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Abstract

We consider online learning in an adversarial, non-convex setting under the assumption that
the learner has an access to an offline optimization oracle. In the general setting of predic-
tion with expert advice, (Hazan and Koren, 2016) established that in the optimization-
oracle model, online learning requires exponentially more computation than statistical
learning. In this paper we show that by slightly strengthening the oracle model, the online
and the statistical learning models become computationally equivalent. Our result holds
for any Lipschitz and bounded (but not necessarily convex) function. As an application
we demonstrate how the offline oracle enables efficient computation of an equilibrium in
non-convex games, that include GAN (generative adversarial networks) as a special case.
Keywords: Online Learning, Online Convex Optimization

1. Introduction

The setting of online learning in games is a fundamental paradigm which allows formulation
of tasks such as spam detection, online routing, online recommendation systems, and more
(Cesa-Bianchi and Lugosi, 2006; Hazan, 2016; Shalev-Shwartz, 2011). A key feature of this
model is the ability of the environments to evolve over time, possibly in an adversarial man-
ner. Consequently, this framework can be used to produce more robust learners compared
to the classic stationary and statistical learning framework. A fundamental question inves-
tigated in recent literature is whether this robustness comes with a computational price.
While it is well-known that any efficient online learner can be transformed into an efficient
statistical (or batch) learner (Cesa-Bianchi et al., 2004), it is important to understand to
what extent is the online model harder.

To enable a systematic comparison between the two models we must allow a reduction in
the opposite direction. To this end we adopt the offline optimization oracle model suggested
in (Hazan and Koren, 2016), where the online learner submits a sequence of loss functions
and the oracle returns any minimizer of the cumulative loss. For the well-established setting
of learning with expert advice, (Hazan and Koren, 2016) demonstrated an exponential gap
between the oracle complexity in the online and the statistical settings.

In this paper we study the same question in the more general non-convex setting.!
Deviating from (Hazan and Koren, 2016), we allow the learner to linearly perturb the
objective submitted to the oracle. Arguably, adding a linear term to a non-convex function

1. We explain how to reduce the expert setting to the non-convex setting in Section 1.2.
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should not increase the overall complexity of the oracle. Perhaps surprisingly, we show that
this moderate modification renders the online adversarial setting computationally equivalent
to the statistical setting. We show this by extending the powerful Follow-the-Perturbed-
Leader (FTPL) meta-algorithm to the non-convex setting and derive a polynomial bound
on its oracle complexity.

1.1. Setting and Main Result
1.1.1. BASIC DEFINITIONS AND ASSUMPTIONS

Let W C R? be the decision set (a.k.a. hypothesis space in the statistical setting) with
lso-diameter at most D, and let £ C R"Y be the set of all G-Lipschitz functions w.r.t. the
¢1-norm. We assume that both G' and D are polynomial in the ambient dimension d.?

Consider the setting of online learning, where an online algorithm predicts a point
wy € W in iterative fashion and receives a feedback according to an adversarially chosen
loss function ¢; € L. The goal of the learner is to minimize the average regret, which is
defined as the difference between the average loss of the learner and that of the best fixed
point w* € W in hindsight. We define the sample complexity as the number of rounds
required for attaining expected average regret at most e.

The statistical setting differs from the online setting in two important aspects. a) We
assume that the loss functions are drawn according to some unknown fixed distribution. b)
The learner receives a sample of loss functions drawn according to the same distribution.
Then it has to output a single predictor w. The goal of the learner is minimize the expected
excess risk, which is defined as Ey[¢(w)] — inf ey E¢[¢(w)]. The sample complexity in this
model is the size of a sample (of loss functions) that is required for attaining expected excess
risk at most e.

1.1.2. THE OFFLINE ORACLE MODEL

In order to compare between the online and the statistical models, we assume an access to
two types of oracles:

1. Value oracle whose input is a pair (w,f) € W x L and its output is £(w).

2. Offline optimization oracle whose input consists of a sequence of loss functions
(1y...,0) € L and a d-dimensional vector o, and its output is output has the form

k
w e argmin{z li(w) —oTw: weW}.
i=1
We define the oracle complexity as

sample complexity + # of calls to value oracle 4+ # of calls to offline oracle

2. The choice of norm in our setting is inconsequential as norms are equivalent up to poly(d).
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1.1.3. MAIN RESULT

Our online Algorithm 1 applies the offline oracle with a random linear perturbation ¢ whose
coordinates are i.i.d. exponential random variables with parameter 7. Our main result can
be stated as follows.

