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Abstract
We consider the problem of minimizing the com-
position of a smooth function (which can be non-
convex) and a smooth vector mapping, where both
of them can be express as the average of a large
number of components. We propose a composite
randomized incremental gradient method based
on SAGA type of construction. The gradient
sample complexity of our method matches that
of several recently developed methods based on
SVRG in the general case. However, for struc-
tured problems where linear convergence rates
can be obtained, our method can be much better
for ill-conditioned problems. In addition, when
the finite-sum structure only appear for the inner
mapping, the sample complexity of our method
is the same as that of SAGA for minimizing finite
sum of smooth nonconvex functions, despite the
additional outer composition and the stochastic
composite gradients being biased in our case.

1. Introduction
We consider composite optimization problems of the form

minimize
x∈Rd

f
(
1
n

n∑
i=1

gi(x)
)
+ r(x) , (1)

where f : Rp → R is a smooth and possibly nonconvex
function, each gi : Rd → Rp is a smooth vector mapping
for i = 1, . . . , n, and r : Rd → R ∪ {∞} is a convex but
possibly nonsmooth function. Problem (1) is a special case
of the following more general problem with composite finite
sum (average) structure:

minimize
x∈Rd

1
m

m∑
j=1

fj

(
1
n

n∑
i=1

gi(x)
)
+ r(x) , (2)
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where each fj : Rp → R is smooth and can be nonconvex.
Such problems often arise as finite sample approximations
of the stochastic composite optimization problem

minimize
x∈Rd

Eν
[

fν
(
Eξ [gξ (x)]

) ]
+ r(x) , (3)

where fν and gξ are parametrized by the random variables ν
and ξ of some unknown probability distributions. Many
interesting tasks in reinforcement learning (e.g., Sutton &
Barto, 1998) and risk-averse learning can be formulated
as optimization problems with such composite structure.
Algorithms for solving such problems have received lots of
attention in recent years, for both the stochastic version (e.g.,
Wang et al., 2017a;b; Wang & Liu, 2016) and the finite-sum
version (e.g., Huo et al., 2018; Lian et al., 2017; Lin et al.,
2018; Liu et al., 2018).

In this paper, we focus on randomized algorithms for solving
problem (1). While our algorithms and complexity results
all extend to the general case (2), focusing on (1) greatly
simplifies the presentation and also make the main ideas and
analysis much more clear. Nevertheless, our results for the
general case are given in the supplementary materials.

Another reason for us to focus on (1) is that most of the
interesting applications that we know can be put into this
form. A well-known example is the policy evaluation
problem in reinforcement learning (RL). With linear value
function approximation, it can be formulated as

minimize
x∈Rd

‖E[A]x − E[b]‖2, (4)

where A and b are random matrix and vector generated by
the transition probability matrix and rewards of a Markov
decision process (MDP) (e.g., Dann et al., 2014). A finite
sample version of (4) is in the form of (1) with f (·) = ‖ · ‖2.

A more interesting example is risk-averse optimization,
which has many applications in RL and financial mathemat-
ics. We consider a general formulation of mean-variance
trade-off:

maximize
x∈Rd

1
n

n∑
j=1

hj(x)−
λ

n

n∑
j=1

(
hj(x)−

1
n

n∑
i=1

hi(x)
)2
, (5)

where each hj(x) : Rd → R is a reward function. The goal
of Problem (5) is to maximize the average reward with a
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penalty on the variance. If we use the following mappings:

gi(x) : Rd → Rd+1 =

[
x

hi(x)

]
, (6)

fj(y, z) : Rd+1 → R = −hj(y) + λ
(
hj(y) − z

)2
, (7)

then problem (5) can be put into the form of (2) with m = n
and r(x) ≡ 0. However, note that

1
n

n∑
j=1

(
hj(x)−

1
n

n∑
i=1

hi(x)
)2
=

1
n

n∑
i=1

h2
i (x)−

(
1
n

n∑
i=1

hi(x)
)2
.

This allows us to reformulate problem (5) into the form
of (1) by using the mappings

gi(x) : Rd → R2 =

[
hi(x)
h2
i (x)

]
, (8)

f (y, z) : R2 → R = −y + λy2 − λz. (9)

This leads to a simpler structure andmuch lower intermediate
dimension, i.e., p = 2 instead of p = d + 1 as in (6) and (7).

Besides these applications, structured problems such as (1)
and (2) are of independent interest for research on random-
ized algorithms. Let’s denote the Jacobian matrix of gi(x)
by g′i (x), which is a matrix in Rp×d . Due to the composition
of an expectation inside a nonlinear function, it is very hard
to get an unbiased estimation of the gradient

∇

(
f
(
1
n

n∑
i=1

gi(x)
))
=

(
1
n

n∑
i=1

g′i (x)
)T

f
(
1
n

n∑
i=1

gi(x)
)
.

Specifically, let S ⊆ {1, . . . , n} be a random subset and

g̃(x) =
1
|S|

∑
i∈S

gi(x), g̃′(x) =
1
|S|

∑
i∈S

g′i (x).

Then
(
g̃′(x)

)T f (g̃(x)) is always a biased estimate of the
gradient, unless one is willing to calculate the full average
(1/n)∑n

i=1 gi(x). Such difficulties often arise in optimiz-
ing more sophisticated objective functions other than the
empirical risk (e.g., Chaudhari et al., 2016; Hazan et al.,
2016; Gulcehre et al., 2016; Mobahi & Fisher, 2015). As
a simplest model, the analysis of randomized algorithms
for (1) may provide insights into more general problems.

1.1. Related Work

Wang et al. (2017a) considered the problem of minimizing
F(x) , Eν

[
fν

(
Eξ [gξ (x)]

) ]
, i.e., problem (3) with r ≡ 0.

They derived algorithms to find ε-optimal solutions1 with
sample complexities O(ε−4), O(ε−3.5) and O(ε−1.25) for the

1Here by ε-optimal solution, wemean some x ∈ Rd that satisfies
E[F(x) − F?] < ε in the convex case, where F? = infx F(x), and
E[‖∇F(x)‖2] < ε in the smooth nonconvex case.

smooth nonconvex case, smooth convex case and smooth
strongly convex case respectively. Wang et al. (2017b)
considered problem (3) with nontrivial r(x) and obtained
improved sample complexity of O(ε−2.25) for smooth non-
convex case and O(ε−2) and O(ε−1) for the general convex
and strongly convex cases respectively.

For the finite-sum problem (2), several authors applied the
variance reduction technique of SVRG (Johnson & Zhang,
2013; Xiao & Zhang, 2014) to obtain improved sample
complexities. Lian et al. (2017) considered problem (2)
when the objective function is strongly convex and r(x) = 0.
They derived two algorithms with sample complexities
O((m+n+κ3) log( 1ε )) andO((m+n+κ4) log( 1ε )) respectively,
where κ is some suitably defined condition number. Huo et al.
(2018) developed algorithms based on the SVRG scheme to
obtain anO(m+n+(m+n)2/3ε−1) sample complexity for the
smooth nonconvex case and anO((m+n+κ3) log( 1ε )) sample
complexity for strongly convex problems with nonsmooth r .
This problem was also studied by Yu & Huang (2017) and
they proposed an ADMM style algorithm with complexity
O((m + n + κ4) log( 1ε )) in the strongly convex case. More
recently, Lin et al. (2018) and Liu et al. (2018) made further
improvements over the complexity under various conditions.

1.2. Contributions and Outline

Most previous work on solving the problems (1) and (2)
are based on the variance reduction scheme of SVRG. In
this paper, we propose a composite randomized increment
gradient method using the scheme of SAGA (Defazio et al.,
2014). We show that it attains the same sample complexity
as the methods based on SVRG in general, but for structured
problems that allow linear convergence, we obtain improved
complexity bounds than previous methods based on SVRG.

In Section 2, we present the C-SAGA method for solving
problem (1). In Section 3, we show that it hasO(n+n2/3ε−1)
sample complexity if the composite part is smooth and r is
convex. In Section 4, we show that with additional condi-
tions, i.e., gradient dominant or optimally strongly convex
condition, an O((n + κn2/3) log( 1ε )) sample complexity can
be obtained. We provide numerical experiments in Section 5.

