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Abstract
Multiple users getting one sample each from an unknown distribution seek to enable a central

server to conduct statistical inference. However, each player can only provide limited amount of
information about its sample to the server. We propose a unified framework to study such distributed
inference problems under local information constraints. We model the local information constraints
by a set of channelsW: each player chooses a channel fromW , and then passes their data through
this channel before transmitting the output to the server. The goal in this distributed setting is to
understand the blow-up in data requirement imposed by the information constraints, compared to
the centralized setting where all data samples are available to the server.

We introduce two notions of chi-square fluctuations which provide bounds for the average
distance and the distance to the average of a local perturbation. When information constraints are
imposed, by the standard data-processing inequality, pairwise distances contract and so do our
chi-square fluctuations. We provide a precise characterization of this contraction for discrete k-ary
distributions and use it to obtain to general lower bounds for distribution learning and testing under
information constraints. Our results involve notions of minmax and maxmin chi-square fluctuations,
where the maximum is over the choice of channels and the minimum is over perturbations. The
former emerges when considering public-coin protocols for testing and is bounded in terms of
Frobenius norm of a positive semidefinite matrix H , a function of the channel familyW . The latter
appears for private-coin protocols and is bounded by the nuclear norm of H which is smaller than
its Frobenius norm, establishing a separation between the sample complexity of testing using public
and private coins.
Keywords: statistical inference, distribution testing, distribution learning, distributed algorithms

1. Introduction

Inference algorithms for data generated by an unknown probability distribution are basic workhorses
for statistics and machine learning. Broadly, we can classify statistical inference tasks as those
of estimation and testing, addressing roughly the questions of learning the underlying probability
distribution and testing its properties, respectively. In the particular case when the data takes values
in a known domain of finite cardinality, these two tasks have been the focus of an extensive body of

The full version of this paper (Acharya et al., 2018b) contains the proofs of all results discussed in this paper.
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recent work. Tight bounds are known for the number of samples necessary and sufficient to perform
these tasks, complemented by time-efficient algorithms. However, most of this work has focused on
the case where the complete data is available to the algorithm. Much less is known in the distributed
case, where the samples are held in different locations and only partial information about them can
be obtained by the algorithm.

In this work, we propose a general formulation for handling inference under per sample informa-
tion constraints. Driving our general formulation are prominent examples of communication-limited
and locally differentially private (LDP) inference. In the first, each of the n users independently
obtains a sample drawn from the unknown k-ary distribution p and can transmit at most ` bits to the
central server in-charge of conducting the inference task (Han et al., 2018; Acharya et al., 2018a;
Fischer et al., 2018). In the second, the users do not trust the central server and wish to communicate
their samples while preserving privacy under local differential privacy (Duchi et al., 2013; Sheffet,
2018; Acharya et al., 2019).

Both these questions can be cast in the following simultaneous-message passing (SMP) setting:
there is a fixed familyW of allowed channels (randomized mappings) from which each of the n users
can choose a Wj . Receiving (independently of the others) a sample xj drawn from the unknown
distribution p, player j sends the message yj := Wj(xj) to the center.1 The center uses inputs
(y1, . . . , yn) from the users to accomplish the desired inference task. We focus on two inference
tasks tasks. The first is the (k, ε)-distribution learning problem where the center seeks to estimate a
k-ary distribution p to within a total variation distance of ε and seek estimates p̂ satisfying

sup
p∈P

Pr
Xn∼p

[ dTV(p̂(Xn),p) > ε ] < 1
12 .

The second is the (k, ε)-identity testing problem where the center seeks to test whether p is equal
to a prespecified distribution q or at distance at least ε from it, namely the center seeks tests
T : X n → {0, 1} such that

Pr
Xn∼pn

[ T (Xn) = 1 ] > 11
12 if p = q, Pr

Xn∼pn
[ T (Xn) = 0 ] > 11

12 if dTV(p,q) > ε.

Clearly, the standard centralized setting corresponds to including the identity function id : [k]→ [k]
inW . By settingW to be the set of all (randomized) mappings W : [k]→ {0, 1}` we recover the
communication-limited setting. Similarly, we recover the LDP setting by settingW to be the set
of mappings W : [k] → {0, 1}∗ satisfying the %-locally private constraint W (y|x1)

W (y|x2) ≤ e%, for all
x1, x2 ∈ [k] and y ∈ {0, 1}∗.
The basic question we seek to address is the following:

Question 1 How many users n are required to perform learning and testing when the samples are
only accessible throughW?

The crux is to quantify how statistical distances shrink under information constraints imposed byW .
Our approach for answering this question is to develop a geometric view of how passing throughW
affects the distances in a small perturbed neighborhood of a reference distribution p0. Looking at
the pairwise and average chi-square distances between the distributions induced by these perturbed

1. Following the standard convention in information theory, we henceforth write W (y | x) for the probability to send
message y on input x, for a given channel W .
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elements at the output of the channels allows us to understand the difficulty of statistical inference at
the center: the more “contracted” these distances are, the harder it is to tell the perturbed elements
apart, thereby to perform inference.

