
Lower Bounds for Smooth Nonconvex Finite-Sum Optimization

A. Proofs of Theorems 4.2 and 4.7
A.1. Proof of Theorem 4.2

We need the following lemma to guarantee an Ω(n) lower bound for finding an ε-suboptimal solution when F is convex.

Lemma A.1. For any linear-span randomized first-order algorithm A and any L, σ, n,∆, ε with ε < ∆/4, there exist
functions {fi}ni=1 : Rn → R and F =

∑n
i=1 fi/n which satisfy that {fi}ni=1 ∈ V(L), F ∈ S(0,L) and F (x(0)) −

infx∈Rn F (x) ≤ ∆. In order to find x̂ ∈ Rn such that EF (x̂)− infx∈Rn F (x) ≤ ε, A needs at least Ω(n) IFO calls.

Proof of Theorem 4.2. Let {U(i)}ni=1 ∈ O(2T − 1, (2T − 1)n, n). We choose f̄i(x) : RTn → R as follows:

f̄i(x) :=
√
nfN c(U

(i)x;α, T ),

F̄ (x) :=
1

n

n∑
i=1

f̄i(x).

We have the following properties. First, we claim that {f̄i(x)} ∈ V(1) because of Lemma 5.1 where fN c ∈ S(0,1) ⊂ S(−1,1).
Next, suppose that X̄ ∗ = argminz F̄ (z), then by definition, we have that for any x̄∗ ∈ X̄ ∗, U(i)x̄∗ ∈ (X ∗)(i), where
(X ∗)(i) = argminz fN c(z;α, T ). Thus, we have

dist2(0, X̄ ∗) = inf
x̄∗∈X̄∗

‖0− x̄∗‖22 = inf
x̄∗∈X̄∗

n∑
i=1

‖U(i)x̄∗‖22 ≤
2nT

3
≤ nT.

Finally, let y(i) = U(i)x ∈ RT . If there exists I ⊂ [n], |I| > n/2 and for each i ∈ I, y(i)
T = ... = y

(i)
2T−1 = 0, then by

Proposition 3.9, we have

F̄ (x)− inf
z
F̄ (z)

≥ 1√
n

∑
i∈I

[fN sc(y
(i), α, T )− inf

z
fN sc(z, α, T )]

≥
√
n/(16T ). (A.1)

With above properties, we set the final functions as fi(x) = λf̄i(x/β). We first consider any fixed index sequence {it}. For
the case ε ≤ LB2/(16

√
n), we set λ, β, T as

λ =
B
√

16εL

n3/4
, β =

√
λ/L, T =

B
√
L

4n1/4ε1/2
,

Since Then by Lemma 5.2, we have that fi ∈ V(L), F ∈ S(0,L), F (0)− infz F (z) ≤ ∆. By Proposition 3.5, we know that
for any algorithm output x(t) where t is less than

nT

2
= 8n3/4B

√
L

ε
, (A.2)

there exists I ⊂ [n], |I| > n−nT/(2T ) = n/2 and for each i ∈ I , y(i)
T = ... = y

(i)
2T−1 = 0, where y(i) = U(i)x(t). Thus,

x(t) satisfies that

F̄ (x(t))− inf
z
F̄ (z) ≥ λ

√
n/(16T ) ≥ ε,

where the first inequality holds due to (A.1). Then, applying Yao’s minimax theorem, we have that for any randomized
index sequence {it}, we have the lower bound (A.2). For the case LB2/4 ≥ ε ≥ LB2/(16

√
n), by Lemma A.1 we know

that there exists an Ω(n) lower bound. Thus, with all above statements, we have the lower bound (4.2).
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A.2. Proof of Theorem 4.7

Proof of Theorem 4.7. Let {U(i)}ni=1 ∈ O(T + 1, (T + 1)n, n). We choose f̄i(x) : R(T+1)n → R as follows:

f̄i(x) : = Q(U(i)x;
√
α, T + 1, 0) +

α

n
Γ(Ux),

F̄ (x) : =
1

n

n∑
i=1

f̄i(x).

