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Abstract
Algorithms often must solve sequences of closely related problems. If the algorithm runs a standard
procedure with worst-case runtime guarantees on each instance, it will fail to take advantage of
valuable structure shared across the problem instances. When a commuter drives from work to
home, for example, there are typically only a handful of routes that will ever be the shortest path.
A naı̈ve algorithm that does not exploit this common structure may spend most of its time checking
roads that will never be in the shortest path. More generally, we can often ignore large swaths of
the search space that will likely never contain an optimal solution.

We present an algorithm that learns to maximally prune the search space on repeated compu-
tations, thereby reducing runtime while provably outputting the correct solution each period with
high probability. Our algorithm employs a simple explore-exploit technique resembling those used
in online algorithms, though our setting is quite different. We prove that, with respect to our model
of pruning search spaces, our approach is optimal up to constant factors. Finally, we illustrate the
applicability of our model and algorithm to three classic problems: shortest-path routing, string
search, and linear programming. We present experiments confirming that our simple algorithm is
effective at significantly reducing the runtime of solving repeated computations1.

1. Introduction

For a commuter traveling from home to work every morning, the shortest path may vary from day to
day—sometimes side roads beat the highway; sometimes the bridge is closed due to construction.
Although San Francisco and New York are contained in the same road network, however, it is
unlikely that a San Francisco-area commuter would ever find New York along her shortest path—
the edge times in the graph do not change that dramatically from day to day.

1. Extended abstract. Full version appears as [arXiv reference, v1904.11875].
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Figure 1: A standard algorithm computing the shortest path from the upper to the lower star will
explore many nodes (grey), even nodes in the opposite direction. Our algorithm learns to
prune to a subgraph (black) of nodes that have been included in prior shortest paths.

With this motivation in mind, we study a learning problem where the goal is to speed up re-
peated computations when the sequence of instances share common substructure. Examples in-
clude repeatedly computing the shortest path between the same two nodes on a graph with varying
edge weights, repeatedly computing string matchings, and repeatedly solving linear programs with
mildly varying objectives. Our paper is in the spirit of recent research in data-driven algorithm se-
lection (e.g., Gupta and Roughgarden, 2017; Balcan et al., 2017, 2018a,b) and online learning (e.g.,
Cesa-Bianchi and Lugosi, 2006, although with some key differences, which we discuss in the full
version).

The basis of this work is the observation that for many realistic instances of repeated problems,
vast swaths of the search space may never contain an optimal solution—perhaps the shortest path is
always contained in a specific region of the road network; large portions of a DNA string may never
contain the patterns of interest; a few key linear programming constraints may be the only ones that
bind. Algorithms designed to satisfy worst-case guarantees may thus waste substantial computation
time on futile searching. For example, even if a single, fixed path from home to work were best
every day, Dijkstra’s algorithm would consider all nodes within distance di from home on day i,
where di is the length of the optimal path on day i, as illustrated in Figure 1.

We develop a simple solution, inspired by online learning, that leverages this observation to the
maximal extent possible. On each problem, our algorithm typically searches over a small, pruned
subset of the solution space, which it learns over time. This pruning is the minimal subset containing
all previously returned solutions. These rounds are analogous to “exploit” rounds in online learning.
To learn a good subset, our algorithm occasionally deploys a worst-case-style algorithm, which
explores a large part of the solution space and guarantees correctness on any instance. These rounds
are analogous to “explore” rounds in online learning. If, for example, a single fixed path were
always optimal, our algorithm would almost always immediately output that path, as it would be
the only one in its pruned search space. Occasionally, it would run a full Dijkstra’s computation to
check if it should expand the pruned set. Roughly speaking, we prove that our algorithm’s solution
is almost always correct, but its cumulative runtime is not much larger than that of running an
optimal algorithm on the maximally-pruned search space in hindsight. Our results hold for worst-
case sequences of problem instances, and we do not make any distributional assumptions.
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In a bit more detail, let f : X → Y be a function that takes as input a problem instance x ∈ X
and returns a solution y ∈ Y . Our algorithm receives a sequence of inputs from X . Our high-level
goal is to correctly compute f on almost every round while minimizing runtime. For example,
each x ∈ X might be a set of graph edge weights for some fixed graph G = (V,E) and f(x)
might be the shortest s-t path for some vertices s and t. Given a sequence x1, . . . , xT ∈ X , a
worst-case algorithm would simply compute and return f(xi) for every instance xi. However, in
many application domains, we have access to other functions mapping X to Y , which are faster to
compute. These simpler functions are defined by subsets S of a universe U that represents the entire
search space. We call each subset a “pruning” of the search space. For example, in the shortest
paths problem, U equals the set E of edges and a pruning S ⊂ E is a subset of the edges. The
function corresponding to S, which we denote fS : X → Y , also takes as input edge weights x, but
returns the shortest path from s to t using only edges from the set S. By definition, the function that
is correct on every input is f = fU . We assume that for every x, there is a set S∗(x) ⊆ U such that
fS(x) = f(x) if and only if S ⊇ S∗(x) – a mild assumption we discuss in more detail in the full
version.

Given a sequence of inputs x1, . . . , xT , our algorithm returns the value fSi(xi) on round i, where
Si is chosen based on the first i inputs x1, . . . , xi. Our goal is two fold: first, we hope to minimize
the size of each Si (and thereby maximally prune the search space), since |Si| is often monotonically
related to the runtime of computing fSi(xi). For example, a shortest path computation will typically
run faster if we consider only paths that use a small subset of edges. To this end, we prove that if
S∗ is the smallest set such that fS∗(xi) = f(xi) for all i (or equivalently, S∗ =

⋃T
i=1 S

∗(xi)), then

E

[
1

T

T∑
i=1

|Si|

]
≤ |S∗|+ |U| − |S

∗|√
T

,

where the expectation is over the algorithm’s randomness. At the same time, we seek to minimize
the the number of mistakes the our algorithm makes (i.e., rounds i where f(xi) 6= fSi(xi)). We
prove that the expected fraction of rounds i where fSi(xi) 6= f(xi) is O(|S∗|/

√
T ). Finally, the

expected runtime2 of the algorithm is the expected time required to compute fSi(xi) for i ∈ [T ],
plus O(|S∗|

√
T ) expected time to determine the subsets S1, . . . , ST .

We instantiate our algorithm and corresponding theorem in three diverse settings—shortest-path
routing, linear programming, and string matching—to illustrate the flexibility of our approach. We
present experiments on real-world maps and economically-motivated linear programs. In the case
of shortest-path routing, our algorithm’s performance is illustrated in Figure 1. Our algorithm ex-
plores up to five times fewer nodes on average than Dijkstra’s algorithm, while sacrificing accuracy
on only a small number of rounds. In the case of linear programming, when the objective function
is perturbed on each round but the constraints remain invariant, we show that it is possible to signif-
icantly prune the constraint matrix, allowing our algorithm to make fewer simplex iterations to find
solutions that are nearly always optimal.

2. As we formalize in the full version, when determining S1, . . . , ST , our algorithm must compute the smallest set S
such that fS(xi) = f(xi) on some of the inputs xi. In all of the applications we discuss, the total runtime required
for these computations is upper bounded by the total time required to compute fSi(xi) for i ∈ [T ].
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