Public- and private-coin protocols. One interesting feature of our general formulation is that it
accommodates both private-coin and public-coin protocols. In the former, the users can only use
local randomness to select channels fromW , while in the latter this selection can be done using
shared randomness. Specifically, for public-coin protocols, we allow (W1, . . . ,Wn) ∈ Wn to be
jointly randomized.

In recent works Acharya et al. (2018a) and Acharya et al. (2019), the role of public-coin protocols
for the identity-testing was highlighted in the communication-limited and LDP settings, respectively.
In both cases, the authors obtained significantly better sample complexity in the case of public-coin
protocols, saving roughly a

√
k factor compared to their private-coin counterparts. However, both

works left open the question of whether public-coin protocols were inherently more sample-efficient
than private-coin ones. In particular, a lower bound for private-coin protocols establishing this
separation was not given, leaving open the question:

Question 2 Does allowing public-coin protocols strictly reduce the sample complexity of the
learning and testing questions?

We use our geometric view to resolve this question and precisely quantify the gains due to public-
coins. When considering how much a small perturbed neighborhood of a reference distribution p0
can be contracted when going through channels fromW for public-coin protocols, we must allow
any possible convex combination of (W1, . . . ,Wn) ∈ Wn. This leads to a minmax bound where
minimum is over the pertubations and the maximum is over distributions for (W1, . . . ,Wn). On the
other hand, for private-coin protocols the users must select the channels W1, . . . ,Wn independently.
We show that this allows to choose perturbations that are most challenging for a given choice of
(W1, . . . ,Wn) and leads to a maxmin bound. We resolve Question 2 by quantifying precisely the
separation between the minmax and the maxmin bound.

1.1. Results and Contributions

To formally quantize the contraction in distances mentioned above, we introduce few notions of
average chi-square distances in a neighborhood. For a given family of channelsW and a reference
k-ary distribution p0, the induced chi-square fluctuation of a neighborhood P of p0 forW captures
the complexity of learning probability distributions near p0 under the corresponding local constraints
(see Theorem 13 for definition). Intuitively, this corresponds to the amount by which the pairwise
chi-square distances between elements of P are contracted under W . This directly allows us to
recover, as simple corollaries, the following lower bounds for the communication-limited and locally
private settings:

Theorem 1 For any ε ∈ (0, 1], learning of k-ary distributions in the public-coin communication-
limited and %-LDP settings requires Ω(k2/(2`ε2)) and Ω(k2/(%2ε2)) users, respectively.

From previous work, both bounds are known to be tight (Han et al., 2018; Acharya et al., 2018a;
Duchi et al., 2013), even when allowing private-coin protocols. We also point out that this also
readily implies the standard learning bound of Ω(k/ε2) samples in the unconstrained setting.
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However, the testing landscape is not fully captured by this first quantity since what matters for
testing the hypothesis p0 is not the pairwise distances between elements of P as much as how their
chi-square distances to p0 are affected by applying channels fromW . In fact, we need to handle how
these local constraints affect the distance of any convex combination of elements of P to the reference
p0. This more involved question is in turn characterized by the second quantity we introduce, the
minmax decoupled chi-square fluctuation forW . As we show, bounding this quantity readily leads
to tight sample complexity lower bounds for public-coin protocols for hypothesis testing under local
constraints (Theorem 14), and in particular enables us to immediately retrieve the following:

Theorem 2 For any ε ∈ (0, 1], testing uniformity of an arbitrary k-ary distribution in the public-
coin communication-limited and %-LDP settings requires Ω(k/(2`/2ε2)) and Ω(k/(%2ε2)) users,
respectively.

Finally, we introduce one last notion related to our chi-square contractions, the maxmin decoupled
chi-square fluctuation forW . We show in Lemma 15 that this quantity captures the complexity of
private-coin protocols for hypothesis testing. By carefully designing suitable perturbed neighborhoods
of the reference distribution p0, we are able to derive tight bounds for this quantity in Section 3, and
thereby answer Question 2. As an immediate consequence, we get the following:

Theorem 3 For any ε ∈ (0, 1], testing uniformity of an arbitrary k-ary distribution in the private-
coin communication-limited and %-LDP settings requires Ω(k3/2/(2`ε2)) and Ω(k3/2/(%2ε2)) users,
respectively.