We have the following properties. First, we claim that each f̄i ∈ S(−αcγ/n,4+αcγ/n) because Q ∈ S(0,4) and Γ ∈ S(−cγ ,cγ).
Next, note that

F̄ (x) =
1

n

n∑
i=1

f̄i(x)

=
1

n

n∑
i=1

[Q(U(i)x;
√
α, T + 1, 0) + αΓ(U(i)x)]

=
1

n

n∑
i=1

fC(U
(i)x;

√
α, T + 1).

Then we have

F̄ (0)− inf
x
F̄ (x)

=
1

n

n∑
i=1

fC(0;
√
α, T + 1)− inf

x

1

n

n∑
i=1

fC(U
(i)x;

√
α, T + 1)

=
1

n

n∑
i=1

[fC(0;
√
α, T + 1)− inf

x
fC(x;

√
α, T + 1)]

≤
√
α+ 10αT,

where the second equality holds due to the fact that infx
∑n
i=1 fC(U

(i)x;α, T ) =
∑n
i=1 infx fC(x;α, T ). Finally, let

y(i) = U(i)x. If there exists I, |I| > n/2 and for each i ∈ I, y(i)
T = y

(i)
T+1 = 0, then by Proposition 3.11, we have

‖∇F̄ (x)‖22 ≥
1

n2

∑
i∈I
‖U(i)∇[fC(U

(i)x;α, T )]‖22

≥ 1

n2

n

2
(α3/4/4)2

= α3/2/(32n). (A.3)

With above properties, we set the final functions fi(x) = λf̄i(x/β). We first consider any fixed index sequence {it}. We
set α, λ, β, T as

α = min

{
1,

5nσ

cγL

}
λ =

160nε2

Lα3/2

β =
√

5λ/L

T =
∆L

1760nε2

√
min

{
1,

5nσ

cγL

}
,

Then by Lemma 5.2, we have that fi ∈ S(−σ,L), F (0)− infz F (z) ≤ ∆ with the assumption that ε2 ≤ ∆Lα/(1760n). By
Proposition 3.5, we know that for any algorithm output xt where t is less than

nT

2
=

∆L

3520ε2

√
min

{
1,

5nσ

cγL

}
, (A.4)
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there exists I ⊂ [n], |I| > n− nT/(2T ) = n/2 and for each i, y(i)
T = y

(i)
T+1 = 0 where y(i) = U(i)x(t). Thus, by (A.3),

x(t) satisfies that

‖∇F (x(t))‖2 ≥ λ/β ·
√
α3/2/(32n) ≥ ε.

Applying Yao’s minimax theorem, we have that for any randomized index sequence {it}, we have the lower bound (A.4),
which implies (4.4).

B. Proofs of Technical Lemmas
B.1. Proof of Lemma 5.1

Proof of Lemma 5.1. For any x,y ∈ Rmn, we have that

Ei‖∇ḡi(x)−∇ḡi(y)‖22 =
1

n

n∑
i=1

‖∇[
√
ng(U(i)x)]−∇[

√
ng(U(i)y)‖22]

=

n∑
i=1

‖[U(i)]>∇g(U(i)x)− [U(i)]>∇g(U(i)y)‖22

=

n∑
i=1

‖∇g(U(i)x)−∇g(U(i)y)‖22

≤ β2
n∑
i=1

‖U(i)x−U(i)y‖22

= β2‖x− y‖22,

where the third and last equality holds due to the fact that U(i)[U(i)]> = I and U(i)[U(j)]> = 0 for each i 6= j, and the
inequality holds due to the fact that g ∈ S(−ζ,ζ). Thus, we have {ḡi}ni=1 ∈ V(ζ). To prove Ḡ ∈ S(ξ/

√
n,ζ), we have

∇2Ḡ(x) =
1√
n

n∑
i=1

U(i)(U(i))>∇2g(U(i)x) � ξ√
n
I,

where the inequality holds due to the assumption that g ∈ S(ξ,β). With this fact and ‖∇Ḡ(x)−∇Ḡ(y)‖22 ≤ Ei‖∇ḡi(x)−
∇ḡi(y)‖22 ≤ β2‖x− y‖22 which implies that∇2Ḡ(x) � βI, we conclude that Ḡ ∈ S(ξ/

√
n,β).