Theorem 1 The oracle complezity of Algorithm 1 is poly(d,1/e).

Notably, both the loss functions and the domain W are not assumed to be convex. The oracle
complexity in the statistical setting (under the same assumptions) is also poly(d, 1/¢).> We
thus conclude that both statistical and the online oracle complexities for non-convex learning
setting are polynomially equivalent. We deduce the following game theoretic result:

Corollary 2 (informal) Convergence to equilibrium in two player zero-sum non-convex
games is as hard as the corresponding offline best-response optimization problem.

We elaborate on this implication and specify it to GANs in Section 4.

1.2. Related Work

Follow-the-perturbed-leader. = The ubiquitous Follow-the-Perturbed-Leader (FTPL)
algorithm (Hannan, 1957; Kalai and Vempala, 2004) is the canonical example of using an
optimization oracle: the algorithm returns the result of a single optimization oracle call per
iteration. Since its introduction, an extensive study of FTPL has yielded new insights and
efficient variants in various different settings (e.g. (Hazan and Kale, 2012; Devroye et al.,
2013; Van Erven et al., 2014; Cohen and Hazan, 2015)).

Online Convex Optimization. If the problem admits a convex structure, then the
oracle complexity is polynomial in the dimension via bandit convex optimization (Cesa-
Bianchi and Lugosi, 2006; Hazan, 2016; Bubeck et al., 2012). If one considers the number
of oracle calls to the optimization oracle only, and does not have access to a value oracle,
then it is still possible to obtain a polynomial bound on the oracle complexity. This is due to
the fact that online convex optimization reduces to online linear optimization (Zinkevich,
2003), and this enables extension of FTPL to the convex case. However, this extension
requires access to the gradient, which does not fall into our oracle model. We are not aware
of any analysis of direct application of FTPL to a convex loss (i.e., without access to the
gradients). In a sense, our treatment of the non-convex case gives the first direct analysis
for FTPL to the convex case.

The experts setting: Overcoming the lower bound It is instructive to revisit the
experts setting and understand why our result does not contradict the exponential lower
bound of (Hazan and Koren, 2016). After all, one can easily embed the general experts
problem in the d-dimensional hypercube for d = [log N]| using the following standard
technique:

1. Associate each vertex z € {0,1}% with some expert i(z).

2. Associate each x € [0,1]? with a random expert according to p(z) = Hle(zixi +(1-
Zi)(l — :L’Z))

3. This follows from standard covering argument
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3. Perform optimization over [0, 1]¢, where the loss of each z € [0, 1]%is > zeqo,13a P(2)L(i(2)).

It can be verified that the parameters G and D are polynomial in d, as required. Conse-
quently, our main result applies to this setting as well.

Crucially, unlike our oracle model, (Hazan and Koren, 2016) does not allow a linear
perturbation of the cumulative loss in this low-dimensional presentation. As it seems,
this arguably moderate modification of the model rendered the offline-to-online reduction
tractable.

Experts with low-dimensional structure. In the context of contextual bandits,
(Dudik et al., 2017) formulate abstract conditions under which the randomness can be
shared between the experts, and allow efficient regret minimization in the oracle complexity
model.

(Gonen and Shalev-Shwartz, 2017) study stability in non-convex settings, and bound the
stability rate of ERM for strict saddle problems. In this paper we derive stable algorithms
under much more moderate assumptions.

Generative adversarial networks. Several works have studied GANs in the regret
minimization framework (e.g. (Schuurmans and Zinkevich, 2016; Kodali et al., 2017; Hazan
et al., 2017)). We provide the first evidence that achieving equilibrium in GANs can be
reduced to the offline problems associated with the players.