We emphasize that these complexities are the same as those
obtained by SVRG-type of methods for solving the problem

minimize
x∈Rd

1
n

n∑
i=1

gi(x) + r(x). (10)

where each gi : Rd → R is a scalar mapping (Allen-Zhu &
Hazan, 2016; Reddi et al., 2016a;b; Lei et al., 2017). These
results indicate that the additional smooth composition over
finite-sum problems does not incur higher complexity.

Our algorithm and results extend to the general case (2),
with sample complexity O(m+n+ (m+n)2/3ε−1) for smooth

2
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nonconvex problems and O((m + n + κ(m + n)2/3) log( 1ε ))
under gradient dominant or strongly convex conditions.
Compared with the O((m + n + κ3) log( 1ε )) complexity of
Lian et al. (2017) and Huo et al. (2018), our result provides
(much) better bound as long as κ > n1/3. The details for the
general case are given in the supplementary materials.

2. The Composite SAGA Method
For the ease of presentation, we define the following func-
tions related to the objective in (1):

g(x) ,
1
n

n∑
i=1

gi(x) , F(x) , f (g(x)) , (11)

Φ(x) , F(x) + r(x) = f (g(x)) + r(x) . (12)

First we review the proximal gradient method for solving
problems of the form

minimize
x∈Rd

{
Φ(x) = F(x) + r(x)

}
, (13)

where F is smooth and r is convex and may be nonsmooth.
The proximal operator of r with parameter η is defined as

proxηr (x) := arg min
y

{
r(y) +

1
2η
‖y − x‖2

}
. (14)

We assume that the function r is relatively simple, meaning
that its proximal operator has a close-form solution or can
be computed efficiently. The proximal gradient method for
solving problem (13) is

xt+1 = proxηr
(
xt − ηF ′(xt )

)
, (15)

where F ′(xt ) denotes the gradient of F at xt and η is an
appropriate step size (e.g., Nesterov, 2013). For convenience,
we define the proximal gradient mapping of Φ as

G(x) ,
1
η

(
x − proxηr

(
x − ηF ′(x)

) )
. (16)

As a result, the proximal gradient method (15) can be written
as xt+1 = xt − η G(xt ). Notice that when r(x) ≡ 0, we have
G(x) ≡ F ′(x) for any η > 0.

For problem (1) and any x∗ generated by some randomized
algorithm, we call x∗ an ε-stationary point in expectation if

E
[
‖G(x∗)‖2

]
≤ ε . (17)

The aim of an efficient (randomized) algorithm is to find such
a solution with low sample complexities of the individual
functions gi and their Jacobian g′i (the total number of
times they need to be evaluated). For the batch proximal
gradient method (15), its iteration complexity is O(LF/ε)
(e.g., Nesterov, 2004), where LF is the Lipschitz constant of
F ′. This translates into a sample complexity of O(LFn/ε)

Algorithm 1 Composite SAGA (C-SAGA)

1: input: initial point x0 ∈ Rd , initial reference points α0
i

for i = 1, . . . , n, and step size η > 0
2: Initialize average mapping and Jacobian:

Y0 =
1
n

n∑
i=1

gi(α
0
i ) , Z0 =

1
n

n∑
i=1

g′i (α
0
i )

3: for t = 0, ...,T − 1 do
4: Sample with replacement a subset St ⊂ {1, ..., n}

uniformly at random, with |St | = s.
5: Compute gj(xt ) and g′j(x

t ) for all j ∈ St and let

yt = Yt +
1
s

∑
j∈St

(gj(xt ) − gj(αt
j)) (18)

zt = Zt +
1
s

∑
j∈St

(g′j(x
t ) − g′j(α

t
j)) (19)

6: Let ∇̃F(xt ) = zTt f ′(yt ) and

xt+1 = proxηr
(
xt − η∇̃F(xt )

)
(20)

7: Update reference points:

αt+1
j =

{
xt if j ∈ St
αt
j otherwise

8: Update average mapping and Jacobian:

Yt+1 = Yt +
1
n

∑
j∈St

(gj(xt ) − gj(αt
j)) (21)

Zt+1 = Zt +
1
n

∑
j∈St

(g′j(x
t ) − g′j(α

t
j)) (22)

9: end for
10: output: Randomly choose t∗ ∈ {1, ...,T} and output xt∗

of the components gi and g′i . Our goal is to develop a
randomized algorithm that has lower sample complexity.

We propose to use a randomly selected subset of the func-
tions gi during each iteration to approximate the full gra-
dient F ′(x) = (g′(x))T f ′(g(x)). As we pointed out in the
introduction, one can easily get an unbiased estimation of
g′(x) by 1

|S |

∑
j∈S g

′
j(x) with S being a uniformly sampled

subset of {1, . . . , n}. However, an unbiased estimate of
F ′(x) = (g′(x))T f ′(g(x)) cannot be constructed without
knowing g(x). Therefore, we have to construct sufficiently
accurate estimates of g(x) and g′(x) at the same time and
also deal with the bias in estimating F ′(x).

In Algorithm 1, we propose C-SAGA, a composite ran-
domized incremental gradient method that employs the
estimation scheme of SAGA (Defazio et al., 2014). At each

3
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iteration t, we maintain estimates of g(xt ) and g′(xt ) by

Yt =
1
n

n∑
i=1

gi(α
t
i ) and Zt =

1
n

n∑
i=1

g′i (α
t
i ) (23)

respectively, where αt
i are some reference points associated

with gi at iteration t. However, we do not use them directly
to estimate F ′(xt ), i.e., instead of using ZT

t f (Yt ), we use
zTt f (yt ) to estimate F ′(xt ), where zt and yt are constructed
as in (18) and (19) respectively. We define the notation

∇̃F(xt ) , zTt f (yt ) , (24)

and use it to replace F ′(xt ) in the proximal gradient
method (15), which results in the update formula (20). Then
we use the standard SAGA scheme to update the reference
points αt+1

j as well as Yt and Zt as in (21) and (22).

If each gi is a scalar mapping, i.e., gi : Rd1 → R, and
f (·) = id(·) is the scalar identity mapping, then Problem (1)
becomes to the standard finite sum optimization problem
in (10). In this case, ∇̃F(xt ) = zTt f ′(yt ) = zTt , hence the
update of yt and Yt will no longer be necessary. Then Algo-
rithm 1 becomes the standard (minibatch) SAGA algorithm.

We note that Reddi et al. (2016a;b) have developed extensions
of SAGA for solving the finite-sumproblem (10)with smooth
nonconvex functions gi . However, their method requires two
independent sets of samples of size s during each iteration:
one for updating the counter part of ∇̃F(xt ) = zTt , and the
other set is used for updating the reference points αt

j and
Zt . In contrast, our method avoids such "double sampling"
scheme, and uses only one set of random samples to update
both quantities. It reduces to the original SAGA scheme
when applied to solve problems (10) with even nonconvex
gi’s. Nevertheless, it attains the same sample complexity as
the methods by Reddi et al. (2016a;b).

3. Convergence Analysis: Sublinear Rates
We make the following assumption concerning the functions
gi , f , r and g defined in (11).
Assumption 1. (smoothness assumption)

• Each gi : Rd → Rp, for i = 1, . . . , n, is a C1-smooth
vector mapping. In particular, each gi is `g-Lipschitz
and its Jacobian matrix g′i is Lg-Lipschitz. Conse-
quently, g is `g-Lipschitz and g′ is Lg-Lipschitz.

• The function f : Rp → R is C1-smooth with f being
`f -Lipschitz and its gradient f ′ being L f -Lipschitz.

• The function r : Rd → R ∪ {∞} is convex and can be
nonsmooth.

As a result of Assumption 1, the gradient of F defined in (11),
denoted as F ′, is LF -Lipschitz continuous with

LF = `
2
gL f + `f Lg .

We also define the constant

G0 = 18`4
gL2

f + 2`2
f L2

g = O(L2
F ) .

Theorem 1. Suppose Assumption 1 holds and we choose
α0
i = x0 for all i = 1, . . . , n. Let the sequence {xt }T

t=0 be
generated by Algorithm 1 and t∗ is chosen uniformly at
random from {1, . . . ,T}.

