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' Abstract

This joint extended abstract introduces and compares the results of (Auer et al., 2019) and (Chen
et al., 2019), both of which resolve the problem of achieving optimal dynamic regret for non-
stationary bandits without prior information on the non-stationarity. Specifically, Auer et al. (2019)
resolve the problem for the traditional multi-armed bandits setting, while Chen et al. (2019) give a
solution for the more general contextual bandits setting. Both works extend the key idea of (Auer
et al., 2018) developed for a simpler two-armed setting.

1. Introduction

We consider the classical multi-armed bandit problem (Auer et al., 2002) and its generalization,
the contextual bandit problem (Auer et al., 2002; Langford and Zhang, 2008), in non-stationary
environments. The learning protocol of the general contextual bandits problem is as follows. Let
X be a context space and [K] £ {1,..., K} be the set of arms. Ahead of time, the environment
decides on T distributions D1, . . ., D7 supported on context-reward pairs X’ x [0, 1]%. Inround ¢ =
1,...,T, the environment samples (x;,7;) ~ D; and reveals z; to the learner, then the learner
selects an arm a; € [K| and observes 7;(a;). For a fixed set of policies II consisting of mappings
from X to [K], the dynamic regret of the learner is defined as the difference between the total
expected reward of the best sequence of policies and that of the learner:

T

Reg = ; max B )p, [r(m(2))] = > rilar).

t=1

The classical multi-armed bandit problem is a special case of the contextual bandit problem,
where the context is unavailable or ignored by the learner. The set of policies II consists of the K
policies 71, ..., 7k for the arms a € [K| with m,(z) = a for any context x. In this case we denote

1. Joint extended abstract of (Auer et al., 2019) and (Chen et al., 2019).

(© 2019 P. Auer, Y. Chen, P. Gajane, C.-W. Lee, H. Luo, R. Ortner & C.-Y. Wei.



OPTIMAL DYNAMIC REGRET FOR BANDITS WITHOUT PRIOR INFORMATION

by pi(a) = Epyup, [r(ma())] the expected reward of arm a at time ¢, and the dynamic regret
simplifies as

T T

Reg = tzlmgxut@) - Zrt(at)-

t=1

We measure the non-stationarity of the environment by the total number of changes S or by the
total variation V:

a )1+ Z;‘FZQ 1{3a: p(a) # p—1(a)} for multi-armed bandits (Auer et al., 2019),
1+ 23;2 1{D; # D,_1} for contextual bandits (Chen et al., 2019),

A ZtT:2 maxg |pe(a) — pe—1(a)l for multi-armed bandits (Auer et al., 2019),
Zthg Dy — Di—1]|Tv for contextual bandits (Chen et al., 2019).

Our goal is to develop algorithms with dynamic regret that is optimal in terms of the relevant
parameters 7', K, and S or V, without any prior knowledge about the amount of non-stationarity S
or V. Specifically our main results are:

Theorem 1 (Auer et al., 2019) For multi-armed bandits, there exists an algorithm (ADSWITCH)
that achieves E[Reg] = O (\/ KS T) without knowing S.

Theorem 2 (Chen et al., 2019) For contextual bandits, there exists an algorithm (ADA-ILTCB™)

that achieves Reg = O (min {\/K(log III))ST, (K (log ]H|)V)§T§ + /K (log |H|)T}> with

high probability and without knowing S or V.

A few remarks are in order. First, the analysis of (Chen et al., 2019) reveals that the algorithm
of (Auer et al., 2019) in fact also achieves a better regret bound O(min{vKST, (K V)%T% +
VKTY) without any modification. Second, it is well-known that these bounds are optimal up to
logarithmic factors by a simple extension of (Auer et al., 2002) and by (Besbes et al., 2014). Third,
since multi-armed bandits are a special case of contextual bandits, the result of (Chen et al., 2019)
essentially subsumes that of (Auer et al., 2019), except for logarithmic terms and at the cost of
much larger constants. Finally, for contextual bandits the algorithm of (Chen et al., 2019) is efficient
assuming access to some ERM oracle, a common assumption made in most prior works on efficient
contextual bandits; see (Chen et al., 2019) for the formal definition.

Related work. It is well-known how to achieve the same regret bounds having knowledge of .S
and V. As far as we know, the only prior results with unknown S or V' in the bandit setting and
with regret bounds O(S*T'~%) or O(VYT'~%) for some o € (0, 1) are the following:® Karnin

2. O(-) hides logarithmic dependence on T', K, and also 1/ in the case of high probability statements where § is the
confidence level.

3. Note that importantly the exponents of S (or V') and T" sum up to 1 in these results. Achieving @(S“Tﬁ ) or
O(VeT?) without knowing S or V but with & + 8 > 1 is trivial and is also much weaker since for some values
of S and V' (that are sublinear in 7"), the bounds become vacuous. Also note that in this discussion we ignore the
dependence on other parameters such as K.
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and Anava (2016) developed an algorithm with regret O (V0827018 - 7077 for two-armed non-
contextual bandits, the first result of this kind; Luo et al. (2018) developed an oracle-efficient algo-
rithm with regret O(min{$ IT1, VTS + T4 }) for general contextual bandits; the work of Auer
et al. (2018), a preliminary version of (Auer et al., 2019), studied a two-armed non-contextual set-
ting and is the first to obtain the optimal bound @(\/Sf ); finally, Cheung et al. (2019) achieved
@(V%Tg + T%) regret for linear bandits, although one can verify that their Bandit-over-Bandits
technique in fact applies to a harder “agnostic” setting and achieves (’5(\/5’7T + T%) for a stronger
definition of regret.* For a more extensive discussion on other related work, we refer the reader to
the related work sections of (Auer et al., 2019) and (Chen et al., 2019).

