 items and define G to be the set of items in Q such that for
each u ∈ G, u is compared to at most 0.1 log(k) items in Q in the first round of A. Notice
that once Q is fixed, G is also fixed.

Define U to be the set of pair (u, v) such that

– (u, v) are compared more than 0.1 log(k) times in the second round of A.

– u, v ∈ Q.

U is fixed onceQ andH1 are fixed. Finally for l = 1, ..., k/2, define Yl to be 1 if the following
is true (otherwise Yl = 0):

– Let u = Π−1(2l − 1) and v = Π−1(2l).

– u, v ∈ G.

– (u, v) 6∈ U .

Clearly,
∑k/4

l=1 Yl ≥ k1/4 implies W . In other words, Pr[W] ≥ Pr[
∑k/4

l=1 Yl ≥ k1/4]. It
suffices to prove Pr[

∑k/2
l=1 Yl ≥ k

1/4] ≥ 2/3.

Define WG to be the event that |G| ≥ 3
4n

2/3. First of all, each comparison in the first round
is a comparison between two items in Q with probability at most 1

n2/3 . So with probability

38

SORTED TOP-k IN ROUNDS

at most 5/6. the number of such comparisons is at most 6c · n2/3 log(k) as there are at most
cn4/3 log(k) comparisons in the first round of A. In this case, consider items in Q. Since
6c · 2 ≤ 1

40 , at most 1
4n

2/3 are compared to items in Q more than 0.1 log(k) times. Therefore
|G| ≥ 3

4n
2/3. To sum up, we have Pr[WG] ≥ 5/6.

Now consider U . We know that there are at most cn4/3 log(k) comparisons in the second
round of A. We have |U | ≤ cn4/3 log(k)

0.1 log(k) = 10cn4/3 ≤ 1
32n

4/3.

Now we fix Q and H1 such that WG happens. Consider any sets S ⊆ {1, ..., k/4}. Let l be
the largest item in S and let S′ = S\{l}. We also fix Π−1(2r − 1),Π−1(2r) for all r ∈ S′.
Now consider the probability such that Yl = 1. For any π such that Yl = 0, consider u and v
such that the followings are satisfied

– u 6= v

– u, v ∈ G.

– π(u) > 2l, π(v) > 2l.

– (u, v) 6∈ U .

We have at least
(
3
4n

2/3 − k/2
)2 − 1

32n
4/3 ≥ 1

32n
4/3 such (u, v) pairs.

Define a different ranking πu,v such that πu,v(u) = 2l − 1, πu,v(v) = 2l and the relative
positions of other items in πu,v is the same as in π. Notice that with the same H1, switching
from Π = π to Π = πu,v does not changeQ and Π−1(2r−1),Π−1(2r), ∀r ∈ S′, but changes
Yl from 0 to 1. We know that each of u and v is compared to items in Q at most 0.1 log(k)
times in the first round of A, we have

Pr[H1 = h1|Π = π]

Pr[H1 = h1|Π = πu,u′]
≤

(
2
3
1
3

)0.2 log(k)

≤ k0.2.

As Pr[Π = π] = Pr[Π = πu,v], we have

Pr[Π = π|H1 = h1]

Pr[Π = πu,v|H1 = h1]
=

Pr[H1 = h1|Π = π]

Pr[H1 = h1|Π = πu,v]
≤ k0.2.

We know that each π corresponds to at least 1
32n

4/3 such πu,v and each πu,v corresponds to
at most n4/3 such π. Therefore,

Pr[Yu = 0|Q,H1,Π
−1(2r − 1),Π−1(2r), ∀r ∈ S′]

≤
1
32n

4/3

n4/3 · k0.2
· Pr[Yu = 1|Q,H1,Π

−1(2r − 1),Π−1(2r),∀r ∈ S′]

So we have

Pr[Yu = 0|Q,H1,Π
−1(2r − 1),Π−1(2r), ∀r ∈ S′] ≤ 1− 1

32k0.2
.

And this implies

Pr[Yu = 0|Q,H1, Yr = 0, ∀r ∈ S′] ≤ 1− 1

32k0.2
.

39

SORTED TOP-k IN ROUNDS

For any S ⊆ {1, ..., k/4},

Pr

[∧
l∈S

Yl = 0|Q,H1

]
≤
(

1− 1

32k0.2

)|S|
.