1.3. Overview and Techniques
1.3.1. WHY STANDARD APPROACHES DO NOT WORK?

A common approach which works well in the convex setting is to apply the Follow-the-
Regularized-Leader (FTRL) with ¢y-regularization:

wy € argmin {Z&(w) +77Hw\|2} , n=T% ae(0,1).

i<t

In the convex case fo-regularization stabilizes the solution by pushing it towards zero. How-
ever, we argue that in the non-convex setting, this approach does not help. To demon-
strate this claim, consider a 1-dimensional setting, where the loss functions have the form
w +— (o(wx) —y)?, where o(z) = max{z,0} is the ReLU function and z € [-1,1],y € [0, 1].
Due to the ReLLU term, the magnitude of the loss incurred by classifying = negatively is
not important (i.e., there is no difference between wz = —107% and wz = —1). Informally,
if all z’s are bounded away from zero, we mostly care for the ratio between positive and
negative examples. Therefore, adding fo-regularization does not make solutions near zero
more appealing. It is not hard to formalize this argument and show that FTRL with ¢5 (or
/1) regularization can not yield sublinear regret.

1.3.2. EXTENDING FTPL TO THE NON-CONVEX CASE

Our result is proved by extending the Follow-The-Perturbed-Leader algorithm to the non-
convex setting. As we detail in the preliminaries section, online learnability requires algo-
rithmic stability between consecutive rounds. For linear loss functions, (Kalai and Vempala,
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2004) proved that linear perturbation of the loss stabilized the loss function itself, and con-
sequently the minimizer is stable as well. The proof relies heavily on the fact that the
perturbation and the loss function are of the same type.

In the non-convex case, we can not hope to stabilize the loss itself using a linear pertur-
bation. Nevertheless, our main contribution is to establish that the randomness injected by
FTPL does stabilize the predictions of the learner. We prove this result by investigating how
the outputs of FTPL change as we vary the the noise vector o € Rio. In the 1-dimensional
case, this investigation yields a useful monotonicity property which helps us bounding the
expected distance between consecutive minimizers. While the general d-dimensional intro-
duces some challenges, we are able to effectively reduce the analysis to the 1-dimensional
setting by varying each coordinate of the noise separately.

2. Preliminaries

2.1. Online to batch conversion

The following well-known result due to (Cesa-Bianchi et al., 2004) tells us that the on-

line sample complexity dominates the batch sample complexity. The intuition that online

learning is at least as hard as batch learning is formalized by the following online-to-batch

theorem.

Theorem 3 (Cesa-Bianchi et al., 2004 ) Suppose that A is an online learner with M <
e(T) for any T. Consider the followmg algorithm for the batch setting: given a sample
(l1,...,L,) ~ P"™, the algorithm applies A to the sample in an online manner. Thereafter,
it draws a random round j € [n] uniformly at random and returns w = w;. Then the
expected excess risk of the algorithm, E[L(w)] — L(w*), is at most €(T).

2.2. Online learning via stability

The main challenge in online learning stems from the fact that the learner has to make
a decision before observing the adversarial action. Intuitively, we expect that the perfor-
mance after shifting the actions of the learner by one step (i.e. considering the loss ¢;(wi41)
rather than ¢;(w;)) to be optimal. This view suggests that online learning is all about
balancing between optimal performance w.r.t. previous rounds and ensuring stability be-
tween consecutive rounds. Similarly to the statistical setting, the most common algorithmic
tool for achieving stability is regularization. In particular, the well-established Follow-the-
Regularized-Leader is a meta-algorithm whose instances are determined by choosing a con-
crete regularization function. Precisely, given a regularizer R : R? — R, the t-iterate of the

algorithm is
wt—argmm{ZE )+ R(w )} .

i<t

The next well-known lemma provides a systematic approach for analyzing Follow-the-
Regularized-Leader-type algorithms.
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Lemma 4 (FTL-BTL (Kalai and Vempala, 2004)) The regret of Follow-the-Regularized-
Leader is at most
T
E[Regrety] < E[R(w*) — R(w1)] + Y B[l(wr) — li(wiga)] ,
i=1

where w* = argmin{3"}_, £i(w) : w € W}.

