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Abstract
Numerous empirical evidence has corroborated
that noise plays a crucial rule in effective and ef-
ficient training of neural networks. The theory
behind, however, is still largely unknown. This
paper studies this fundamental problem through
training a simple two-layer convolutional neural
network model. Although training such a network
requires solving a non-convex optimization prob-
lem with a spurious local optimum and a global
optimum, we prove that perturbed gradient de-
scent and perturbed mini-batch stochastic gradient
algorithms in conjunction with noise annealing
is guaranteed to converge to a global optimum in
polynomial time with arbitrary initialization. This
implies that the noise enables the algorithm to ef-
ficiently escape from the spurious local optimum.
Numerical experiments are provided to support
our theory.

1. Introduction
Deep neural networks (DNNs) have achieved great suc-
cesses in a wide variety of domains such as speech and
image recognition (Hinton et al., 2012; Krizhevsky et al.,
2012), nature language processing (Rumelhart et al., 1986)
and recommendation systems (Salakhutdinov et al., 2007).
Training DNNs requires solving non-convex optimiza-
tion problems. Specifically, given n samples denoted by
{(xi, yi)}ni=1, where xi is the i-th input feature and yi is the
response, we solve the following optimization problem,

min
θ
F(θ) =

1

n

n∑
i=1

`(yi, f(xi, θ)),

where ` is a loss function, f denotes the decision function
based on the neural network, and θ denotes the parameters
associated with f .
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Simple first order algorithms such as Stochastic Gradient
Descent (SGD) and its variants have been very successful for
training deep neural networks, despite the highly complex
non-convex landscape. For instance, recent results show
that there are a combinatorially large number of saddle
points and local optima in training DNNs (Choromanska
et al., 2015). Though it has been shown that SGD and its
variants can escape saddle points efficiently and converge to
local optima (Dauphin et al., 2014; Kawaguchi, 2016; Hardt
& Ma, 2016; Jin et al., 2017), the reason why the neural
network learnt by SGD generalizes well cannot yet be well
explained, since local optima do not necessarily guarantee
generalization. For example, Zhang et al. (2016) empirically
show the proliferation of global optima (when minimizing
the empirical risk), most of which cannot generalize; Keskar
et al. (2016) also provide empirical evidence of the existence
of sharp local optima, which do not generalize. They further
observe that gradient descent (GD) can often converge to the
sharp optima, while SGD tends to converge to the flat ones.
This phenomenon implies that the noise in SGD is very
crucial and enables SGD to select good optima. Besides,
Bottou (1991); Neelakantan et al. (2015) also show that
adding noise to gradient can potentially improve training
of deep neural networks. These empirical observations
motivate us to theoretically investigate the role of the noise
in training DNNs.

This paper aims to provide more theoretical insights on the
following fundamental question:

How does noise help train neural networks in the
presence of bad local optima?

Specifically, we study a two-layer non-overlapping convolu-
tional neural network (CNN) with one hidden layer, which
takes the following form:

f(Z,w, a) = aTσ(ZTw),

wherew ∈ Rp, a ∈ Rk andZ ∈ Rp×k are the convolutional
weights, the output weights and the input, respectively, and
σ(·) is the element-wise ReLU activation operator. Since
the ReLU activation is positive homogeneous, the weights
a and w can arbitrarily scale with each other. Thus, we
impose an additional constraint ‖w‖2 = 1 to make the
neural network identifiable. We consider the realizable case,
where the training data is generated from a teacher network
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with true parameters w∗, a∗ and ‖w∗‖2 = 1. Then we
aim to recover the teacher neural network by solving the
following optimization problem,

min
w, a

1

2
EZ (f(Z,w, a)− f(Z,w∗, a∗))2

subject to w>w = 1,

(1)

where Z is independent Gaussian input1. One can verify
that (w∗, a∗) is a global optimum of (1).

Though over-simplified compared with complex deep neu-
ral networks in practice, the above model turns out to have
some intriguing properties, which helps us get insight into
understanding the optimization landscape of training neural
networks. Specifically, Du et al. (2017) show that the opti-
mization problem (1) has a non-trivial spurious optimum,
which does not generalize well. They further prove that
with random initialization, Gradient Descent (GD) can be
trapped in this spurious optimum with constant probability2.

Inspired by Du et al. (2017), we propose to investigate
whether adding noise to gradient descent helps avoid the
spurious optimum using the same model. Specifically, we
consider a perturbed GD algorithm3 in conjunction with
noise annealing to solve the optimization problem (1). To
be more concrete, we run the algorithm with multiple epochs
and decrease the magnitude of the noise as the number of
epochs increases. Note that our algorithm is different from
SGD in terms of the noise. In our algorithm, we inject
independent noise to the gradient update at every iteration,
while the noise of SGD comes from the training sample.
As a consequence, the noise of SGD has very complex
dependence on the iterate, which is very difficult to analyze.
See more detailed discussions in Sections 2 and 6.