1. If the batch size s = 1, then we can choose the step size

η =
1

4n
√

3G0
= O

(
1

nLF

)
to obtain

E[‖G(xt∗ )‖2] ≤
32n
√

3G0
T

E
[
Φ(x0) − Φ(xT )

]
.

Therefore, finding xt∗ with E[‖G(xt∗ )‖2] ≤ ε requires
O(LFn/ε) function and Jacobian evaluations.

2. If we choose the batch size s = n2/3, and the step size

η =
1

LF +

√
L2
F + 48G0

= O
(

1
LF

)
,

then

E[‖G(xt∗ )‖2] ≤
8

Tη
E

[
Φ(x0) − Φ(xT )

]
= O

(
LF

T

)
.

As a result, finding xt∗ with E[‖G(xt∗ )‖2] ≤ ε requires
O(n + LFn2/3/ε) function and Jacobian evaluations.

Note that for the case s = 1, the sample complexity is
O(LFn/ε), which matches the sample complexity of full-
gradient descent method. This is the first result in stochastic
composite optimization that can match the performance of
full-gradient descent by taking just one sample per iteration.
By using s = n2/3 and large step size η = O(1/LF ), we
obtain the improved sample complexity O(n + LFn2/3/ε).

3.1. Outline of Analysis

Here we give an outline of the proof for Theorem 1, empha-
sizing the key ideas and steps. Detailed proofs of individual
lemmas are given in the supplementary materials.

First, as we explained before, yt and zt are unbiased estimates
of g(xt ) and g′(xt ) respectively, but ∇̃F(xt ) = zTt f ′(yt ) is a
biased estimate of F ′(xt ) = (g′(xt ))T f ′(xt ). The following
lemma bounds the variances of the unbiased estimates and
also the squared bias for estimating F ′(xt ).
Lemma 1. Suppose {xt } and {αt

j} for j = 1, . . . , n are
generated by Algorithm 1. Then we have

E[yt |xt ] = g(xt ),

E[‖yt − g(xt )‖2 |xt ] ≤
`2
g

s
1
n

n∑
j=1
‖xt − αt

j ‖
2,

4
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where E[·|xt ] denotes conditional expectation given xt , and

E[zt |xt ] = g′(xt ),

E[‖zt − g′(xt )‖2 |xt ] ≤
L2
g

s
1
n

n∑
j=1
‖xt − αt

j ‖
2.

In addition, the bias in estimating F ′(xt ) can be bounded as

E
[
‖∇̃F(xt ) − F ′(xt )‖2 |xt

]
≤

G0
s

1
n

n∑
j=1
‖xt − αt

j ‖
2.

In order to quantify the optimality of xt , a proper metric is
the norm of the proximal gradient mapping

G(xt ) =
1
η
(xt − x̂t+1),

where
x̂t+1 = proxηr

(
xt − ηF ′(xt )

)
. (25)

Eventually, we expect our algorithm to return a point x
with E[‖G(x)‖2] ≤ ε . However, in the algorithm, only the
approximate proximal gradient mapping

G̃(xt ) :=
1
η
(xt − xt+1) ,

where xt+1 is given in (20), can be computed. Thus we will
have to ensure the closeness between G(xt ) and G̃(xt ). This
result is given in the next lemma.
Lemma 2. Let x̂t+1 be defined according to (25), then

1
η
‖xt+1 − x̂t+1‖2 ≤ η‖∇̃F(xt ) − F ′(xt )‖2

and

E
[
‖G(xt )‖2

]
≤ 2E

[
‖G̃(xt )‖2

]
+

2G0
s

E
[
1
n

n∑
j=1
‖xt − αt

j ‖
2
]
.

Using the two lemmas above, we can show the next result,
which quantifies the expected descent over the iterations.
Lemma 3. If the sequence {xt } is generated by Algorithm 1,
then the following descent result holds:

E[Φ(xt+1)] ≤E[Φ(xt )] −
(
η

2
−

LFη
2

2

)
E

[
‖G̃(xt )‖2

]
+

G0η

2s
E
[
1
n

n∑
j=1
‖xt − αt

j ‖
2
]
. (26)

To study the convergence of Algorithm 1, we also need to
construct the following Lyapunov function:

Rt = E
[
Φ(xt ) + ct ·

1
n

n∑
j=1
‖xt − αt

j ‖
2
]

(27)

where the coefficients ct satisfy cT = 0 and the recursion

ct = ct+1(1 − p)(1 + β) +
3G0
4s

η . (28)

The coefficient p = 1 − (1 − 1
n )

s ≥ s
2n is the probability

that an index j is chosen to get into the set St , and β > 0
is an arbitrary coefficient that will be determined later. The
following lemma bounds the evolution of the distances
between xt and the reference points αt

i .
Lemma 4. Suppose {xt } and {αt

j} for i = 1, . . . , n are
generated by Algorithm 1, then the following result holds:

E
[
1
n

n∑
j=1
‖xt+1 − αt+1

j ‖
2
]
≤

(
1 +

1
β

)
E

[
‖xt+1 − xt ‖2

]
+ (1 − p)(1 + β)E

[
1
n

n∑
j=1
‖xt − αt

j ‖
2
]
,

where β > 0 is an arbitrary constant appearing in (28).

Reddi et al. (2016a;b) derived a sharper bound, replacing the
coefficient (1 + 1/β) above by (1 + (1 − p)/β), but required
two independent set of samples of size s for updating zt and
αt respectively. Our bound in Lemma 4 is slightly looser, but
it only requires one set of samples and does not deteriorate
the final complexity. Combining Lemma 3 and Lemma 4,
we have the following result.
Lemma 5. Let the Lyapunov function Rt and the coefficients
ct be defined according to (27) and (28) respectively, then

E
[
γ‖G̃(xt )‖2 +

G0η

4s
1
n

n∑
j=1
‖xt − αt

j ‖
2
]
≤ Rt − Rt+1, (29)

where

γ = min
0≤t≤T−1

{
η

2
−

LFη
2

2
−

(
1 +

1
β

)
ct+1η

2
}
. (30)

One last lemma is needed to guarantee that γ is sufficiently
large, namely, γ = O(η).
Lemma 6. Let ct be defined according to (28) and let γ
be defined in (30). If we choose β = s/(4n), then for any
0 ≤ t ≤ T , we have ct ≤ 3nG0η/s2. As a result, we can set

1. either s = 1 and η =
1

4n
√

3G0
= O

(
1

nLF

)
,

2. or s = n2/3 and η =
1

LF +

√
L2
F + 48G0

= O
(

1
LF

)
.

Under both set of parameters, we have γ ≥ η
4 .

Finally, Theorem 1 can be proved using Lemma 5 and
Lemma 6; see details in the supplementary materials.

4. Linear Convergence of C-SAGA
In this section, we shall present performance of Algorithm 1
under the gradient-dominant condition and the strong con-
vexity condition, where the algorithm exhibits fast linear
convergence.

5
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4.1. Gradient-Dominant Function

First, we analyze the case where r(x) ≡ 0 and F(x) is
ν-gradient dominant. Formally speaking, we make the
following assumption.
Assumption 2. The nonsmooth part r(x) ≡ 0 and the smooth
part F is ν-gradient dominant, which means there exist some
ν > 0 such that

F(x) − inf
y

F(y) ≤
ν

2
‖F ′(x)‖2, ∀ x ∈ Rd . (31)

Note that strong convexity is a special case of gradient
domination, which in turn is a special case of the Polyak-
Łojasiewicz condition (e.g., Karimi et al., 2016). More
specifically, a strongly convex function with convexity pa-
rameter µ is 1

µ -gradient dominant (e.g., Nesterov, 2004). We
denote

κ = νLF

as the effective condition number.

Reddi et al. (2016a) proposed a restarted SAGA algorithm for
solving the finite-sum problem (10) and achieved the sample
complexity of O((n + κn2/3) log(1/ε)). However, each of
their restarts requires synchronization of all the reference
points, and the frequent restarts make the algorithm more
like a SVRG type of algorithm. Here we show that our
C-SAGA method in Algorithm 1, without any modification,
achieves the same sample complexity for the more general
composite finite-sum problem (1).