2.3. The exponential distribution
We use the following properties of the exponential distribution.

Lemma 5 Let X be an exponential random variable with parameter n.* The following
properties hold: a) for any s € R, P(X > s) = exp(—ns). b) Memorylessness: for any
s, qeR, P(X>q+s|X>q) =PX>s). ¢)if Xq,...,Xq are i.i.d. with X; ~ Exp(n),
then E[[[(X1, ..., Xa)lloc] < 1 (log(d) + 1).

3. Non-convex FTPL

In this section we present and analyze the non-convex FTPL method presented in Algorithm
1. Our analysis completes the proof of our main theorem (Theorem 1). Along the proof we
distinguish between the one-dimensional and the general d-dimensional case. For the former
case we obtain better regret bound in terms of the dependence on the horizon parameter
T. Omitted proofs are provided in the Appendix.

Algorithm 1 Non-convex FTPL
Parameter: n > 0
fort=1to T do
Draw i.i.d. random vector oy ~ (Exp(n))?
Prediction at time t:

wy eargmin{z&(w)—a;w: wEW} , (1)

1<t

end for

3.1. Reduction to oblivious setting
To simplify the presentation we make the following standard modification:

1. The adversary is oblivious in the sense that the sequence (¢;)7_; is chosen in advance.

2. This allows us to analyze a slightly different algorithm which draws only a single noise
vector o ~ Exp(n)? rather than drawing a fresh noise vector on every round.

It follows from (Cesa-Bianchi and Lugosi, 2006)[Lemma 4.1] that proving regret bounds
for this variant translates into asymptotically equivalent (expected) regret bounds for non-
oblivious adversaries using Algorithm 1.

4. That is, X has density p(x) = nexp(—nz).
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3.2. Main Lemma

Throughout this section we use the notation w;(c) to emphasize that w; as defined in (1), is
determined by the noise vector o. Following Lemma 4 we would like to to establish a bound
on the expected instability at time ¢, i.e. E[¢;(wi(0)) — l¢(wis1(0))]. This is bounded above
by G-E||wi(0) —wy1(0)||1. Note that the distance between w; and w41 is ill-defined since
both w; and wy4;1 are not unique. However, as we show below, we will be able to derive
a uniform bound on the distance between any consecutive minimizers for every choice of
minimizers. Note that this not really needed. As we are primarily interested in stability with
respect to the function value, we can make any assumptions on the tie-breaking mechanism.
However, we found it both interesting and surprisingly easier to prove the stronger result.

Lemma 6 Fiz an iteration t and let § > 0 be a margin parameter. There is a tie-breaking
rule for choosing minimizers such that E[||w, (o) — wir1(0)|1] = O (pOly&M + dé). In the

one-dimensional case we obtain the improved bound E[|w; — wi1]] = O(n).

Proof (of Theorem 1) We start with the multidimensional case. Applying the FTL-

BTL lemma (Lemma 4) with the regularizer R(w) = —o'w and using Holder inequality,

we obtain

T
E[Regrety] < E [|lo]loc - [[w* — willi] + G Y E[|[we(0) — wer1(0)]1]
t=1

T
<E[lollsc] D+ G E[llwi(o) — w1 (o)1] -
t=1

For the multidimensional case, we use that E[||o||e] < n (logd + 1), D, G € poly(d), and
apply Lemma 6 to obtain

E[Regrety] < poly(d) ((n~'(logd + 1) + T(nd~' +4))) .

By setting n = T~2/3 and § = T~/?, we obtain the regret bound E[Regret,] < O(T?/3poly(d)).

Online-to-batch conversion yields a sample complexity bound of O (%ﬁ)).
In the 1-dimensional case we simply set 7 = T~'/2 to obtain E[Regret;] = O(T"/?).
This translates into a sample complexity bound of O (%Q(d)) |

3.3. Proof of Lemma 6

We begin with the following lemma which provides a bound on the gap between minimizers
with respect to the change in noise parameter o.