The lower bounds on the sample complexity for communication and privacy constraints are both a
special case of a unified approach to prove lower bounds on the sample complexity under information
constraints, which roughly goes as follows. For any information channel W : [k]→ Y , we define a
corresponding matrixH(W ) in (6). We then establish lower bounds on the sample complexity for the
familyW of information constraints in terms of various norms of the induced matrices (H(W ))W∈W ,
which turn out to be much simpler to analyze. These bounds are given in Theorems 17, 19 and 21.

We summarize all our sample complexity lower bounds, along with their evaluations for
communication-constrained and locally-private settings discussed in Table 1. We remark that
our lower bounds are tight in these settings, and match the upper bounds obtained using schemes
proposed in Acharya et al. (2018a, 2019). We stress again that beyond the applications stated
above, the main contribution of this paper is not only to introduce these three notions of chi-square
fluctuations, but to formulate them as part of a general framework to study hypothesis testing and
estimation under local constraints, akin to the Fisher information or metric entropy. We strongly
believe many related problems can be cast studied in this framework, with the potential to yield not
only alternative and simpler arguments, but also and most significantly to shed new light on these
questions.

1.2. Previous work

There is a significant literature on distribution learning and testing in the collocated setting: we refer
the reader to recent surveys (Diakonikolas, 2016; Rubinfeld, 2012; Canonne, 2015; Balakrishnan and
Wasserman, 2018) and books (Devroye and Lugosi, 2001) for more on these. We here focus on the
recent results in the distributed setting, and more specifically on the distributed setting in presence of
information constraints.
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Learning Testing

Public-Coin Private-Coin Public-Coin Private-Coin

General channel familyW k
ε2 · k

maxW∈W‖H(W ))‖∗

√
k

ε2 ·
√

k
maxW∈W‖H(W )‖F

√
k

ε2 · k
maxW∈W‖H(W )‖∗

Collocated k
ε2

√
k

ε2

Communication-limited k
2`ε2

√
k

ε2 ·
√

k
2`

√
k

ε2 · k
2`

%-LDP k2

%2ε2

√
k

ε2 ·
√

k
%2

√
k

ε2 · k
%2

Table 1: Summary of chi-square contraction lower bounds for local information-constrained learning
and testing. The bounds are tight for both communication limited and LDP settings.

Distributed statistical inference under communication constraints was initially studied in the
information theory community (Ahlswede and Csiszár, 1986; Han, 1987; Han and Amari, 1998),
with the objective to characterize the asymptotic error exponents as a function of the communication
rate. Recently these results have been extended to interactive communication (Xiang and Kim, 2013),
and to more complex communication models (Wigger and Timo, 2016). Our focus is closer to recent
works on distributed parameter estimation such as Braverman et al. (2016); Duchi et al. (2013);
Watson (2018). In these, independent samples are distributed across users, and each player holds a
fixed dimension of each sample. However, the communication model they study differs from ours;
further, they do not consider the (extremely) communication-limited regime, a key motivation in our
study. Closest to ours is the work of Han et al. (2018), where the authors provide a general lower
bound for estimation of model parameters under `2 loss, in the same simultaneous-message passing
(SMP) communication model as ours (as well as in an interactive generalization of this model). In
order to do so, they provide a characterization of the pairwise distances between product distributions
in terms of the Fisher information. Although this characterization can yield asymptotically tight
bounds for learning questions, it is provably sub-optimal for the testing problems we consider. On
the other hand, recent work by Acharya et al. (2018a) considers the same communication-limited
SMP model under the general lens of statistical inference, and obtains efficient protocols for both
learning (density estimation) and testing. In this sense, the current work is both a generalization
of Acharya et al. (2018a) (and of its local privacy counterpart, Acharya et al. (2019)) a counterpart
focusing on information-theoretical lower bounds.

The problem of distributed density estimation has also been studied in various other settings (Boyd
et al., 2011; Balcan et al., 2012; Shamir, 2014; Zhang et al., 2013; Han et al., 2018; Diakonikolas
et al., 2017; Fischer et al., 2018; Xu and Raginsky, 2017), of which Diakonikolas et al. (2017) is
perhaps the most similar to ours. Namely, in this work the authors consider an interactive, blackboard,
model of communication where the overall number of bits communicated is limited; but where the
users do not have any individual communication constraint. For this reason, the two models are
incomparable, and lead to results and techniques that are intrinsically different.

There is also a significant line of research on statistical inference under privacy constraints, in
particular under differential privacy (Dwork, 2008). A particular setting is called local differential
privacy (Duchi et al., 2013), where samples are distributed across users, and each user then passes
their samples through a differentially private channel. Duchi et al. (2013); Kairouz et al. (2016); Ye
and Barg (2017); Acharya et al. (2018c); Wang et al. (2016) study distribution estimation under LDP.
More recently, Sheffet (2018) initiated the study of distribution testing under local differential privacy.
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Followup work by Acharya et al. (2019) improves on the results of Sheffet (2018), and obtains
efficient protocols for testing under this distributed local privacy constraint. As mentioned above, the
current work generalizes this particular type of constraint as well, and yields information-theoretically
optimal on both learning and testing in the locally private setting.
Organization. In Section 2, we review and re-interpret known results on testing and learning
of discrete distributions, casting them in a language later amenable to our general information-
constrained view. We develop this general framework in Section 3, where we both formulate the new
notions of induced χ2 contractions and use them to derive the corresponding results. Due to space
constraints, proofs of our results and their applications to the communication-limited and locally
private settings are deferred to the full version (Acharya et al., 2018b).