We denote the Algorithm 1 (C-SAGA) as a mapping

(xt∗, αt∗
1 , ..., α

t∗
n ) = C-SAGA(x0, α0

1, ..., α
0
n, τ, η),

where τ is the number of iterations and η is step size. In
addition to xt∗ , the outputs include the reference points αt∗

i
for i = 1, . . . , n at time t∗, which is chosen uniformly random
from {1, . . . , τ}. For the ease of understanding, we imagine
running the algorithm in K stages, each with τ iterations
and initialized with the previous output and reference points.
Since the outputs are snapshots randomly chosen from the
previous τ iterations, we don’t really need to finish all the τ
iterations for each stage. We can just randomly generate
an lk from {1, ..., τ}, and then go to the next stage as soon
as we reach the lk-th iteration in the current stage. This is
equivalent to partitioning the iterations of Algorithm 1 into
some virtually assigned stages.

More precisely, let {xt } and {αk
1 , . . . , α

k
n} be generated

by Algorithm 1, and each lk , for k = 1, . . . ,K − 1, is an
independent uniform sample from {1, ..., τ}. Then we assign
subsequences { x̃k} and {α̃k

j }, for j = 1, . . . , n, as follows:

x̃k+1 = xTk+lk , and α̃k+1
j = αTk+lkj , j = 1, ..., n, (32)

with x̃0 = x0, α̃0
j = α

0
j , and

Tk+1 = Tk + lk for k = 0, ...,K − 1, with T0 = 0 . (33)

Theorem 2. Suppose Assumption 1 and Assumption 2 holds.
Let the sequence {xt } be generated by Algorithm 1 and
{ x̃k} is defined by (32) and (33), where each lk is uniformly
sampled from {1, ..., τ}. Then if we set the virtual epoch
length parameter τ = 16ν/η + 24n/s, then

E
[
F(x̃k) − F(x∗) +

3G0η

s2

n∑
j=1
‖ x̃k − α̃k

j ‖
2
]

≤
1
2k

E
[
F(x̃0) − F(x∗) +

3G0η

s2

n∑
j=1
‖ x̃0 − α̃0

j ‖
2
]
.

Consequently, in order to guarantee E[F(x̃k) − F(x∗)] ≤ ε:

1. If we choose s = 1 and η = O(1/(nLF )), then τ =
O(n(νLF + 1)) and the total sample complexity is

O(n(κ + 1) log(1/ε));

2. If we choose s = n2/3 and η = O(1/LF ), then τ =
O(νLF + n1/3) and the total sample complexity is

O(τs log(1/ε)) = O((n + κn2/3) log(1/ε)) .

4.2. Optimally Strongly Convex Function

In this part, we work with general nonsmooth convex proper
function r(x) and a µ-optimally strongly convex assumption
on Φ(x) = F(x) + r(x). Formally, we assume Φ(x) satisfies
the following assumption.
Assumption 3. We assume F is convex, and the overall
objective function Φ(x) is µ-optimally strongly convex, i.e.,

Φ(x) − Φ(x∗) ≥
µ

2
‖x − x∗‖2, ∀x ∈ Rd (34)

for some constant µ > 0, where x∗ = arg miny Φ(y). In
addition, we assume r is convex and possibly nonsmooth.
Theorem 3. Suppose Assumption 1 and Assumption 3 hold
and α0

i = x0 for all i = 1, . . . , n. Let the sequence {xt }
be generated by Algorithm 1. And suppose that { x̃k} are
assigned according to (32) and (33) with lk sampled uni-
formly from {1, ..., τ}. If we set the virtual epoch length to
be τ = 28/3ηµ + 96n/s, then

E
[
Φ(x̃k) − Φ(x∗)

]
≤

1
2k

E
[
Φ(x0) − Φ(x∗)

]
.

Consequently, in order to ensure E[F(x̃k) − F(x∗)] ≤ ε:

1. If s = 1 and η = O(1/(nLF )), then τ = O(n(κ + 1))
and the total sample complexity is

O(n(κ + 1) log(1/ε));

2. If s = n2/3 and η = O(1/LF ), then τ = O(κ+n1/3) and
the total sample complexity is

O(τs log(1/ε)) = O((n + κn2/3) log(1/ε)) .
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Figure 1. Experiments on the risk-averse portfolio optimization problem

5. Numerical Experiments
In this part, we present numerical experiments for two
applications: risk-averse portfolio optimization and policy
evaluation for Markov decision processes.

5.1. Risk-Averse Portfolio Optimization

Suppose there are d different assets that we can invest during
a time interval of {1, ..., n}. Let Ri, j be the return of asset j
at time i, and Ri be the vector consists of Ri,1, . . . , Ri,d.
Then the risk-averse portfolio optimization problem can be
formulated as problem (5) by defining

hi(x) = 〈Ri, x〉, i = 1, . . . , n,

where x ∈ Rd is the vector of asset allocations. In addition,
we also add an `1 regularization term r(x) = β‖x‖1 for some
β > 0, in order to obtain sparse asset allocation.

As we discussed in the introduction, using the mappings
defined in (6) and (7), we can transform this problem into the
form of (2). We solve this problem via two algorithms that
handle the finite-sum structure both inside and outside of the
composition: ASC-PG (Wang et al., 2017b) and VRSC-PG
(Huo et al., 2018). Alternatively, if we use the mappings
defined in (8) and (9), then the problem is transformed into
the form of (1). We can solve this formulation with our
C-SAGA algorithm.

In our experiments, the reward vectors Ri are first generated
as n i.i.d Gaussian random vectors with a random correlation
matrix C = LLT , where L ∈ Rd×d satisfiesN(0, 1) distribu-
tion elementwise. We set the parameter λ = 0.1 in (5) and
the `1 regularization parameter β = 1.

We test the algorithms on a randomly generated case with
d = 500, n = 5000, and plot the experiment results in
Figure 1. The curves are averaged over 20 runs and are

plotted against the number of samples of the component
functions. Both VRSC-PG and C-SAGA use the same step
size η = 0.001 and batch size s = dn2/3e. They are chosen
from by experimenting with {1, 0.1, 0.01, 0.001, 0.0001},
and η = 0.001 works best for VRSC-PG and for C-SAGA.

For ASC-PG, we set its parameters αk = 0.001/k, βk = 1/k
(the βk is different from the sparsity penalty parameter β, see
Wang et al. (2017b)). They are hand-tuned to ensure ASC-
PG converges fast among a range of other tested parameters.

As shown in Figure 1, ASC-PG is the slowest one due to its
lack of variance reduction schemes. Both VRSC-PG and
C-SAGA have linear convergence in this case, and C-SAGA
is faster than VRSC-PG in terms sample efficiency. This
supports our theory that C-SAGA can be more efficient
(weaker dependence on the condition number) when linear
convergence occurs.

5.2. Policy Evaluation for MDP

Consider a Markov decision process (MDP) with state space
S = {1, ..., S}. Let the reward associated with transition
from state i to state j be Ri, j . Let Pπ ∈ RS×S be the transition
probability matrix under some fixed policy π. We would
like to evaluate the value function Vπ : S → R under the
policy, which satisfies following Bellman equation:

Vπ(i) =
S∑
j=1

Pπi, j(ri, j + γVπ( j)) = Ej |i[Ri, j + γVπ( j)].

We apply the linear function approximationVπ(i) ≈ 〈Φi,w
∗〉

for a given set feature vectors Φi (e.g., Dann et al., 2014;
Wang et al., 2017b), and would like to compute the optimal
vector w∗. This can be formulated as the following problem

minimize
w

F(w) ,
S∑
i=1

(
〈Φi,w〉−

S∑
j=1

Pπi, j(ri, j+γ〈Φj,w〉)

)2
.
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Figure 2. Experiments on MDP policy evaluation problem. Row 1: case with S = 10. Row 2: case with S = 100.

Let’s denote

qπi (w) ,
S∑
j=1

Pπi, j(ri, j + γ〈Φj,w〉) = Ej |i[Ri, j + γ〈Φj,w〉].