We further analyze the convergence properties of our per-
turbed GD algorithm: At early stages, large noise essentially
convolutes with the loss surface and makes the optimization
landscape smoother, which tames non-convexity and rules
out the spurious local optimum. Hence, perturbed GD is ca-
pable of escaping from the spurious local optimum. Though
large noise leads to large optimization errors, this can be fur-
ther compensated by noise annealing. In another word, the
injected noise with decreasing magnitude essentially guides
GD to gradually approach and eventually fall in the basin of
attraction of the global optimum. Given that the noise has
been annealed to a sufficiently small level at later stages, the
algorithm finally converges to the global optimum and stays
in its neighborhood. Overall, we prove that with random ini-

1This is a common assumption in previous works (Tian, 2017;
Brutzkus & Globerson, 2017; Zhong et al., 2017)

2Du et al. (2017) prove that this probability is bounded be-
tween 1/4 and 3/4. Their numerical experiments show that this
probability can be as worse as 1/2.

3Our algorithm actually updates w using the manifold gradient
over the sphere. See more details in Section 2

tialization and noise annealing, perturbed GD is guaranteed
to converge to the global optimum with high probability in
polynomial time. Moreover, we further extend our proposed
theory to the perturbed mini-batch stochastic gradient al-
gorithm, and establish similar theoretical guarantees. To
the best of our knowledge, this is the first theoretical result
towards justifying the effect of noise in training NNs by
first order algorithms in the presence of the spurious local
optima.

Our work is related to Zhou et al. (2017); Li & Yuan (2017);
Kleinberg et al. (2018); Jin et al. (2018), which also study
the effect of noise in non-convex optimization. We give
detailed discussions in Section 6.

The rest of the paper is organized as follows: Section 2
describes the two-layer non-overlapping convolutional net-
work and introduces our perturbed GD algorithm; Section 3,
4 present the convergence analysis; Section 5 provides the
numerical experiments; Section 6 discusses related works.

Notations: Given a vector v = (v1, . . . , vd)
> ∈ Rd, we

define ‖v‖22 =
∑
j v

2
j , ‖v‖1 =

∑
j |vj |. For vectors

v, u ∈ Rd, we define 〈u, v〉 =
∑d
j=1 ujvj . B0(r) de-

notes a ball with radius r centered at zero in Rd, i.e.,
B0(r) = {v ∈ Rd | ‖v‖2 ≤ r} and S0(r) denotes the bound-
ary of B0(r). For two vectors v, w, ∠(v, w) represents the
angle between them, i.e., ∠(v, w) = arccos v>w

‖v‖2‖w‖2
. We

denote the uniform distribution onM ⊆ Rd by unif(M)
and the projection of vector v on setM by ProjM(v). For
two sets A and B ∈ Rd, A\B = {x ∈ Rd

∣∣x ∈ A, x /∈ B}.
2. Model and Algorithm
We first introduce the neural network models of our interests,
and then present the nonconvex optimization algorithm.

2.1. Neural Network Models
Recall that we study a two-layer non-overlapping convolu-
tional neural network (CNN) given by:

f(Z,w, a) = a>σ(Z>w), (2)

where a ∈ Rk, w ∈ Rp and Z ∈ Rp×k are the output
weights, the convolutional weights and input, respectively.
σ(·) denotes the element-wise ReLU activation operator.
Since the ReLU activation is homogeneous, w and a can
arbitrarily scale with each other without changing the out-
put of the network, i.e., f(Z,w, a) = f(Z, cw, ac ) for any
c > 0. Thus, we impose an additional constraint ‖w‖2 = 1
to make the model identifiable. We assume independent
Gaussian input Z = [Z1, ..., Zp], where Zi’s are indepen-
dently sampled from N(0, I), and focus on the noiseless
realizable setting – i.e., the response is generated by a noise-
less teacher network

y = f(Z,w∗, a∗) = (a∗)>σ(Z>w∗)
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with some true parameters ‖w∗‖2 = 1 and a∗. We aim to
learn a student network, i.e., recover the true parameters
(w∗, a∗) by solving the following regression problem using
mean square loss:

min
w,a
L(w, a) subject to w>w = 1, (3)

where L(w, a) = 1
2EZ(f(Z,w, a) − f(Z,w∗, a∗))2. The

optimization landscape has been partially studied by Du et al.
(2017). Specifically, one can easily verify that (w∗, a∗) is
a global optimum of (3). Moreover, they prove that there
exists a spurious local optimum, and gradient descent with
random initialization can be trapped in this spurious opti-
mum with constant probability.

Proposition 1 (Informal, Du et al. (2017)). Given

w0 ∼ unif
(
S0 (1)

)
and a0 ∼ unif

(
B0

(
|1>a∗|/

√
k
))

as the initialization and the learning rate is sufficiently
small, then with at least probability 1/4, GD converges to
the spurious local minimum (v∗, ã) satisfying

∠(v∗, w∗) = π, ã = (11> + (π − 1)I)−1(11> − I)a∗.