2. Perturbed families and chi-square fluctuations

To build basic heuristics, we first revisit the derivation of lower bounds for sample complexity of
(k, ε)-distribution learning and (k, ε)-identity testing. As mentioned previously, for the latter it
suffices to derive lower bounds for (k, ε)-uniformity testing. We present both proofs in a unifying
framework which, in addition to its generality, will extend to our information-constrained setting.

Lower bounds for both learning and testing can be derived from a local view of the geometry of
product distributions around the uniform distribution. Denote by un the n-fold product distribution
with each marginal given by u, the uniform distribution on [k]. A typical lower bound proof entails
finding an appropriate family of distributions close to u for which it is information-theoretically
difficult to solve the underlying problem. We call such a family a perturbed family and define it next,
along with the related notion of almost perturbation which we shall rely on later.

Definition 4 For ε ∈ (0, 1] and a given k-ary distribution p, an ε-perturbed family around p is
a finite collection of distributions q satisfying dTV(p,q) ≥ ε. Given a family of distributions
P = {pz, z ∈ Z}, and a distribution ζ on Z , the pair Pη = (P, ζ) is an almost ε-perturbation
(around p) if Pr[dTV(pZ ,p) ≥ ε] ≥ α, for some α ≥ 1/10. We denote the set of all almost
ε-perturbations by Υε.

When ε is clear from context, we simply use the phrase perturbed family around p. As we shall see
below, the bottleneck for learning distributions, which is a parametric estimation problem, arises from
the difficulty in solving a multiple hypothesis testing problem whose hypotheses are the elements of a
perturbed family around u. Using Fano’s inequality, we can show that this is captured by the average
KL divergence between u and the elements of the perturbed family. For a unified treatment, we shall
simply bound KL divergences by chi-square distances, which motivates the following definition.

Definition 5 Given a k-ary distribution p and a perturbed family P around p, the chi-square
fluctuation of P is given by χ2(P) := 1

|P|
∑

q∈P χ
2(q,p).

The aforementioned average divergence is bounded above by the chi-square fluctuation of P , which
will be used to obtain a lower bound for sample complexity of learning in the next section.

On the other hand, the bottleneck for testing, which is a composite hypothesis testing problem,
arises from the difficulty in solving the binary hypothesis testing problem with un as one hypothesis
and a uniform mixture of the n-fold product of elements of the perturbed family as the other. This
difficulty is captured by the total variation distance between these two distributions on [k]n, for which
a simple upper bound is

√
n ·
√
χ2(P). However, this bound turns out to be far from optimal.
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Instead, an alternative bound derived using a recipe from Pollard (2003) was shown to be tight
in Paninski (2008). To understand this bound, we parameterize the elements of the perturbed family
P as pz , for z ∈ Z . Denoting by δz ∈ Rk the normalized perturbation with entries given by

δz(x) = pz(x)− p(x)
p(x) , x ∈ [k],

we can re-express χ2(P) as χ2(P) = E
[
χ2(pZ ,p)

]
= EZ

[
‖δZ‖22

]
, where ‖δZ‖22 is the second

moment of the random variable δz(X) (for X drawn from p) and the outer expectation is over
Z which is uniformly distributed over Z (independently of X). Using a technique of Pollard
(cf. Paninski (2008)), we can essentially replace n · χ2(P) in the previously mentioned upper bound
by a quantity we term the decoupled chi-square fluctuation of P , defined next.

Definition 6 Given a k-ary distribution p and a perturbed familyP = { pz : z ∈ Z } around p, the
n-fold decoupled chi-square fluctuation of P is given by χ(2)(Pn) := logEZZ′ [exp (n · 〈δZ , δZ′〉)],
where 〈δz, δz′〉 denotes the correlation inner product EX [δZ(X)δZ′(X)] for X drawn from p and
the outer expectation is over Z distributed uniformly over Z and Z ′ an independent copy of Z.