Then by defining

g(w) =
[
〈Φ1,w〉, ..., 〈ΦS,w〉, qπi (w), ..., q

π
S (w)

]T
and

f (y1, ..., yS, z1, ..., zS) = ‖y − z‖2 =
S∑
i=1
(yi − zi)2,

this problem is transformed into the form of (3). Note that
the first S components of g are deterministic, then for SCGD
(Wang et al., 2017a), ASCGD (Wang et al., 2017a) and ASC-
PG (Wang et al., 2017b), the running average estimation
of g is not applied for these components. For the last S
components, since they are S independent expectations, the
variance reduction technique of both VRSC-PG (Huo et al.,
2018) and C-SAGA are applied to each of these components.
In the experiments, Pπ , Φ and Rπ are generated randomly.

Figure 2 shows two experiments with sizes S = 10 and
S = 100 respectively. We plot the objective values and

gradient sizes against the samples drawn by the algorithm,
and they are shown as averages over 20 runs. For the case
where S = 10, both VRSC-PG and C-SAGA use the same
batch size s = 1. C-SAGA takes a step size η = 0.1, while
VRSC-PG takes a stepsize of η = 0.03, because it diverges
under η = 0.1 and η = 0.03 seems to work best VRSC-PG.

For S = 100, we set η = 0.005 and batch size s = 10 for
C-SAGA and VRSC-PG. The step size is chosen as the
best among {0.1, 0.05, 0.01, 0.005, 0.001}. Under η = 0.005
both VRSC-PG and C-SAGA gain their best performance.
For SCGD, we choose αk = 0.01k−3/4 and βk = 0.1k−1/2.
For ASCGD, αk = 0.01k−5/7 and βk = 0.1k−4/7. For ASC-
PG, αk = 0.01k−1/2 and βk = 0.1k−1. The meaning of these
step size parameters can be found in Wang et al. (2017a;b).
They are hand-tuned to yield fast convergence. Figure 2
show that C-SAGA has the best performance compared with
other methods.

In summary, C-SAGA is very effective for solving composite
finite sum problems due to its simple construction and
fast convergence. More experiments are presented in the
supplementary materials.
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Appendices

A. Proof of Lemma 1
Proof. The bounds for yt and zt are quite similar, so we only present the proof for yt . First, by sampling with replacement,

E[yt |xt ] = E

[
Yt +

1
s

∑
j∈St

(
gj(xt ) − gj(αt

j)
) ���xt ] = Yt + E

[
1
n

n∑
j=1

(
gj(xt ) − gj(αt

j)
) ���xt ] = Yt + g(xt ) − Yt = g(xt ).

To bound the conditional variance of yt , we have

Var
[
yt |xt

]
= Var

[
Yt +

1
s

∑
j∈St

(
gj(xt ) − gj(αt

j)
) ���xt ] = Var

[
1
s

∑
j∈St

(
gj(xt ) − gj(αt

j)
) ���xt ] = 1

s
Var

[
gj(xt ) − gj(αt

j)
��xt ] .

Therefore,

E
[
‖yt − g(xt )‖2 |xt

]
= Var

[
yt |xt

]
=

1
s

Var
[
gj(xt ) − gj(αt

j)
��xt ] ≤ 1

s
E

[
‖gj(xt ) − gj(αt

j)‖
2 |xt

]
≤

1
s
·
`2
g

n

n∑
j=1
‖xt − αt

j ‖
2.

The conditional variance of zt can be derived similarly.

To bound the bias of ∇̃F(xt ), we have

E
[
‖∇̃F(xt ) − F ′(xt )‖2 |xt

]
= E

[
‖zTt f ′(yt ) − (g′(xt ))T f ′(g(xt ))‖2 |xt

]
= E

[
‖zTt f ′(yt ) − zTt f ′(g(xt )) + zTt f ′(g(xt )) − (g′(xt ))T f ′(g(xt ))‖2 |xt

]
≤ 2E

[
‖zTt f ′(yt ) − zTt f ′(g(xt ))‖2 |xt

]
+ 2E

[
‖zTt f ′(g(xt )) − (g′(xt ))T f ′(g(xt ))‖2 |xt

]
≤ 2E

[
L2
f ‖zt ‖

2‖yt − g(xt )‖2 |xt
]
+ 2E

[
‖ f ′(g(xt ))‖2‖zt − g′(xt )‖2 |xt

]
.

Using the Lipschitz continuity of gj , we have ‖g′j(x)‖ ≤ `g for all x ∈ dom(g) and hence

‖zt ‖ ≤






1
s

∑
j∈St

g′j(x
t )






 +





1

s

∑
j∈St

g′j(α
t
j)






 +





1

n

n∑
j=1

g′j(α
t
j)






 ≤ 3`g .

Combining the bounds on E
[
‖yt − g(xt )‖2 |xt

]
and E

[
‖zt − g′(xt )‖2 |xt

]
, we can continue the inequality above as

E
[
‖∇̃F(xt ) − F ′(xt )‖2 |xt

]
≤ 18`2

gL2
f E

[
‖yt − g(xt )‖2 |xt

]
+ 2`2

f E
[
‖zt − g′(xt )‖2 |xt

]
≤

18`4
gL2

f + 2`2
f L2

g

s
1
n

n∑
j=1
‖xt − αt

j ‖
2

=
G0
s

1
n

n∑
j=1
‖xt − αt

j ‖
2,

where we define G0 = 18`4
gL2

f + 2`2
f L2

g. This completes the proof. �

B. Proof of Lemma 2
Proof. Due to the 1

η -strong convexity of the objective function in the subproblems defining xt+1 and x̂t+1, and the optimality
of xt+1 and x̂t+1 to their subproblems respectively, we have

〈∇̃F(xt ), xt+1 − xt〉 +
1
2η
‖xt+1 − xt ‖2 + r(xt+1)

≤ 〈∇̃F(xt ), x̂t+1 − xt〉 +
1
2η
‖ x̂t+1 − xt ‖2 + r(x̂t+1) −

1
2η
‖ x̂t+1 − xt+1‖2
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and

〈F ′(xt ), x̂t+1 − xt〉 +
1
2η
‖ x̂t+1 − xt ‖2 + r(x̂t+1)

≤ 〈F ′(xt ), xt+1 − xt〉 +
1
2η
‖xt+1 − xt ‖2 + r(xt+1) −

1
2η
‖ x̂t+1 − xt+1‖2.

Adding up the two inequalities and rearranging the terms gives us

1
η
‖ x̂t+1 − xt+1‖2 ≤ 〈∇̃F(xt ) − F ′(xt ), x̂t+1 − xt+1〉

≤
η

2
‖∇̃F(xt ) − F ′(xt )‖2 +

1
2η
‖ x̂t+1 − xt+1‖2.

Simplifying the above inequality gives the first desired result. For the second result, we use the above bound and Lemma 1 to
obtain

E[‖G(xt )‖2] =
1
η2 E[‖ x̂t+1 − xt ‖2] (35)

≤
2
η2

(
E[‖xt+1 − xt ‖2] + E[‖xt+1 − x̂t+1‖2]

)
≤

2
η2 E[‖xt+1 − xt ‖2] + 2E[‖∇̃F(xt ) − F ′(xt )‖2]

≤ 2E[‖G̃(xt )‖2] +
2G0

s
E
[
1
n

n∑
j=1
‖xt − αt

j ‖
2
]
.

This finishes the proof. �

C. Proof of Lemma 3
Proof. Due to the LF -Lipschitz continuity of F ′ and the optimality of the 1

η -strongly convex subproblem,

Φ(xt+1) = F(xt+1) + r(xt+1)

≤ F(xt ) + 〈F ′(xt ), xt+1 − xt〉 +
LF

2
‖xt+1 − xt ‖2 + r(xt+1)

= F(xt ) + 〈∇̃F(xt ), xt+1 − xt〉 +
1
2η
‖xt+1 − xt ‖2 + r(xt+1)

−

(
1
2η
−

LF

2

)
‖xt+1 − xt ‖2 + 〈F ′(xt ) − ∇̃F(xt ), xt+1 − xt〉

≤ F(xt ) + r(xt ) −
1
2η
‖xt+1 − xt ‖2 −

(
1
2η
−

LF

2

)
‖xt+1 − xt ‖2

+
η

2
‖∇̃F(xt ) − F ′(xt )‖2 +

1
2η
‖xt+1 − xt ‖2

= Φ(xt ) −
(

1
2η
−

LF

2

)
‖xt+1 − xt ‖2 +

η

2
‖∇̃F(xt ) − F ′(xt )‖2.