Please refer to Du et al. (2017) for more details.

2.2. Optimization Algorithm
We then present the perturbed gradient descent algorithm for
solving (3). Specifically, at the t−th iteration, we perturb the
iterate (wt, at) with independent noise ξt ∼ unif

(
B0(ρw)

)
and εt ∼ unif

(
B0(ρa)

)
and take:

at+1 = at − η∇aL(wt + ξt, at + εt),

wt+1 = ProjS0(1)

(
wt − η(I − wtw>t )

· ∇wL(wt + ξt, at + εt)
)
,

where η is the learning rate. We remark that the update
for w in our algorithm is essentially based on the manifold
gradient, where (I−wtw>t ) is the projection operator to the
tangent space of the unit sphere at wt. For simplicity, we
still refer to our algorithms as Perturbed Gradient Descent.

As can be seen, for ξt = 0 and εt = 0, our algorithm is
reduced to the (noiseless) gradient descent. Different from
SGD, the noise of which is usually from randomly sampling
the data, we inject the noise directly to the iterate used for
computing gradient. Moreover, stochastic gradient is usu-
ally an unbiased estimate of gradient, while our perturbed
gradient∇aL(wt + ξt, at + εt) and∇wL(wt + ξt, at + εt)
yield biased estimates, i.e.,

Eξt,εt∇aL(wt + ξt, at + εt) 6= ∇aL(wt, at),

Eξt,εt∇wL(wt + ξt, at + εt) 6= ∇wL(wt, at).

See detailed discussions in Section 6 and Appendix A.

Our algorithm also incorporates the noise annealing ap-
proach. Specifically, the noise annealing consists of multi-
ple epochs with varying noise levels. Specifically, we use
large noise in early epochs and gradually decrease the noise
level as the number of epoch increases. Since we sample the
noise ξt and εt uniformly from B0(ρw) and B0(ρa), respec-
tively, we can directly control the noise level by controlling
the radius of the ball, i.e., ρw and ρa. One can easily verify

‖ξt‖2 ≤ ρw, Eξt = 0, Cov ξt =
ρ2
w

p+ 2
I,

‖εt‖2 ≤ ρa, Eεt = 0, Cov εt =
ρ2
a

k + 2
I.

We summarize the algorithm in Algorithm 1.

Remark 2. Note that our arbitrary initialization is different
from the random initialization in Du et al. (2017), which re-
quires w0 ∼ unif (S0(1)) and a0 ∼ unif

(
B0

(
|1>a∗|√

k

))
.

They need the randomness to avoid falling into the basin
of attraction of the spurious local optimum. Our perturbed
GD, however, can be guaranteed to escape the spurious
local optimum. Thus, we initialize the algorithm arbitrarily.

Remark 3 (Convolutional Effects). We remark that the s-
epoch of the perturbed GD can also be viewed as solving

min
‖w‖2=1,a

Eξs,εsL(w + ξs, a+ εs), (4)

where ξs ∼ unif
(
B0(ρsw)

)
and εs ∼ unif

(
B0(ρsa)

)
. There-

fore, the noise injection can be interpreted as convoluting
the objective function with uniform kernels. Such a convo-
lution makes the objective much smoother, and leads to a
benign optimization landscape with respect to the global
optimum of the original problem, as illustrated in Figure 1
(See more details in the next section).

No Noise Small NoiseSmall Noise

Moderate Noise Large Noise

Figure 1. An illustration of the convolutional effects of the injected
noise. Larger noise leads to smoother optimization landscapes, but
also yields larger approximation errors to the original problem.

Note that the above convolution effect also introduces ad-
ditional “bias” and “variance”: (I) The global optimum of
the smooth approximation (4) is different from the original
problem; (II) The injected noise prevents the algorithm from
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converging. This is why we need to gradually decreasing
the magnitude of the noise, which essentially guides the
perturbed GD to gradually approach and eventually fall in
the basin of attraction of the global optimum of the original
problem (as illustrated in Figure 2).

Algorithm 1 Perturbed Gradient Descent Algorithm with
Noise Annealing
input: number of epochs S, length of epochs {Ts}Ss=1,
learning rate schedule {ηs}Ss=1 and noise level schedule
{ρsw}Ss=1, {ρsa}Ss=1

initialize: choose any w0 ∈ S0(1) and a0 ∈ B0

( |1>a∗|√
k

)
for s = 1, . . . , S do

ws,1 ← w0, as,1 ← a0

for t = 1 . . . Ts − 1 do
ξs,t ∼ unif

(
B0(ρsw)

)
and εs,t ∼ unif

(
B0(ρsa)

)
as,t+1 ← as,t − ηs∇aL(ws,t + ξs,t, as,t + εs,t)
ws,t+1 ← ProjS0(1)

(
ws,t − ηs(I − ws,tw>s,t)

·∇wL(ws,t + ξs,t, as,t + εs,t)
)

w0 ← ws,Ts , a0 ← as,Ts
output: (ws,Ts , as,Ts)
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Figure 2. An illustration of the noise injection in the perturbed
GD algorithm. The injected noise with decreasing magnitude
essentially guides the perturbed GD to gradually approach and
eventually fall in the basin of attraction of the global optimum.