While the quantities n · χ2(P) and χ(2)(Pn) are new, they are implicit in previous work. The
abstraction here allows us to have a clear geometric view and lends itself to the more general local
information-constrained setting. For completeness, we review the proofs of existing lower bounds
using our chi-square fluctuations terminology: in the sections below, we will present the lower
bounds for sample complexity of learning and testing using a specific perturbed family Pε and bring
out the role of χ2(Pε) and χ(2)(Pnε ) in these bounds. In particular, both bounds will be derived using
the ε-perturbed family Pε around u due to Paninski (2008), consisting of distributions pz given by

pz = 1
k

(
1 + 2εz1, 1− 2εz1, . . . , 1 + 2εzk/2, 1− 2εzk/2

)
, z ∈ {±1}

k
2 . (1)

The normalized perturbations for this perturbed family are given by δz(x) =
{

2εzi, x = 2i− 1,
−2εzi, x = 2i,

for i ∈ [k/2]. Note that this perturbed family is closely related to the standard one used in statistics
where δz(x) is proportional to ±ε for each x; the variant above ensures additionally that the
probabilities of pairs of elements are preserved, whereby the perturbed family consists of elements
of the probability simplex.

Chi-square fluctuation and the learning lower bound. For learning, we consider the multiple
hypotheses testing problem where the hypotheses are pz , z ∈ {±1}k/2, given in (1). Specifically,
denote by Z the random variable distributed uniformly on Z = {±1}k/2 and by Y n the random
variable with distribution pnZ given Z. We can relate the accuracy of a probability estimate to the
probability of error for the multiple hypothesis testing problem with hypotheses given by pz using
the standard Fano’s method (cf. Yu (1997)). In particular, we can use a probability estimate p̂ to
solve the hypothesis testing problem by returning as Ẑ a z ∈ {−1, 1}k/2 that minimizes dTV(pẑ, p̂).
The difficulty here is that dTV(pz,pz′) may not be Ω(ε), and therefore, an (n, ε)-estimator may not
return the correct hypothesis. One way of circumventing this difficulty is to restrict to a perturbed
family where pairwise-distances are Ω(ε). Note that for the perturbed family in (1), we have

dTV(pz,pz′) = dist(z, z′) · 2ε
k
, (2)
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where dist(z, z′) is the Hamming distance. This simple observation allows us to convert the problem
of constructing a “packing” in total variation distance to that of constructing a packing in Hamming
space. Indeed, a standard Gilbert–Varshamov construction yields a subset Z0 ⊂ {±1}k/2 with
|Z0| ≥ 2ck such that dist(z, z′) = Ω(k) for every z, z′ in Z0. Using Fano’s inequality to bound the
probability of error for this new perturbed family, we can relate the sample complexity of learning
to I (Z ∧ Y n). However, when later extending our bounds to the information-constrained setting,
this construction would create difficulties in bounding I (Z ∧ Y n) for public-coin protocols. We
avoid this complication by relying instead on a slightly modified form of the classic Fano’s argument
from Duchi and Wainwright (2013); this form of Fano’s argument was used in Han et al. (2018) as
well to obtain a lower bound for the sample complexity of learning under communication constraints.

Specifically, in view of (2), it is easy to see that for an estimate p̂ such that pn(dTV(p, p̂) >
ε/3) ≤ 1/3 for all p, we must have Pr

[
dist(Z, Ẑ) > k/6

]
≤ 1/3. On the other hand, the proof of

Fano’s inequality in Cover and Thomas (2006) can be extended easily to obtain

Pr
[

dist(Z, Ẑ) > k

6

]
≥ 1− I (Z ∧ Y n) + 1

log2 |Z| − log2Bk/6
, (3)

where Bt denotes the cardinality of Hamming ball of radius t. Noting that log2Bk/6 ≤ k
2 · h(1/3),

and combining the bounds above, we obtain I (Z ∧ Y n) + 1 ≥ k
40 . Therefore, to obtain a lower

bound for sample complexity it suffices to bound I (Z ∧ Y n) from above. It is in this part that we
bring in the role of chi-square fluctuations.
Indeed, we have

I (Z ∧ Y n) = min
Q∈∆(kn)

E[D(pnZ‖Q)] ≤ E[D(pnZ‖un)] = nE[D(pZ‖u)] ≤ n · χ2(Pε) (4)

where the last inequality uses D(p‖q) ≤ χ2(p,q). From (4) and the foregoing discussion, we
obtain that n = Ω

(
k/χ2(Pε)

)
, yielding the desired lower bound for sample complexity. In fact, the

argument above is valid for any perturbation with desired pairwise minimum total variation distance,
namely any perturbed family satisfying an appropriate replacement for the above bound on log2Bk/6.
In particular, it suffices to impose the following condition:

max
z∈Z

∣∣∣{z′ ∈ Z : dTV(pz,pz′) ≤
ε

3
}∣∣∣ ≤ Cε . (5)

The foregoing arguments lead to the next result.

Lemma 7 For ε ∈ (0, 1] and a k-ary distribution p, let Pε be an ε-perturbed family around p
satisfying (5). Then the sample complexity of (k, ε/3)-distribution testing must be Ω

(
log |Pε|−logCε

χ2(Pε)

)
.