Taking expectation on both sides and using Lemma 1 and the definition of G̃(xt ) = 1
η (x

t+1 − xt ) yield

E[Φ(xt+1)] ≤ E[Φ(xt )] −
(

1
2η
−

LF

2

)
E

[
‖xt+1 − xt ‖2

]
+
ηG0
2s

E

[
1
n

n∑
j=1
‖xt − αt

j ‖
2

]
= E[Φ(xt )] −

(
η

2
−

LFη
2

2

)
E

[
‖G̃(xt )‖2

]
+
ηG0
2s

E

[
1
n

n∑
j=1
‖xt − αt

j ‖
2

]
,

which is the desired result. �
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D. Proof of Lemma 4
Proof. Since E[ 1n

∑n
j=1 ‖x

t+1 − αt+1
j ‖

2] = 1
n

∑n
j=1 E[‖xt+1 − αt+1

j ‖
2], we first bound each E[‖xt+1 − αt+1

j ‖
2].

E[‖xt+1 − αt+1
j ‖

2] ≤ P({ j ∈ St })E[‖xt+1 − αt+1
j ‖

2 | j ∈ St ] + P({ j < St })E[‖xt+1 − αt+1
j ‖

2 | j < St ]

≤ P({ j ∈ St })E[‖xt+1 − αt+1
j ‖

2 | j ∈ St ] + P({ j < St })
(
1 +

1
β

)
E[‖xt+1 − xt ‖2 | j < St ]

+P({ j < St })(1 + β)E[‖xt − αt+1
j ‖

2 | j < St ].

Notice that αt+1
j = xt if j ∈ St and αt+1

j = αt
j if j < St . Hence the above inequality becomes

E[‖xt+1 − αt+1
j ‖

2] = P({ j ∈ St })E[‖xt+1 − xt ‖2 | j ∈ St ] + P({ j < St })
(
1 +

1
β

)
E[‖xt+1 − xt ‖2 | j < St ]

+P({ j < St })(1 + β)E[‖xt − αt
j ‖

2 | j < St ]

=
(
1 +

1
β

)
E[‖xt+1 − xt ‖2] −

P({ j ∈ St })
β

E[‖xt+1 − xt ‖2 | j ∈ St ]

+P({ j < St })(1 + β)E[‖xt − αt
j ‖

2]

≤

(
1 +

1
β

)
E[‖xt+1 − xt ‖2] + P({ j < St })(1 + β)E[‖xt − αt

j ‖
2]

where the second equality is due to the facts that

E[‖xt+1 − xt ‖2] = P({ j ∈ St })E[‖xt+1 − xt ‖2 | j ∈ St ] + P({ j < St })E[‖xt+1 − xt ‖2 | j < St ]

and St is independent with xt − αt
j . Therefore, recalling the notation p = P({ j ∈ St }), we have

E

[
1
n

n∑
j=1
‖xt+1 − αt+1

j ‖
2

]
≤

(
1 +

1
β

)
E

[
‖xt+1 − xt ‖2

]
+ (1 − p)(1 + β)E

[
1
n

n∑
j=1
‖xt − αt

j ‖
2

]
,

which completes the proof. �

E. Proof of Lemma 5
Proof. According to Lemma 3 and Lemma 4, and the recursive relation between ct+1 and ct provided in (28), we have

Rt+1 = E

[
Φ(xt+1) +

ct+1
n

n∑
j=1
‖xt+1 − αt+1

j ‖
2

]
≤ E[Φ(xt )] − E

[(
η

2
−

LFη
2

2

)
‖G̃(xt )‖2 +

G0η

4s
1
n

n∑
j=1
‖xt − αt

j ‖
2

]
+

3G0η

4s
E

[
1
n

n∑
j=1
‖xt − αt

j ‖
2

]
+ct+1

((
1 +

1
β

)
E[‖xt+1 − xt ‖2] + (1 − p)(1 + β)E

[
1
n

n∑
j=1
‖xt − αt

j ‖
2

])
= Rt − E

[(
η

2
−

LFη
2

2
−

(
1 +

1
β

)
ct+1η

2
)
‖G̃(xt )‖2 +

G0η

4s
1
n

n∑
j=1
‖xt − αt

j ‖
2

]
.

Then by defining γ = min0≤t≤T−1

{
η
2 −

LFη
2

2 − (1 + 1
β )ct+1η

2
}
and rearranging the terms, we prove this lemma. �

F. Proof of Lemma 6
Proof. Using β = s

4n , we have (1 + β)(1 − p) = 1 − p + β − pβ ≤ 1 − s
2n +

s
4n = 1 − s

4n = 1 − β. Then (28) gives

ct = (1 − p)(1 + β)ct+1 +
3G0η

4s
≤ (1 − β)ct+1 +

3G0η

4s
.

12
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Or equivalently,

ct −
3G0η

4βs
≤ (1 − β)

(
ct+1 −

3G0η

4βs

)
.

This means that for arbitrary t,

ct ≤
3G0η

4βs
+ (1 − β)T−t (cT −

3G0η

4βs
) =

3G0η

4βs
− (1 − β)T−t

3G0η

4βs
≤

3G0η

4βs
=

3nG0η

s2 .

If we set s = 1 and η = θ
n , then we have

γ = min
0≤t≤T−1

{
η

2
−

LFη
2

2
−

(
1 +

1
β

)
ct+1η

2
}
≥ η

(
1
2
−

LFθ

2n
− (1 + 4n)

3nG0θ
2

n2

)
.

Next we choose θ such that the above lower bound on γ is on the order of η. To this end, we set the quantity inside the last
parentheses equal to 1/4 and solve for θ:

θ =
−

LF

2n +

√
L2
F

4n2 + (12 + 3/n)G0

2(12 + 3/n)G0
≈

1
4
√

3G0
.

When θ takes the exact value above, we have γ ≥ η
4 . With the approximate value θ = 1

4
√

3G0
, and using 1

3
√

2

√
G0 ≤ LF ≤

√
G0,

we can show γ ≥
η
4

(
1 − 1√

3n

)
>

η
10 , which holds for any n ≥ 1. Since

√
G0 = O(LF ), we have η = θ

n = O
(

1
nLF

)
.

If we are allowed to take larger batches, then we can choose s = n2/3 and η = 1
LF+
√

L2
F+4(12+3/n1/3)G0

, consequently

γ ≥ η

(
1
2
−

LFη

2
−

(
1 +

4n
n2/3

) 3nG0η
2

n4/3

)
=
η

4

as desired. If we take the approximate value that is independent of n, i.e., η = 1
4
√

3G0
= O( 1

LF
), then we can show γ >

η
16 . �

G. Proof of Theorem 1
Proof. According to Lemma 5 and Lemma 6, adding up (29) and using γ ≥ η

4 gives

η

4

T−1∑
t=0

E

[
‖G̃(xt )‖2 +

G0
s

1
n

n∑
j=1
‖xt − αt

j ‖
2

]
≤ R0 − RT .

Consequently, as we choose the output by randomly selecting a t∗ from {0, 1, ...,T − 1}, then

E

[
‖G̃(xt

∗

)‖2 +
G0
s

1
n

n∑
j=1
‖xt

∗

− αt∗

j ‖
2

]
=

1
T

T−1∑
t=0

E

[
‖G̃(xt )‖2 +

G0
s

1
n

n∑
j=1
‖xt − αt

j ‖
2

]
≤

4
Tη
(R0 − RT )

≤
4

Tη
E

[
Φ(x0) − Φ(xT ) +

3G0η

s2

n∑
j=1
‖x0 − α0

j ‖
2

]
, (36)

where the last inequality is due to ct ≤
3nG0η

s2 , RT = E[Φ(xT )], as well as

R0 = E

[
Φ(x0) +

c0
n

n∑
j=1
‖x0 − α0

j ‖
2

]
≤ E

[
Φ(x0) +

3G0η

s2

n∑
j=1
‖x0 − α0

j ‖
2

]
.