3. Convergence Analysis
We investigate the algorithmic behavior of the proposed
perturbed GD algorithm. Our analysis shows that the noise
injected to the algorithm has a convolutional effect on the
loss surface and makes the optimization landscape smoother,
which tames non-convexity by avoiding being trapped at
the bad local optimum. Thus, our proposed algorithm can
converge to the global one.

Our theory essentially reveals a phase transition as the mag-
nitude of the injected noise decreases. For simplicity, our
analysis only considers a two-epoch version of the pro-
posed perturbed GD algorithm, but can be generalized to
the multiple-epoch setting (See more detailed discussions
in Section 6). Specifically, the first epoch corresponds to
Phase I, and the proposed algorithm shows an escaping
from the spurious local optimum phenomenon, as the in-

jected noise is sufficiently large; The second epoch corre-
sponds to Phase II, and the proposed algorithm demon-
strates convergence to the global optimum, as the injected
noise is reduced.

Before we proceed with our main results, we first define the
partial dissipative condition for an operatorH as follows.

Definition 4 (Partial dissipativity). LetM be a subset of
{1, 2, ..., d} with |M| = m, and xM be the subvector of
x ∈ Rd with all indices inM. For any operatorH : Rd →
Rm, we say thatH is (cM, γM,M)-partial dissipative with
respect to (w.r.t.) the subset X ∗ ⊆ Rd over the set X ⊇ X ∗,
if for every x ∈ X , there exist an x∗ ∈ X ∗ and two positive
universal constants cM and γM such that

〈−H(x), x∗M − xM〉 ≥ cM‖xM − x∗M‖22 − γM. (5)

X is called the partial dissipative region of the operatorH
w.r.t. xM.

The partial dissipativity in definition 4 is actually a general-
ization of the joint dissipativity from existing literature on
studying attractors of dynamical systems (Barrera & Jara,
2015). To be specific, whenM = {1, 2, ..., d}, partial dis-
sipativity is reduced to dissipativity. Here we are using the
partial dissipativity, since our proposed algorithm can be
viewed as a complicated dynamical system, and the global
optimum is the target attractor.

The variational coherence studied in (Zhou et al., 2017) and
one point convexity studied in (Kleinberg et al., 2018) can
be viewed as the special example of partial dissipativity.
Specifically, they consider γ = 0, the operator H as the
gradient of the objective function f and X ∗ as the set of all
minimizers of f . More precisely, their conditions require

〈−∇f(x), x∗ − x〉 > c‖x− x∗‖22,

i.e., the negative gradient of the objective function to have
a positive fraction pointing toward X ∗, and therefore the
gradient descent algorithm is guaranteed to make progress
towards the optimum at every iteration. The variational co-
herence/one point convexity, though nice and intuitive, is a
very strong assumption. For the optimization problem of our
interest in (3), such a condition does not hold even within
a small neighborhood around the global optimum. Fortu-
nately, we show that the problem enjoys partial dissipativity
which is more general and can characterize more compli-
cated structure of the problem. Please see more discussion
in Section 6.

3.1. Phase I: Escaping from the Local Optimum
We first characterize the algorithmic behavior of our pro-
posed algorithm in Phase I. Note that our proposed perturbed
GD algorithm, different from GD, intentionally injects noise
at each iteration, and the update is essentially based on the
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perturbed gradient. The following theorem characterizes the
partial dissipativity of the perturbed gradient.
Theorem 5. Choose ρ0

w = C0
wkp

2 ≥ 1 and ρ0
a = C0

a for
large enough constants Cw and Ca. Let ξ ∼ unif(B0(ρ0

w))
and ε ∼ unif(B0(ρ0

a)). There exist some constants C1 and
C2 such that the perturbed gradient of L w.r.t. a satisfies

〈−Eξ,ε∇aL(w + ξ, a+ ε), a∗ − a〉 ≥ C1

p
‖a− a∗‖22

for any (w, a) ∈ AC2,C3
, where

AC2,C3
=
{

(w, a)
∣∣a>a∗ ≤ C2

p
‖a∗‖22 or

‖a− a∗/2‖22 ≥ ‖a∗‖
2
2, w ∈ S0(1),

− 4(1>a∗)2 ≤ 1>a∗1>a− (1>a∗)2 ≤ C3

p
‖a∗‖22

}
.