For Paninski’s perturbed family Pε in (1), |Pε| = 2k/2, Cε = 2(1−h(1/3))k/2, and an easy calculation
yields χ2(Pε) = 4ε2. We thus recover the Ω(k/ε2) sample complexity lower bound for learning.

Decoupled chi-square fluctuation and the testing lower bound. As is the case with distribution
learning, the pairwise hypothesis testing problems emerging from the perturbed family Pε do not
yield the desired dependence of sample complexity on k. The bottleneck is obtained by realizing
that the actual problem we end up solving is a composite binary hypothesis testing where the null
hypothesis is given by un and the alternative can be any of the pnz , z ∈ {±1}k/2. In particular, any
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test for uniformity using n samples will also constitute a test for un versus E[pnZ ] for every random
variable Z. Thus, another aspect of the geometry around un that enters our consideration is the
distance between un and E[pnZ ]. Using Pinsker’s inequality and convexity of KL divergence, we can
bound this as follows:

dTV(E[pnZ ] ,un)2 ≤ 1
2D(E[pnZ ] ‖un) ≤ 1

2E[D(pnZ‖un)] = n

2E[D(pZ‖u)] ≤ n

2 · χ
2(Pε),

which itself is equal to
√

2nε2 by our previous computations. Thus, this upper bound of the distance
between un and E[pnZ ] in terms of the chi-square fluctuation only yields a sample complexity lower
bound of Ω(1/ε2), much lower than the Ω(

√
k/ε2) bound that we strive for.

Instead, we bound this distance in terms of the decoupled chi-square fluctuation χ(2)(Pnε ) using
the aforementioned recipe from Pollard (2003). To that end, we rely on the following result, an
extension of the result in Pollard (2003) to product distributions. This simple, but crucial, extension
will allow us to handle local information constraints later.

Lemma 8 Consider a random variable θ such that for each θ = ϑ the distribution Qnϑ is defined as
Q1,ϑ × · · · ×Qn,ϑ. Further, let Pn = P1 × · · · × Pn be a fixed product distribution. Then,

χ2(Eθ[Qnθ ], Pn) = Eθθ′
[ n∏
i=1

(1 +Hi(θ, θ′))
]
− 1,

where θ′ is an independent copy of θ, and with δϑi (Xi) = (Qi,ϑ(Xi)−Pi(Xi))/Pi(Xi),Hi(ϑ, ϑ′) :=
〈δϑi , δϑ

′
i 〉 = E[δϑi (Xi)δϑ

′
i (Xi)], where the expectation is over Xi distributed according to Pi.

This leads us to the following result, which will be seen to yield the desired lower bound.

Lemma 9 For ε ∈ (0, 1] and a k-ary distribution p, let Pε be an ε-perturbed family around p.
Then, the sample complexity n = n(k, ε) for (k, ε)-identity testing with reference distribution p must
satisfy χ(2)(Pnε ) ≥ c , for some absolute constant c > 0.

Going back to Paninski’s perturbed family of (1), observe that 〈δZ , δ′Z〉 = 8ε2

k

∑k/2
i=1 ZiZ

′
i =

2ε2

k

∑k/2
i=1 Vi, where V1, . . . , Vk/2 are independent Radamacher random variables. Thus, we can

bound the chi-square fluctuation byO(n2/ε4/k) using Hoeffding’s lemma and recover the Ω(
√
k/ε2)

lower bound for sample complexity of uniformity testing.

3. Results: Chi-square Contraction Bounds

We now extend our notions of chi-square and decoupled chi-square fluctuations to the information-
constrained setting. Recall that in the information-constrained setting each player sends information
about its sample by choosing a channel from a familyW to communicate to the central refereeR. The
perturbed family will now induce a distribution on the outputs of the chosen channels W1, . . . ,Wn.
The difficulty of learning and testing problems will thus be determined by chi-square fluctuations
for this induced perturbed family, extending the results of the previous section to the information-
constrained setting. The difficulty of inference gets amplified by information constraints since the
induced distributions are closer than the original ones and the chi-square fluctuation decreases.

As one of our main results in this section, we provide a bound for chi-square fluctuations of
the induced perturbed family corresponding to the family of (1), for a givenW . Underlying these

9
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bounds is a precise characterization of the contraction in chi-square fluctuation owing to information
constraints. One can view this as a bound for the minmax chi-square fluctuation for an induced
perturbed family, where the min is over perturbed families and the max overW . We will see that for
public-coin protocols, the bottleneck is indeed captured by this minmax chi-square fluctuation.