13
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By Lemma 2, we have

E[‖G(xt
∗

)‖2] ≤ 2E

[
‖G̃(xt

∗

)‖2 +
G0
s

1
n

n∑
j=1
‖xt

∗

− αt∗

j ‖
2

]
≤

8
Tη

E

[
Φ(x0) − Φ(xT ) +

3G0η

s2

n∑
j=1
‖x0 − α0

j ‖
2

]
. (37)

In the situation where only one sample can be obtained each time, i.e., s = 1, then we set the corresponding step size
η = 1

4n
√

3G0
and (37) directly turns into

E[‖G(xt
∗

)‖2] ≤
32n
√

3G0
T

E

[
Φ(x0) − Φ(xT ) +

√
3G0
4

1
n

n∑
j=1
‖x0 − α0

j ‖
2

]
= O

(
nLF

T

)
.

On the other hand, in the case where taking large batches are allowed, we can choose η = 1
LF+
√

L2
F+48G0

= O( 1
LF
) and

s = n2/3. Then (37) turns into

E[‖G(xt
∗

)‖2] ≤
8

Tη
E

[
Φ(x0) − Φ(xT ) +

3G0η

n4/3

n∑
j=1
‖x0 − α0

j ‖
2

]
= O

(
LF

T

)
.

This finishes the proof. �

H. Proof of Theorem 2
Proof. Let us first analyze the k-th “epoch”. Note that in this case, G̃(xt ) = ∇̃F(xt ), G(xt ) = F ′(xt ) and Φ(x) = F(x). The
inequality (36) directly gives

E

[
‖∇̃F(x̃k+1)‖2 +

G0
s

1
n

n∑
j=1
‖ x̃k+1 − α̃k+1

j ‖
2

]
≤

4
τη

E

[
F(x̃k) − F(x∗) +

3G0η

s2

n∑
j=1
‖ x̃k − α̃k

j ‖
2

]
.

Combining with the ν-gradient dominant property of F and Lemma 2, we get

E[F(x̃k+1) − F(x∗)] ≤ νE[‖F ′(x̃k+1)‖2]

≤ 2νE

[
‖∇̃F(x̃k+1)‖2 +

G0
s

1
n

n∑
j=1
‖ x̃k+1 − α̃k+1

j ‖
2

]
≤

8ν
τη

E

[
F(x̃k) − F(x∗) +

3G0η

s2

n∑
j=1
‖ x̃k − α̃k

j ‖
2

]
.

and

E

[
3G0η

s2

n∑
j=1
‖ x̃k+1 − α̃k+1

j ‖
2

]
≤

3nη
s

E

[
‖∇̃F(x̃k+1)‖2 +

G0
s

1
n

n∑
j=1
‖ x̃k+1 − α̃k+1

j ‖
2

]
≤

12n
τs

E

[
F(x̃k) − F(x∗) +

3G0η

s2

n∑
j=1
‖ x̃k − α̃k

j ‖
2

]
Adding the above two inequalities, we get

E

[
F(x̃k+1) − F(x∗) +

3G0η

s2

n∑
j=1
‖ x̃k+1 − α̃k+1

j ‖
2

]
≤

8ν/η + 12n/s
τ

E

[
F(x̃k) − F(x∗) +

3G0η

s2

n∑
j=1
‖ x̃k − α̃k

j ‖
2

]
. (38)

If we set τ = 16ν/η + 24n/s, we have a linear convergence with rate 1
2 . When s = 1 and η = O( 1

nLF
), we have

τ = O(n(νLF + 1)) and the total sample complexity is O(n(1 + νLF ) log(1/ε)). When s = n2/3 and η = O(1/LF ), we have
τ = O(νLF + n1/3). As a result, we have a total sample complexity of O(τs log(1/ε)) = O((n + νLFn2/3) log(1/ε)). Note
that all µ-strongly convex functions are 1

2µ -gradient dominant, hence in strongly convex cases, νLF =
LF

2µ =
1
2 κ. The term

νLF is analogous to the condition number κ in the strongly convex case. �
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I. Proof of Theorem 3
To analyze the convergence of the optimally strongly convex case, let us first present Lemma 3 of Xiao & Zhang (2014) with
a slight adaptation to our notations.
Lemma 7. Let Φ(x) = F(x) + r(x), where F ′(x) is LF -Lipschitz continuous, and F(x) and r(x) are convex. For any
x ∈ dom(r), and any v ∈ Rd , define

x+ := Proxηr(·)(x − ηv),

G :=
1
η
(x − x+),

∆ := v − F ′(x),

where η is a step size satisfying 0 < η ≤ 1/LF . Then for any y ∈ Rd ,

Φ(y) ≥ Φ(x+) + GT (y − x) +
η

2
‖G‖2 + ∆T (x+ − y).

If we set x = xt , y = x∗, v = ∇̃F(xt ), x+ = xt+1 and G = G̃(xt ), we get the following inequality:

〈G̃(xt ), x∗ − xt〉 ≤ Φ(x∗) − Φ(xt+1) −
η

2
‖G̃(xt )‖2 − 〈F ′(xt ) − ∇̃F(xt ), x∗ − xt+1〉.

As a result we have

‖xt+1 − x∗‖2

= ‖xt − x∗‖2 + η2‖G̃(xt )‖2 + 2η〈G̃(xt ), x∗ − xt〉

≤ ‖xt − x∗‖2 + η2‖G̃(xt )‖2 − 2η(Φ(xt+1) − Φ(x∗)) − η2‖G̃(xt )‖2 − 2η〈F ′(xt ) − ∇̃F(xt ), x∗ − xt+1〉

≤ ‖xt − x∗‖2 − 2η(Φ(xt+1) − Φ(x∗)) +
2η
µ
‖F ′(xt ) − ∇̃F(xt )‖2 +

ηµ

2
‖xt+1 − x∗‖2

≤ ‖xt − x∗‖2 − η(Φ(xt+1) − Φ(x∗)) +
2η
µ
‖F ′(xt ) − ∇̃F(xt )‖2,

where the last inequality is due to the µ-optimally strong convexity of Φ. Taking expectation on both sides and using
Lemma 1 yield

E[‖xt+1 − x∗‖2] ≤ E[‖xt − x∗‖2] − ηE[Φ(xt+1) − Φ(x∗)] +
2ηG0
µs

E

[
1
n

n∑
j=1
‖xt − αt

j ‖
2

]
. (39)

A remark is that due to the composition form of the objective function, the gradient estimation ∇̃F(xt ) is biased, otherwise
the term E[2η〈F ′(xt ) − ∇̃F(xt ), x∗ − xt+1〉] can be bounded by 2η2G0

s E[ 1n
∑n

j=1 ‖x
t − αt

j ‖
2], which is much more desirable.