Moreover, for any C4 ∈ (−1, 1] and M > m > 0, there
exists some constant C5 such that the perturbed manifold
gradient of L w.r.t. w satisfies

〈−Eξ,ε(I − ww>)∇wL(w + ξ, a+ ε), w∗ − w〉

≥ m(1 + C4)

16
‖w − w∗‖22 − C5

k

ρw
,

for any (w, a) ∈ KC4,m,M , where

KC4,m,M =
{

(w, a)
∣∣ a>a∗ ∈ [m,M ],

w>w∗ ≥ C4, w ∈ S0(1)
}
.

The detailed proof of Theorem 5 is provided in Appendix
C.1. Theorem 5 shows that the partial dissipativity holds for
the perturbed gradient of L with respect to a over AC2,C3

,
and the partial dissipativity holds for the perturbed manifold
gradient of L with respect to w over KC4,m,M , respectively.
Note that the joint dissipativity can hold but only over a
smaller set AC2,C3

∩ KC4,m,M . Fortunately, the partial dis-
sipativity is enough to ensure our proposed algorithm to
make progress at every iteration, even though the joint dissi-
pativity does not hold. As a result, our proposed algorithm
can avoid being trapped by the spurious local optimum.
For simplicity, we denote φt as the angle between wt and
w∗, i.e., φt = ∠(wt, w

∗). The next theorem analyzes the
algorithmic behavior of perturbed GD in Phase I.
Theorem 6. Suppose ρ0

w = C0
wkp

2 ≥ 1, ρ0
a = C0

a , a0 ∈
B0

(
|1>a∗|√

k

)
andw0 ∈ S0(1). For any δ ∈ (0, 1), we choose

step size

η = C6

(
k4p6 ·max

{
1, p log

1

δ

})−1

for some constant C6. Then with at least probability 1− δ,
we have

ma ≤ a>t a∗ ≤Ma and φt ≤
5

12
π (6)

for all T1 ≤ t ≤ Õ(η−2), where ma = C4‖a∗‖22/p, Ma =

4(1>a∗)2 + (3 + C7/p))‖a∗‖22 for some constants C4 and
C7, and

T1 = Õ
(p
η

log
1

η
log

1

δ

)
.

Theorem 6 shows that Phase I of our perturbed GD algo-
rithm only needs polynomial time to ensure the output solu-
tion to be sufficiently distant from the spurious local opti-
mum with high probability. Due to the large injected noise,
Phase I cannot output a very accurate solution.

Since the proof of Theorem 6 is very technical and involved,
we provide a sketch in Appendix C.2, which helps under-
stand the intuition. More details and the proof of all techni-
cal lemmas are deferred to C.

As can be seen, a can not make further progress after escap-
ing AC2,C3

, even when w is more accurate. This is because
the injected noise is too large and ruins the accuracy of w.
We need decrease the noise level to guarantee convergence.

3.2. Phase II: Converging to the Global Optimum
We then characterize the convergence behavior of the per-
turbed GD algorithm in Phase II. Recall that in Phase I, the
injected noise helps perturbed GD get closer to the global
optimum without being trapped in the spurious optimum.
Without loss of generality, we restart the iteration index and
assume that the initialization (w0, a0) follows the result in
Theorem 6 :

0 < ma ≤ a>0 a∗ ≤Ma and φ0 ≤
5

12
π,

where ma = C4

p ‖a∗‖
2
2 and Ma = 4(1>a∗)2 + (3 +

C7

p ))‖a∗‖22.

The next theorem shows that given the reduced injected
noise, the perturbed gradient of L with respect to w and a
satisfies dissipativity, respectively.
Theorem 7. For any γ > 0, we choose ρ1

w ≤ C1
w
γ
kp < 1

and ρ1
a ≤ C1

a for small enough constants C1
w and C1

a . Let
ξ ∼ unif(B0(ρ1

w)) and ε ∼ unif(B0(ρ1
a)). For any C9 ∈

(−1, 1] and M > m > 0, the perturbed manifold gradient
of L w.r.t. w satisfies

〈−Eξ,ε(I − ww>)∇wL(w + ξ, a+ ε), w∗ − w〉

≥ m(1 + C9)

16
‖w − w∗‖22 − γ

for any (w, a) ∈ KC9,m,M , where

KC9,m,M =
{

(w, a)
∣∣ a>a∗ ∈ [m,M ],

w>w∗ ≥ C9, w ∈ S0(1)
}
.

Moreover, for any 0 < m < M and C10 > 0, the perturbed
gradient of L w.r.t. a satisfies

〈−Eξ,ε∇aL(w + ξ, a+ ε), a∗ − a〉 ≥ π − 1

2π
‖a− a∗‖22 − γ
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for any (w, a) ∈ Rm,M,C10
, where

Rm,M,C10
=
{

(w, a)
∣∣m ≤ a>a∗ ≤M,

w ∈ S0(1), ‖w − w∗‖22 ≤ C10γ
}
.

The detailed proof is provided in Appendix D.2. Note that
the dissipativity with respect to a depends on the accuracy
of w, which indicates that convergence of a happens after
that of w. This phenomenon can be seen in the proof of next
theorem analyzing the algorithmic behavior in Phase II.