2. Techniques

In this section we briefly discuss the main techniques to achieve our results and the connections
between (Auer et al., 2019) and (Chen et al., 2019). At a high level, both works built on the same
key observations from Auer et al. (2018), but the structure of the algorithms is quite different.

2.1. Key Observations

In the traditional stochastic multi-armed bandit problem, the reward distribution does not change
over time. Thus, after identifying the sub-optimality of an arm, the learner does not need to draw
this arm anymore. However, in non-stationary environments, the learner has to occasionally draw a
previously sub-optimal arm, in order to detect whether this arm has changed and has become the best
arm. This poses an additional challenge in the exploration-exploitation trade-off: in order to detect
changes more accurately, the learner has to draw sub-optimal arms more often, which potentially
incurs more regret.

The observation used by Auer et al. (2018) is that for a change of 2_5 in the mean of some
arm, the learner only needs O (Qk) samples of this arm to confirm the change. Furthermore, for a
sub-optimal arm a with an identified optimality gap A, = max, pu(a’) — p(a), the learner only
needs to make sure not to miss a change of amount larger than A,. This observation provides a
solution to the exploration-exploitation trade-off: for a sub-optimal arm with optimality gap A,, the
learner will detect whether its mean has changed by more than 2-%/2, i = 1,..., [2logy(1/A,)].
Detecting such changes requires different amounts of samples: larger changes require fewer sam-
ples, while smaller changes require more samples, but at the same time smaller changes incur less
regret. Exploiting these observations is the key to achieve the optimal regret.

Another important aspect is that the exploration steps for change detection need to be consecu-
tive, as opposed to the common strategy of exploring with some probability independently at each
time step. This idea has already been used by Karnin and Anava (2016) and Luo et al. (2018).

In the following two subsections, we compare the exploration schemes of (Auer et al., 2019)
and (Chen et al., 2019), both of which utilize the ideas above to ensure a sufficient amount of
samples for estimating distribution changes. These exploration schemes are paired with specific
non-stationarity tests based on standard concentration inequalities to decide whether reward distri-
butions have significantly changed. Details about the tests can be found in the two papers.

4. Specifically, this agnostic setting refers to the one originally studied in (Auer et al., 2002) for the algorithm Exp3.S.
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2.2. Sampling Obligation

The algorithm of Auer et al. (2019) maintains for each sub-optimal arm « a set S(a) of sampling
obligations, each represented as a pair (k,t).> At time ¢, for a sub-optimal arm a with estimated
optimality gap A,, sampling obligations are added at random according to the following rule (for
some constants C; and C5):

Forall k > 1 with 272 > (1A, with probability C52~ 2, add (k, t) to S(a).

A sampling obligation (k, ) is removed from S(a) once arm a has been drawn for 2* times since
time ¢, or when any non-stationarity is detected and the algorithm restarts. In the light of the dis-
cussion in Section 2.1, the role of a sampling obligation (k,t) is to detect a mean change of order
2%, To serve the sampling obligations, at each time the algorithm selects the arm that has been se-
lected least recently among the arms which are either possibly optimal or have at least one sampling
obligation.

2.3. Replay Phase

A naive way to extend the idea of Auer et al. (2018) to the contextual bandits setting is to treat
each policy as an arm. However, this leads to a regret bound and computational complexity both
polynomial in |II|, which is prohibitive. Thanks to prior works such as (Dudik et al., 2011) and
(Agarwal et al., 2014), there are statistically and computationally efficient ways to estimate the
expected reward of all policies simultaneously. The algorithm of Chen et al. (2019) is built upon the
ILOVETOCONBANDITS algorithm of Agarwal et al. (2014).

The original ILOVETOCONBANDITS is designed for stationary environments. It finds a sparse
distribution @; over II at time ¢ = 27, using the data collected from time interval [1,2/ — 1]. For

t=27,...,27+1 — 1, the learner samples arms using the following distribution:
v ~ 1
QF(alz) &£ (1-Kvy) > Qj(m)+v;,  where v; =06 (”mj) :
wellim(z)=a

In non-stationary environments, for detection purpose the algorithm of Chen et al. (2019) main-
tains a set S of replay phases, each of which can again be represented as a pair (k,t). At time
t € [27,29F1 — 1], several replay phases are generated according to the following rule (for some
constant C'3):

Vk=1,...,j—1, with probability C32~%, add (k,t) to S,

which is very similar to the rule of (Auer et al., 2019). A replay phase (k,t) is removed at time
t 4+ 2%, or when any non-stationarity is detected and the algorithm restarts. The selection of arms is
based on the following rule: if S is empty, then draw a; ~ Q? (+|x¢); otherwise, uniformly sample
an index k from the set {m : 3(m, 7) € S}, and sample a; ~ Q;*(-|;). Note that in the latter case
the algorithm reuses previous distributions (hence the name replay), and the role of replays is in the
same vein as that of sampling obligations used by Auer et al. (2019).

5. The notation/representation here is slightly different from that of (Auer et al., 2019) for conciseness and easier
comparison.
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