Lemma 7 For any two functions f1, fa : W — R and vectors 01,09 € R?, let
w;(o;) Eargmin{fi(w)—ajw}, i=1,2.
Letting f = f1 — fo and 0 = 01 — 02, we have that
fwi(01)) = f(wa(o2)) < o' (wi(o1) — wa(02)) (2)
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Proof Using optimality conditions for w;(o;), we have that
fi(wi(01)) = o wi(o1) < fi(wa(o2)) — of wa(o)

fo(wa(o2)) — 03 wa(o2) < fa(wi(o1)) — o3 wi(o1)

Adding the above two inequalities and rearranging finishes the proof. |

We now provide the proof of Lemma 6 in the two considered cases.
Proof (of Lemma 6: one-dimensional case) We wish to use Lemma 7. For any time

t, consider substituting fi(w) = Y, li(w), fa(w) = >, li(w), 02 =0 and 01 = 0o’ £
o + 2G. We immediately get that

l(wi(0")) = le(wer1(0)) < 2G(wi(0”) — wir1(0))

Using the fact that [; is G-lipschitz, we get that

=Glwe(0") — w1 ()] < lL(we(o”)) = L(wigr (o)) < 2G(wi(0”) — wis1(0))

which immediately implies that w¢(c’) > w1 1(0). Similar calculations show that w1 (c”) >
wi(o) and wi(o”) > wi(o).

For the rest of the proof we will omit the dependence on ¢ as it will be clear from context.
We denote by wmin(0) = min{w(o), wir1(0}}, Wmax(0) = max{w(c), wir1(0)}. First we
observe that

Ellwi(0) — wiy1(0)]] = Eltwmax(0)] — Elwmin(0)] -

Secondly the computation above implies that
wmin(o',) > wmax(g) . (3)

This powerful monotonicity property (see Figure 1) is now used to lower bound E[wyin(0)]
in terms E[wpax(0)]. Letting ¢’ = o + 2G, we have

2G

Blunin(o)] = [

o=0

1 exp(—no ) Wmin (o) do + / 1 exp(—no)wmin (o) do
o>2G

> (1 - exp(~20G)) (Ewimax(0)] — D) + / 7o) i) do

> (1 — exp(—2nG))(E[wmax(c)] — D) + />0776Xp(—77(0'))wmax(0) do
= (1 — exp(—21G)) (E[wmaz(0)] — D) + exp(—2nG)E[wmax(0)]
E[wmax(0)] — D(1 — exp(—2nG)) > Elwmax(0)] — 2nDG

where the second inequality uses Equation 3 and the last inequality uses the inequality
exp(z) > 1+ x. [ ]

Proof (of Lemma 6:multiple dimensions) Once again we wish to use Lemma 7.
For any time ¢ and any coordinate k, consider substituting fi(w) = >, ., li(w), fo(w) =
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wi;1(0) w(0)

Figure 1: Ilustration of the monotonicity property used in the Proof of Lemma 6: The
unperturbed minimizer of L; (solid line), denoted w;11(0), can be significantly
smaller than the unperturbed minimizer of L;_; (dashed line), w;(0). This can
be balanced by increasing the noise parameter corresponding to wy41.

Yictrili(w), 02 = 0 and 01 = o’ £ 5+ 3B5! - ¢, (where ¢y, is the k™ vector in the
canonical basis). We immediately get that

l(wi(0")) = Li(wig1(0)) < 3B6™Hwep(o”) — wiprk(0))

where wy ;, is the k-th coordinate of w;. Using the fact that the range of I; is [-B, B], we
get that
—2B < li(wi(0")) = li(wis1(0)) < 3B (wik(0”) — wit1x(0))

which immediately implies that wy (o) > wiy1 (o) — 6. A similar calculation also derives
that w1 ,(0’) > wep(o) — 6.