Theorem 8. Suppose φ0 ≤ 5
12π, 0 < ma ≤ a>0 a∗ ≤Ma.

For any γ > 0, we choose ρ1
w ≤ C1

w
γ
kp < 1 and ρa ≤ C1

a

for small enough constants C1
w and C1

a . For any δ ∈ (0, 1),
we choose step size

η = C11

(
max

{
k4p6,

k2p

γ

}
max

{
1, p log

1

γ
log

1

δ

})−1

for some constant C11. Then with at least probability 1− δ,
we have

‖wt − w∗‖22 ≤ C12γ and ‖at − a∗‖22 ≤ γ

for any t’s such that T2 ≤ t ≤ T = Õ(η−2), where C12 is
a constant and

T2 = Õ
(p
η

log
1

γ
log

1

δ

)
.

Theorem 8 shows that Phase II of our proposed algorithm
only needs polynomial time to ensure the convergence to
the global optimum with high probability, when the noise is
small enough.

Since the proof of Theorem 8 is very technical and involved,
we provide a sketch in Appendix D.3, which helps under-
stand the intuition. More details and the proof of all techni-
cal lemmas are deferred to D.

4. Extension to Perturbed SGD
Our analysis can be further extended to the perturbed mini-
batch stochastic gradient descent (perturbed SGD) algo-
rithm. Specifically, we solve

min
w,a
L(w, a) subject to w>w = 1, ‖a‖2 ≤ R, (7)

where R is some tuning parameter. At the t-the itera-
tion, we independently sample Gaussian random matrices
Z(1), ..., Z(m), where m is the batch size, and obtains the
stochastic approximation of∇L(w, a) by

∇L̂(w, a) = ∇
(

1

m

m∑
i=1

`(w, a, Z(i))

)

=
1

m

m∑
i=1

∇`(w, a, Z(i)),

where ∇w`(w, a, Z) and ∇a`(w, a, Z) take the form as
follows,

∇w`(w, a, Z) =
( k∑
j=1

aja
∗
jZjZ

>
j 1Z>j w≥0,Z>j w

∗≥0(w)

+
∑
j 6=i

aia
∗
jZiZ

>
j 1Z>j w≥0,Z>j w

∗≥0(w)
)
w∗,

∇a`(w, a, Z) = σ(Zw)σ(Zw)>a− σ(Zw)σ(Zw∗)>a∗.

The perturbed SGD algorithm then takes

at+1 = ΠB0(R)

(
at − η∇aL̂(wt + ξt, at + εt)

)
,

wt+1 = ProjS0(1)

(
wt − η(I − wtw>t )

· ∇wL̂(wt + ξt, at + εt)
)
,

where η is the learning rate, and ΠB0(R)(·) denotes the pro-
jection operator to B0(R).

Since Z is a Gaussian random matrices with inde-
pendent entries and w is on the unit sphere, σ(Zw)
follows a half-normal distribution with variance (1 −
π/2). Therefore, one can verify that all entries
of ZjZ>j 1Z>j w≥0,Z>j w

∗≥0(w), ZiZ>j 1Z>j w≥0,Z>j w
∗≥0(w),

σ(Zw)σ(Zw)> and σ(Zw)σ(Zw∗)> are sub-exponential
random variable with O(1) mean and variance proxy. Due
to the space limit, we defer the convergence analysis of
perturbed SGD to Appendix F.

5. Numerical Experiment
We present numerical experiments to compare our perturbed
GD algorithm with GD and SGD.

We first demonstrate that our perturbed GD algorithm
with the noise annealing guarantees global convergence
to the global optimum. We consider the training of non-
overlapping two-layer convolutional neural network in (2)
with varying a∗ and k. Specifically, we adopt the same
experimental setting as in Du et al. (2017). We set p = 6
with k ∈ {25, 36, 49, 64, 81, 100} and a∗ satisfying

1>a∗

‖a∗‖22
∈ {0, 1, 4, 9, 16, 25}.

For the perturbed GD algorithm, we perform step size and
noise annealing in an epoch-wise fashion: each simulation
has 20 epochs with each epoch consisting of 400 iterations;
The initial learning rate is 0.1 for both w and a, and geomet-
rically decays with a ratio 0.8; The initial noise levels are
given by (ρw, ρa) = (36, 1) and both geometrically decay
with a ratio 0.4. For GD, the learning rate is 0.1 for both w
and a. For SGD, we adopt a batch size of 4, and perform
step size annealing in an epoch-wise fashion: The initial
learning rate is 0.1, and geometrically decays with a ratio
0.4. For perturbed GD and SGD, we purposely initialize at
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the spurious local optimum. For GD, we adopt the random
initialization, as suggested in Du et al. (2017).