On the other hand, for private-coin protocols the bottleneck can be tightened further by designing
a perturbation specifically for each choice of channels fromW . In other words, in this case we can
use a bound for maxmin chi-square fluctuation. Another main result of this section, perhaps our most
striking one, is a tight bound for this maxmin chi-square fluctuation for the aforementioned induced
perturbed family. This bound turns out to be more restrictive than the minmax chi-square fluctuation
bound, separating private- and public-coin protocols for the casesW =W` andW =W%.

We begin by noting that Lemmas 7 and 9 extend to the information-constrained setting. Our
extension involves the notions of an induced perturbed family and its chi-square fluctuations, defined
next. Throughout we assume that the familyW consists of channels with input alphabet X = [k]
and finite output alphabet Y , and the perturbed family P can be parameterized as { pz : z ∈ Z }.

Definition 10 For a perturbed family P and channelsWn = (W1, . . . ,Wn) ∈ Wn, the induced per-
turbed familyPWn

comprises distributions pWn

z onYn given by pWn

z (yn) =
∏n
i=1 Epz [W (yi | Xi)].

To extend the notion of chi-square fluctuations to induced perturbed families, we need to capture the
corresponding notion of normalized perturbation. Let pW and qW , respectively, be the output distri-
butions for a channel W with input distributions p and q. Then, for δ(x) := (q(x)− p(x))/p(x),

qW (y)− pW (y)
pW (y) =

∑
x∈X

(q(x)− p(x))W (y | x)
pW (y) =

∑
x p(x)W (y | x)δ(x)∑
x′ p(x)W (y | x) .

Thus, the normalized perturbation for the induced perturbed family is given by δWZ (y) = 1
pW (y) ·

Ep[δZ(X)W (y | X)], for y ∈ Y . The notion of chi-square fluctuations of PWn
extends the earlier

definitions to product distributions (not necessarily identically distributed as earlier).

Definition 11 Consider a perturbed family P = {pz : z ∈ Z} and a family of channelsW . The
induced chi-square fluctuation of P for W ∈ W is given by

χ2 (W | P) := EZ [‖δWZ ‖
2
2],

where Z is distributed uniformly over Z and ‖δWz ‖22 = EY∼pW
[
δWz (Y )

]
. The n-fold induced

decoupled chi-square fluctuation of P for Wn ∈ Wn is given by

χ(2) (Wn | P) := logEZZ′
[
exp

( n∑
i=1
〈δWi
Z , δWi

Z′ 〉
)]
,

where 〈δWz , δWz′ 〉 = EY∼pW
[
δWz (Y )δWz′ (Y )

]
. When the distribution ζ of Z used in the expectation

is not uniform, we replace P with Pζ in our notation.

Our final definition captures the minmax and maxmin notions of induced decoupled chi-square
fluctuation, which will play a central role in our sample complexity bounds for testing.

10
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Definition 12 (Minmax and Maxmin Chi-square Fluctuations) For a family of channelsW , the
(n, ε)-minmax decoupled chi-square fluctuation forW is given by

χ(2)(Wn, ε) := inf
Pζ∈Υε

sup
Wn∈Wn

χ(2) (Wn | Pζ) ,

and the (n, ε)-maxmin decoupled chi-square fluctuation forW is given by

χ(2)(Wn, ε) := sup
Wn∈Wn

inf
Pζ∈Υε

χ(2) (Wn | Pζ) ,

where the infimum is over all almost ε-perturbations Pζ .

Further, we observe that when obtaining bounds for public-coin protocols we can restrict ourselves
to a smaller family of channels thanW , that of a generator family forW , which we denoteW0, and
is a minimal subset ofW whose convex hullW0 isW . Note that the channels inW can be generated
from and can generate, respectively, channels inW0 andW using randomness.

3.1. General chi-square fluctuation bounds

The bounds presented in this section are obtained by relating notions of chi-square fluctuation for
W developed above to average distances in a neighborhood of probability simplex. We present our
bounds for learning and testing problems, but the recipe extends to many other inference problems.
In the next section, we provide specific evaluations of these bounds which use the perturbed family
of (1), and its variant, and are tailored for learning and testing. We begin with our bound for learning,
which is a generalization of Lemma 7 to the information-constrained setting.

Lemma 13 (Chi-square fluctuation bound for learning) For ε ∈ (0, 1] and a k-ary distribution
p, let Pε be an ε-perturbed family around p satisfying (5) Then, the sample complexity of (k, ε)-
distribution learning usingW for public-coin protocols is Ω

(
log |Pε|−logCε

maxW∈W0 χ
2(W |Pε)

)
.

Similarly, the proof of Lemma 9 extends to the information-constrained setting, obtaining both
Lemma 14 and its counterpart for private-coin protocols.

Lemma 14 (Minmax decoupled chi-square fluctuation bound for testing) For ε ∈ (0, 1] and a
k-ary reference distribution p, the sample complexity n = n(k, ε) of (k, ε)-identity testing usingW
for public-coin protocols must satisfy χ(2)(Wn

0 , ε) ≥ c, for some absolute constant c > 0.