B.2. Proof of Lemma 5.2

Proof of Lemma 5.2. First we have {gi}ni=1 ∈ V(λ/β2·L′) because for any x,y ∈ Rd,

Ei‖∇gi(x)−∇gi(y)‖22 = λ2Ei‖∇ḡi(x/β)/β −∇ḡi(y/β)/β‖22
≤ λ2/β2(L′)2‖x/β − y/β‖22
= (λ/β2 · L′)2‖x− y‖22.

Next we have gi ∈ S(λ/β2·ξ′,λ/β2·ζ′) because∇2gi(x) = λ/β2∇2ḡi(x/β) and for any x ∈ Rd,

λ/β2 · ξ′I � λ/β2∇2ḡi(x/β) � λ/β2 · ζ ′I.

Next we have G(0)− infxG(x) ≤ λ∆′ because

G(0)− inf
x
G(x) = λḠ(0)− λ inf

x
G(x) ≤ λ∆′.

Finally we have dist(0, (Z′)∗) ≤ βB′ because (Z′)∗ = β · Z∗.
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B.3. Proof of Lemma 5.3

Proof of Lemma 5.3. Suppose the initial point x(0) = 0. Consider the following function {f̄i}ni=1, f̄i : Rn → R, where

f̄i(x) := −
√
n〈x, e(i)〉+

‖x‖22
2

,

F̄ (x) :=
1

n

n∑
i=1

f̄i(x),

e(i) is the i-th coordinate vector. We have that {f̄i}ni=1 ∈ V(1) and the global minimizer of F̄ is

x∗ =
1√
n

n∑
i=1

e(i).

Thus we have dist(0,x∗) = 1 and F̄ (0)− infx F̄ (x) = 1/2. Moreover, if point x satisfies that |supp{x}| ≤ n/2, then

F̄ (x) =
‖x‖22

2
− 1√

n

n∑
i=1

〈x, e(i)〉 =
‖x‖22

2
− 1√

n

∑
i∈supp{x}

〈x, e(i)〉 ≥ −1/4,

which implies

F̄ (x)− inf
x
F (x) ≥ 1/4. (B.1)

Next we choose fi = λf̄i(x/β), where λ = 2∆, β =
√

2∆/L, then we can check that {fi}ni=1 ∈ V(L), F (0)−infx F (x) ≤
∆, F ∈ S(L,L) ⊂ S(σ,L). Moreover, since ∇fi(x) = −λ

√
ne(i)/β + λx/β2, then for some x, i is in the support set

of x only if fi has been called. Thus, if less than n/2 IFO calls have been made, then current point x satisfies that
|supp{x}| ≤ n/2. With (B.1), we have that F (x)− infz F (z) ≥ ∆/4 ≥ ε.

B.4. Proof of Lemma A.1

Proof of Lemma A.1. Suppose the initial point x(0) = 0. Consider the following function {f̄i}ni=1, f̄i : Rn → R, where

f̄i(x) := −
√
n〈x, e(i)〉+

‖x‖22
2

,

F̄ (x) :=
1

n

n∑
i=1

f̄i(x),

e(i) is the i-th coordinate vector. Then by the proof of Lemma 5.3, we know that {f̄i}ni=1 ∈ V(1), dist(0, x̄∗) = 1 where x̄∗

is the global minimizer of F̄ and for any x satisfying |supp{x}| ≤ n/2,

F̄ (x)− inf
x
F (x) ≥ 1/4. (B.2)

Next we choose fi = λf̄i(x/β), where λ = LB2, β = B, then we can check that {fi}ni=1 ∈ V(L), dist(0,x∗) = B where
x∗ is the global minimizer of F , F ∈ S(L,L) ⊂ S(0,L). Moreover, since∇fi(x) = −λ

√
ne(i)/β + λx/β2, then for some

x, i is in the support set of x only if fi has been called. Thus, if less than n/2 IFO calls have been made, then current point
x satisfies that |supp{x}| ≤ n/2. With (B.1), we have that F (x)− infz F (z) ≥ λ/4 ≥ ε.