For each combination of k and a∗, we repeat 1000 simu-
lations for all three algorithms, and report the success rate
of converging to the global optimum in Table 1. As can
be seen, perturbed GD and SGD are capable of escaping
from the spurious local optimum (even if they are initial-
ized there), and converge to the global optimum throughout
all 1000 simulations. However, GD with random initializa-
tion can be trapped at the spurious local optimum for up to
about 500 simulations. These results are consistent with our
theoretical analysis and Du et al. (2017).

kwt � w⇤k2
kat � a⇤k2
L(wt, at)

�t

a>
t a⇤

(a) Perturbed GD

(c) Perturbed GD

(b) SGD

(d) SGD

⇥104 ⇥104

⇥104⇥104

⇡/2

Phase II starts

Phase II starts

Figure 3. Algorithmic Behavior of Perturbed GD and SGD.

We then demonstrate the algorithmic behavior of the per-
turbed GD algorithm and compare it with SGD. We set
p = 6, k = 100, a∗j = −0.1 for j = 1, ..., 50 and a∗j = 0.1
for j = 51, ..., 100, and w is randomly generated from the
unit sphere. Our selected a∗ satisfies 1>a∗

‖a∗‖22
= 0. As sug-

gested by Table 1, this is a difficult case, where GD may get
stuck at the spurious local optimum with about 0.5 probabil-
ity. For the perturbed GD algorithm, we perform step size
and noise annealing in an epoch-wise fashion: Each sim-
ulation has 10 epochs with each epoch consisting of 1000
iterations; The initial learning rate is 0.1 for both w and a,
and geometrically decays with a ratio 0.8; The initial noise
levels are given by (ρw, ρa) = (36, 1) and both geometri-
cally decay with a ratio 0.4. For SGD, we adopt a batch
size of 4, and perform step size annealing in an epoch-wise
fashion: Each simulation has 10 epochs with each epoch
consisting of 4000 iterations; The initial learning rate is 0.1,
and geometrically decays with a ratio 0.4. We repeat 10
simulations for both perturbed GD and SGD, and report
their (averaged) trajectories in Figure 3.

As can be seen, the trajectories of the perturbed GD algo-
rithm have a phase transition by the end of the second epoch.
At the first two epochs, the algorithm makes very slow

progress in optimizing a and w due to the large injected
noise. Starting from the third epoch, we see that a>t a

∗

becomes positive and gradually increases, and φt further
decreases. This implies that the algorithm has escaped from
the spurious local optimum. Eventually, at later epochs,
we see that the algorithm converges to the global optimum,
as the magnitude of the injected noise is reduced. These
observations are consistent with our theory.

Moreover, we can see that the trajectories of SGD actually
show similar patterns to those of the perturbed GD algo-
rithm. At early epochs, only slow progress is made towards
optimizing w and a. At later epochs, once SGD escapes
from the spurious local optimum, we observe its conver-
gence to the global optimum. Since the noise of SGD comes
from the data and has a larger variance than that of the in-
jected noise for the perturbed GD algorithm, we observe
more intense oscillation in the trajectories of SGD.

6. Discussions
Partial Dissipativity v.s. Kleinberg et al. (2018). Klein-
berg et al. (2018) study the convolutional effect of the noise
in nonconvex stochastic optimization, and provide inspir-
ing insights on training neural networks using SGD. Their
analysis, however, involves an unconventional asumption.
Specifically, they consider a general unconstrained mini-
mization problem minx Eξf(x, ξ), and assume

〈−∇Eξf(x− η∇f(x, ξ)), x∗ − [x− η∇Eξf(x, ξ)]〉
≥ c‖x∗ − [x− η∇Eξf(x, ξ)]‖22, (8)

where η is the step size of the SGD algorithm. Note that
their assumption is essentially imposed over both the opti-
mization problem and the SGD algorithm4. However, they
do not provide any theoretical evidence showing that such a
complicated assumption holds, when applying SGD to any
specific nonconvex optimization problem.

The experimental results in Kleinberg et al. (2018) attempt
to make some empirical validations of their assumption for
training neural networks. Specifically, throughout every iter-
ations of training ResNets and DenseNets, they empirically
verify that the following condition holds〈

− 1

m

m∑
i=1

Eξ∇f(xt + ωi, ξ), xt − x∗
〉
≥ 0, (9)

where ωi’s are independently sampled from a uniform distri-
bution over B0(0.5) and m = 100. Note that (9) is different
from their actual assumption (8).