Then we have

Pr

 ∑
l∈[k/4]

Yr ≥ k1/4


≥Pr

 ∑
l∈[k/4]

Yl ≥
k

4
· 1

32k0.2
· 1

2

 (for large enough k)

≥ exp

(
−k

4
· 1

32k0.2
· 1

2
·
(

1

2

)2
)

(by Theorem 28 and Fact D.1)

≥5/6 (for large enough k)

To sum up, we have

Pr[W] ≥ Pr

 ∑
l∈[k/4]

Yr ≥ k1/4


≥
∑

q,h1:WG happens

Pr[Q = q,H1 = h1] · Pr

 ∑
l∈[k/4]

Yr ≥ k1/4|Q = q,H1 = h1


≥ Pr[WG] · 5

6

≥ 5

6
· 5

6
>

2

3
.

Now we have Pr[W] ≥ 2/3. Define A(H) to be the output of the algorithm given history H .
For a ranking π and two labels (u, v), define πu,v as the ranking which is the same as π except the
positions of u and v are swapped. We know that if π(u) ≤ k and π(v) ≤ k, the sorted top-k of π
is different from the sorted top-k of πu,v. For some π and h, if W happens, define P (π, h) as the
set of

√
k pairs of items (u, v) such that |π(u) − π(v)| = 1, π(u) ≤ k , π(v) < k and (u, v) are

compared fewer than 0.2 log(k) times in h.

40

SORTED TOP-k IN ROUNDS

Now we have

Pr[W,A(H) = sorted top-k of Π]

=
∑

π,h s.t. W happens

Pr[Π = π,H = h] · 1A(h)=sorted top-k of π

≤ 1

k1/4

∑
π,h s.t. W happens

∑
(u,v)∈P (π,h)

20.2 log(k) · Pr[Π = πu,v, H = h] · 1A(h)=sorted top-k of π

≤20.2 log(k)

k1/4

∑
π,h s.t. W happens

Pr[Π = π,H = h] · 1A(h)6=sorted top-k of π

<Pr[W,A(H) 6= sorted top-k of Π]

Therefore, we have

Pr[W] = Pr[W,A(H) = sorted top-k of Π] + Pr[W,A(H) 6= sorted top-k of Π]

< 2 Pr[W,A(H) 6= sorted top-k of Π].

Finally we get

Pr[A(H) 6= sorted top-k of Π] ≥ Pr[W,A(H) 6= sorted top-k of Π] >
1

2
· Pr[W] ≥ 1/3.

Appendix D. Generalized Chernoff Bound

In the proofs, we use the generalized Chernoff bound of Panconesi and Srinivasan (1997) as stated
below.

Theorem 28 (Panconesi and Srinivasan (1997)) Let X1, ..., Xn be Boolean random variables
such that, for some 0 ≤ δ ≤ 1, we have that, for every subset S ⊆ [n], Pr[

∧
i∈S Xi = 1] ≤ δ|S|,

then for any 0 ≤ δ ≤ γ ≤ 1, Pr[
∑n

i=1Xi ≥ γn] ≤ exp(−n · De(γ‖δ)). Here De(·‖·) is the
Kullback-Leibler divergence defined below.

Definition 29 (Kullback-Leibler Divergence) The Kullback-Leibler divergence De(p‖q) = p ln
(
p
q

)
+

(1− p) ln
(
1−p
1−q

)
for 0 ≤ p, q ≤ 1.

We have the following fact which is used to approximate the Kullback-Leibler divergence.

Fact D.1 For 0 ≤ p, q ≤ 1,

De(p‖q) ≥
(p− q)2

2 max(p, q)
+

(p− q)2

2 max(1− p, 1− q)
.

41

	Introduction
	Related Work

	Model and Preliminaries
	Main Results and Proof Overviews
	Sorted Top-k in the Noiseless Case
	Warm-up: Top-1 in the Noisy Case
	Top-k in the Noisy Case
	Sorted Top-k in the Noisy Case

	Conclusion and Open Problems
	Sorted Top-k in the Noiseless Case
	Algorithms
	Lower Bounds

	Top-k in the Noisy Case
	1-Round Top-k Algorithm in the Noisy Case
	2-Round Top-k Algorithm in the Noisy Case
	First Round of the 2-Round Algorithm
	Second Round of the 2-Round Algorithm

	Sorted Top-k in the Noisy Case
	1-Round Sorted Top-k in the Noisy Case
	2-Round Sorted Top-k in the Noisy Case

	Generalized Chernoff Bound