Lemma 15 (Maxmin decoupled chi-square fluctuation bound for testing) For ε ∈ (0, 1] and a
k-ary reference distribution p, the sample complexity n = n(k, ε) of (k, ε)-identity testing usingW
for private-coin protocols must satisfy χ(2)(Wn

, ε) ≥ c, for some absolute constant c > 0.

3.2. Chi-square contraction bounds for learning and testing

We now derive bounds for chi-square fluctuations χ2(W0 | Pε), χ(2)(Wn
0 , ε), and χ(2)(Wn

, ε) for
Paninski’s perturbed family of (1) and arbitrary channel familiesW . Combined with the chi-square
fluctuation lower bounds derived in the previous section, these bounds yield concrete lower bounds on
the sample complexity of learning and testing usingW . In essence, our bounds precisely characterize
the contraction in chi-square fluctuation in the information-constrained setting over the standard
setting; we term these bounds the chi-square contraction bounds.

11
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Crucially, the normalized perturbation δWZ is linear in δZ ; further, for Paninski’s perturbed family
δZ itself is linear in Z. This observation allows us to capture chi-square fluctuations in terms of a
channel-dependent (k/2)× (k/2) matrix H(W ) given below:

H(W )i1,i2 :=
∑
y∈Y

(W (y | 2i1 − 1)−W (y | 2i1))(W (y | 2i2 − 1)−W (y | 2i2))∑
x∈[k]W (y | x) (6)

We are now in a position to state our main results, starting with a bound for chi-square fluctuation:

Theorem 16 For Pε as in (1) and any channel W , we have χ2(W | Pε) = O
(
ε2

k ‖H(W )‖∗
)
.

Comparing this bound with Section 2 shows that the chi-square fluctuation contracts by a factor
of roughly (1/k)maxW∈W ‖H(W )‖∗ due to local information constraints from W . Now, recall
from Section 2 that the perturbed family Pε given in (1) satisfies log |Pε|Cε

≥ (1−h(1/3))k
2 ≥ 3k

40 . Thus,
combining the chi-square fluctuation bound in Theorem 16 with Lemma 13, we obtain the following
bound for sample complexity of distribution learning.

Corollary 17 (Chi-square contraction bound for learning) For ε ∈ (0, 1], the sample complexity
of (k, ε)-distribution learning usingW for public-coin protocols is Ω

(
k
ε2 · k

supW∈W0‖H(W ))‖∗

)
.

Next, we upper bound the minmax chi-square fluctuation, again analyzing the perturbed family in (1).

Theorem 18 Given n ∈ N and ε ∈ (0, 1), for a channel familyW the minmax chi-square fluctuation
is bounded as χ(2)(Wn, ε) = O

(
n2ε4

k2 ·maxW∈W ‖H(W )‖2F
)
,whenever n ≤ k

16ε2 maxW∈W ‖H(W )‖F
.

Comparing the bound above with that from Section 2 shows that the decoupled chi-square fluctuation
contracts by a factor of (1/k) maxW∈W ‖H(W )‖2F . Similarly, combining the minmax decoupled
chi-square fluctuation bound of Lemma 14 with Theorem 18 yields the following sample complexity
lower bound of uniformity testing using public-coin protocols.

Corollary 19 (Chi-square contraction bound for testing using public-coin protocols) For ε ∈
(0, 1], the sample complexity of (k, ε)-uniformity testing using W for public-coin protocols is
Ω
(√

k
ε2 ·

√
k

maxW∈W0‖H(W )‖F

)
.

Finally, we provide a bound for the maxmin chi-square fluctuation for a channel familyW .

Theorem 20 Given n ∈ N and ε ∈ (0, 1), for a channel family W the (n, ε)-maxmin chi-
square fluctuation is bounded as χ(2)(Wn, ε) = O

(
n2ε4

k3 · maxW∈W ‖H(W )‖2∗
)

whenever n ≤
k3/2

4c2ε2 maxW∈W ‖H(W )‖∗
, where c > 0 is an absolute constant.

Comparing again the bound above with its counterpart from Section 2 shows that the decoupled
chi-square fluctuation contracts by a factor of (1/k2) maxW∈W ‖H(W )‖2∗ due to local information
constraints when restricting to private-coin protocols, worse than the contraction for public-coin
protocols. Combining the maxmin decoupled chi-square fluctuation bound for testing with Lemma 15
yields our final lower bound for sample complexity of uniformity testing using private-coins.

Corollary 21 (Chi-square contraction bound for testing using private-coin protocols) For ε ∈
(0, 1], the sample complexity of (k, ε)-uniformity testing using W for private-coin protocols is
Ω
(√

k
ε2 · k

max
W∈W‖H(W )‖∗

)
.
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