In contrast, our analysis is dedicated to training two-
layer non-overlapping convolutional neural networks in the

4The conventional analyses usually impose assumptions on the
optimization problem, and all properties of the algorithm need to
be proved under the assumptions.
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Table 1. Success rates of converging to the global optimum for perturbed GD/GD/SGD with varying k and a∗ and p = 6.
1>a∗/‖a∗‖22 0 1 4 9 16 25
k = 25 1.00/0.50/1.00 1.00/0.55/1.00 1.00/0.73/1.00 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00
k = 36 1.00/0.50/1.00 1.00 /0.53/1.00 1.00/0.66/1.00 1.00/0.89/1.00 1.00/1.00/1.00 1.00/1.00/1.00
k = 49 1.00/0.50/1.00 1.00/0.53/1.00 1.00/0.61/1.00 1.00/0.78/1.00 1.00/1.00/1.00 1.00/1.00/1.00
k = 64 1.00/0.50/1.00 1.00/0.51/1.00 1.00/0.59/1.00 1.00/0.71/1.00 1.00/0.89/1.00 1.00/1.00/1.00
k = 81 1.00/0.50/1.00 1.00/0.53/1.00 1.00/0.57/1.00 1.00/0.66/1.00 1.00/0.81/1.00 1.00/0.97/1.00
k = 100 1.00/0.50/1.00 1.00/0.50/1.00 1.00/0.57/1.00 1.00/0.63/100 1.00/0.75/1.00 1.00/0.90/1.00

teacher/student network setting. The partial dissipative con-
dition used in our analysis can been rigorously verified in
Theorems 5 and 7. Moreover, we want to remark that the
partial dissipative condition in our analysis is theoretically
more challenging, since (1) it does not hold globally; (2) it
does not jointly hold over the convolutional weight w and
the output weight a; (3) we need to handle the additional
errors (e.g., γa and γw).

Connections to SGD. The motivation of this paper is to
understand the role of the noise in training neural network,
however, due to the technical limit, directly analyzing SGD
is very difficult. The noise of SGD comes from the ran-
dom sampling of the training data, and it may have a very
complex distribution. Moreover, the noise of SGD depends
on the iterate, and therefore yields very complicated de-
pendence through iterations. These challenging aspects are
beyond our theoretical understanding.

The perturbed GD algorithm considered in this paper is es-
sentially imitating SGD, but easier to analyze: The injected
noise follows a uniform distribution and independent on the
iterates. Though simpler than SGD, the perturbed GD algo-
rithm has often been observed sharing similar algorithmic
behavior to SGD. We remark that from a theoretical perspec-
tive, the perturbed GD algorithm is still highly non-trivial
and challenging.

Connection to Step Size Annealing. The noise annealing
approach is actually closely related to the step size anneal-
ing, which has been widely used in training neural networks
by SGD. The variance of the noise of SGD has an explicit
quadratic dependence on the step size. Therefore, a com-
monly used practical step size annealing is essentially an-
nealing the noise in training neural networks.

However, we remark that varying step size is actually more
complicated than varying noise. When the step size is large,
it not only enlarges the noise of SGD, but also encourages
aggressive overshooting. This is still beyond our theoret-
ical understanding, as our analysis for the perturbed GD
algorithm uses small step sizes with large injected noise.

Algorithmic Behaviors for Training Different Layers.
Our analysis shows that the perturbed GD algorithm be-
haves differently for training the convolutional weight w
and the output weight a in Phase I: the algorithm first makes
progress in training a, and then makes progress in training

w. It is not clear whether this is an artifact of our proof. We
believe that some empirical investigations are needed, e.g.,
examining the training of practical large networks.

Multi-epoch Noise Annealing. Our analysis in Section 3
can be extended to the multi-epoch setting. For instance, we
consider a noise level schedule {ρsw}Ss=1, {ρsa}Ss=1. When
applying our analysis, we can show that there exists a phase
transition along the schedule. For the earlier epochs with
ρsw ≥ C0

wkp
2 and ρsa ≥ C0

a , the algorithm is gradually
escaping from the spurious local optimum, which is similar
to our analysis for Phase I; For the later epochs with smaller
noises, the algorithm is gradually converging to the global
optimum, which is similar to our analysis for Phase II.

Overparameterized Neural Networks. Our analysis only
considers the regime where the student network has the
same architecture as the teacher network. This is different
from practical situations, where the student network is often
overparameterized. We conduct some empirical studies on a
simple overparameterized case, where the student network
has two convolutional filters and the teacher network has
only one convolutional filter. Our studies suggest that such
a simple overparameterization does not necessarily lead to
a better optimization landscape. There still exist spurious
local optima, which can trap the GD algorithm. Due to the
space limit, we present the details in Appendix E.

Other Related Works. We briefly discuss several other
related works. These works consider different problems,
algorithms and assumptions. Therefore, the results are not
directly comparable. Specifically, Zhou et al. (2017) study
the stochastic mirror descent (different from ours) under a
global variational coherent assumption (does not hold for
our target problem); Li & Yuan (2017) study SGD (different
from ours) for training ResNet-type two-layer neural net-
works. They assume that the weight of the second layer is
known (all one), and prove that the optimization landscape
satisfies the one-point convexity over a small neighborhood
of the global optimum (does not hold for our target prob-
lem); Jin et al. (2018) show that the perturbed SGD algo-
rithm for minimizing the empirical risk (we consider the
population risk), and show that the injected noise rules out
the spurious local optima of the empirical risk. However,
their assumption requires the population risk to have no spu-
rious local optima (our population risk contains a spurious
local optimum).
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