Now for any k € [d], let wg min(0) = min{wy ;(0), wey1,k(0)}, Wmax(0) = max{wy k(0), w1 k(o) }-
First we observe that

d
Elllwi(o) — wes1(0)|] = DY (Elwkmax(0)] — Ewpmin(o)]
k=1

Secondly the calculation above implies that for all k
Wi, min (0 + 335_16k) > Wk max(0) — 0 (4)

Now fix a coordinate k € [d] along with all noise coordinates o; for j # k. Denote by
E_j the corresponding conditional expectation. Up to the additional margin term ¢, lower
bounding E_j[w min] in terms of E_j[wg max] reduces to the one-dimensional case; letting
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q=3B6"! and p(x) = nexp(—nz), we have

q

E_k[wk min(ok)] = /

o,=0

(%)W min (0k) doy, +/ (0% ) Wi min (0k) doy,
or>q

> (1 —exp(—qn))(E_g[wr,max(ok)] — D) + / . ok + QWi min(0r + q) doy,

> (1 - exp(_qn»(E—k[wkz,max(ak)] - D) + / M(Uk’ + Q) (wk,max(ak) - 5) dak

o, >0
=(1- eXp(_qn))aEfk[wk,maX(Uk)] — D)+ eXp(_qanfk[wk,maX(Uk)] —9)
> E_g[wg,max(0k)] — D(1 — exp(—qn)) — 6 = E_g[wg max(0k)] — 3Bné~'D -6 .

The second inequality uses Equation 4 and the last inequality follows by substituting ¢ =
3B6~! and using the inequality exp(z) > 1 + z. Since the above holds for any fixed
o_i = (0}) 2k , the unconditioned expectations also satisfy

_ poly(d)y

E[kamin(U)] > E[wk,max(o')] 5

Summing over all coordinates we conclude the bound. |

4. Implications to Non-convex Games

Consider the following formulation of a non-convex zero-sum game. Let F': X x Y — R,
where X, Y C R? are compact with diameter at most D. The 2-th player wishes to minimize
F and whereas the y-th player wishes to maximize F'. We assume that for all z € X and
y € Y, both F(-,y) and —F(x,-) are G-Lipschitz and B-bounded. A known approach for
achieving equilibrium is to apply (for each of the players) an online method with vanishing
average regret. Precisely, on each round ¢ both players choose a pair (x¢,y;) which induces
the losses F'(x¢,y:) and —F (x4, y;), respectively. Finally, we draw a random index [j] € [T
and output the pair (£,9) £ (z;,y;). By endowing the players with access to an offline
oracle and playing according to non-convex FTPL we can reach approximate equilibrium.

Theorem 8 Suppose that both the x-player and the y-player have an access to an offline or-
acle and play according to non-convex FTPL (Algorithm 1). Givene > 0, let T € poly(d)/e
such that the expected average regret of non-convex FTPL is at most €. Then, (Z,9) forms
an e-approximated equilibrium, i.e., for any x € X and y € Y,

ElF(2,9)] <E[F(z,9)] +¢ E[F(#,9)]>E[F(2y)] —c.

Note that the players can use their offline oracle to amplify their confidence and achieve an
equilibrium with high probability. The proof is provided in the appendix.

4.1. Implication to GANs

In particular, we consider the case where the x-th player is a generator, who produces
synthetic samples (e.g. images), whereas the y-th player acts as a discriminator by assigning

10
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scores to samples reflecting the probability of being generated from the true distribution.
Formally, by choosing a parameter x € X and drawing a random noise z, the z-th player
produces a sample denote G, (z). Conversely, the y-th player chooses a parameter y € )) and
assign the score Dy (G4 (2)) € [0,1] to the sample G5 (2). The function F' usually corresponds
to the log-likelihood of mistakenly assigning an high score to a synthetic example and vice
versa. It is reasonable to assume that F' is Lipschitz and bounded w.r.t. the network
parameters. As a result, efficient convergence to GANs is established by assuming an access
to an offline oracle.

5. Discussion

Our work establishes a computational equivalence between online and statistical learning in
the non-convex setting. We shed light on the hardness result of (Hazan and Koren, 2016)
by demonstrating that online learning is significantly more difficult than statistical learning
only when no structure is assumed.

One interesting direction for further investigation is to refine the comparison model
and study the polynomial dependencies more carefully. One obvious question is to un-
derstand the gap in terms of the horizon parameter 17" between the regret bounds for the
one-dimensional and the multidimensional settings.
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