Multiplying (39) by 3
8 µ and adding to (26), we obtain the following inequality:

E
[
Φ(xt+1) +

3
8
µ‖xt+1 − x∗‖2

]
≤ −E

[
(
η

2
−

LFη
2

2
)‖G̃(xt )‖2 +

G0η

4s
1
n

n∑
j=1
‖xt − αt

j ‖
2 +

3
8
µη(Φ(xt+1) − Φ(x∗))

]
E

[
Φ(xt ) +

3
8
µ‖xt − x∗‖2

]
+

3G0η

2s
E

[
1
n

n∑
j=1
‖xt − αt

j ‖
2

]
Now we define a new Lyapunov function,

Rt := E

[
Φ(xt ) +

3µ
8
‖xt − x∗‖2 +

ct
n

n∑
j=1
‖xt − αt

j ‖
2

]
, (40)
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where
cT = 0, ct = ct+1(1 + β)(1 − p) +

3G0
2s

η for t = T − 1, ..., 0. (41)

Through a line of proof parallel to Lemma 5, Lemma 6, one shall get the following lemmas. Here we omit the proof details.
Lemma 8. Let the Lyapunov function Rt and the corresponding coefficients ct be defined according to (40) and (41)
respectively, then

E

[
γ‖G̃(xt )‖2 +

G0η

4s
1
n

n∑
j=1
‖xt − αt

j ‖
2 +

3
8
µη

(
Φ(xt+1) − Φ(x∗)

) ]
≤ Rt − Rt+1, (42)

where
γ = min

0≤t≤T−1

{
η

2
−

LFη
2

2
− (1 +

1
β
)ct+1η

2
}
. (43)

Note that if we replace G0 in (28) with 2G0, we get (41). Hence the results of Lemma 6 holds for (41) by just replacing G0
with 2G0. In short, we present without proof the following lemma.
Lemma 9. Let ct be defined according to (41) and let γ be defined according to (43). By choosing β = s

4n , we get for any
0 ≤ t ≤ T , it holds that ct ≤

6nG0η
s2 . As a result, we have γ ≥ η

4 under either choice of the parameters below:

• Either: s = 1 and η = 1
4n
√

6G0
= O( 1

nLF
);

• Or: s = n2/3 and η = 1
LF+
√

L2
F+96G0

= O( 1
LF
).

Next we provide the convergence result for one virtual epoch of Algorithm 1.
Lemma 10. Assume the sequence {xt }τ

t=0 be generated by Algorithm 1 and t∗ is chosen uniformly at random from {1, . . . , τ}.
If we set τ = 28/3ηµ + 96n/s, then

E

[
Φ(xt

∗

) − Φ(x∗) +
24G0η

7s2

n∑
j=1
‖xt

∗

− αt∗

j ‖
2

]
≤

1
2

E

[
Φ(x0) − Φ(x∗) +

24G0η

7s2

n∑
j=1
‖x0 − α0

j ‖
2

]
.

Proof. According to Lemma 8 and Lemma 9 and the way t∗ is chosen, we have

η

4
E

[
‖G̃(xt

∗−1)‖2 +
G0
ns

n∑
j=1
‖xt

∗−1 − αt∗−1
j ‖2 +

3
2
µ(Φ(xt

∗

) − Φ(x∗))

]
≤

1
τ
(R0 − Rτ)

≤
1
τ

E

[
Φ(x0) − Φ(x∗) +

3µ
8
‖x0 − x∗‖2 +

6G0η

s2

n∑
j=1
‖x0 − α0

j ‖
2

]
≤

7
4τ

E

[
Φ(x0) − Φ(x∗) +

24G0η

7s2

n∑
j=1
‖x0 − α0

j ‖
2

]
. (44)

Thus

E[Φ(xt
∗

) − Φ(x∗)] ≤
14

3τηµ
E

[
Φ(x0) − Φ(x∗) +

24G0η

7s2

n∑
j=1
‖x0 − α0

j ‖
2

]
. (45)

Note that if we set β = 1 for Lemma 4, we will get

E

[
1
n

n∑
j=1
‖xt

∗

− αt∗

j ‖
2

]
≤ 2η2E[‖G̃(xt

∗−1)‖2] +
2
n

E

[
n∑
j=1
‖xt

∗−1 − αt∗−1
j ‖2

]
.
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Consequently,

24G0η

7s2 E

[
n∑
j=1
‖xt

∗

− αt∗

j ‖
2

]
≤

24nG0η

7s2 max
{
2η2,

2s
G0

}
E

[
‖G̃(xt

∗−1)‖2 +
G0
ns

n∑
j=1
‖xt

∗−1 − αt∗−1
j ‖2

]
≤

48n
sτ

E

[
Φ(x0) − Φ(x∗) +

24G0η

7s2

n∑
j=1
‖x0 − α0

j ‖
2

]
, (46)

where the second inequality is due to max{2η2, 2s
G0
} = 2s

G0
under both set of parameters and inequality (44). Therefore,

combining (45) and (46) yields

E

[
Φ(xt

∗

) − Φ(x∗) +
24G0η

7s2

n∑
j=1
‖xt

∗

− αt∗

j ‖
2

]
≤

14/3ηµ + 48n/s
τ

E

[
Φ(x0) − Φ(x∗) +

24G0η

7s2

n∑
j=1
‖x0 − α0

j ‖
2

]
.

If we set τ = 2(14/3ηµ + 48n/s), then the lemma is proved. �

Finally, the proof of Theorem 3 is straightforward given the results in Lemma 10. In order to guarantee E[F(x̃k)−F(x∗)] ≤ ε ,
if s = 1 and η = O( 1

nLF
), then τ = O(n(νLF + 1)) and the total sample complexity is O(n(1+ νLF ) log(1/ε)); when s = n2/3

and η = O(1/LF ), τ = O(νLF + n1/3) and the total sample complexity is O(τs log(1/ε)) = O((n + νLFn2/3) log(1/ε)).

J. The C-SAGA Algorithm and Complexities for Solving the General Finite-Sum Problem (2)
In this section, we present the algorithm for solving the more general finite-sum problem (2), which we repeat here:

minimize
x∈Rd

Φ(x) :=
1
m

m∑
j=1

fj

(
1
n

n∑
i=1

gi(x)

)
+ r(x). (47)

For convenience, we define

f :=
1
m

m∑
j=1

fj, g :=
1
n

n∑
j=1

gi, F := f ◦ g.

We assume that Assumption 1 holds and in addition, each fj is `f -Lipschitz and its gradient f ′j is L f -Lipschitz. As a result,
the gradient of F, denoted as F ′, is Lipschitz continuous with constant LF = `

2
gL f + `f Lg. For convenience, we also define

the following two constants:
Gx = 36`4

gL2
f + 4`2

f L2
g, Gy = 18`2

gL2
f ,

both of which are O(L2
F ).

Algorithm 2 is an extension of C-SAGA for solving the more general problem (47). We have the following theorem
concerning the convergence of Algorithm 2.
Theorem 4. Suppose Assumption 1 holds. Let the sequence {xt }T

t=0 be generated by Algorithm 2 and xt
∗ be the output. If

we choose the step size to be

η ≤
1

LF +

√
L2
F + 48Gx + 75`2

gGy

= O

(
1

LF

)
,

and batch sizes s = n2/3 and b = 4m2/3, then

E
[
‖G(xt

∗

)‖2
]
≤

1
Tη

E
[
Φ(x0) − Φ(xT )

]
= O

(
LF

T

)
.

As a result, ensuring E[‖G(xt∗ )‖2] ≤ ε requires O
(
m + n + LF (m + n)

2
3 /ε

)
gradient and function evaluations.
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Algorithm 2 Generalized Composite SAGA Algorithm

1: input: initial point x0; reference points α0
i = x0 for i = 1, . . . , n; step size η > 0.

2: Initialize average mapping and gradients

Y0 =
1
n

n∑
i=1

gi(α
0
i ) , Z0 =

1
n

n∑
i=1

g′i (α
0
i ) , W0 =

1
m

m∑
j=1
∇ fj(Y0) , β0

j = Y0 for j = 1, . . . ,m.

3: for t = 0, ...,T − 1 do
4: Uniformly sample with replacement a subset St from {1, ..., n} with |St | = s, and let

yt = Yt +
1
s

∑
j∈St

(gj(xt ) − gj(αt
j)),

zt = Zt +
1
s

∑
j∈St

(g′j(x
t ) − g′j(α

t
j)).

5: Uniformly sample with replacement a subset Bt from {1, ...,m} with |Bt | = b, and let

wt = Wt +
1
b

∑
j∈Bt

(∇ fj(yt ) − ∇ fj(βtj)). (48)

6: Let ∇̃F(xt ) = zTt wt and update the iterate as

xt+1 = Proxηr
(
xt − η∇̃F(xt )

)
.

7: Update reference points:

αt+1
i =

{
xt if i ∈ St,
αt
i if i < St,

βt+1
j =

{
yt if j ∈ Bt,
βtj if j < Bt .

8: Update average mapping and gradients

Yt+1 = Yt +
1
n

∑
j∈St

(gj(xt ) − gj(αt
j)),

Zt+1 = Zt +
1
n

∑
j∈St

(g′j(x
t ) − g′j(α

t
j)),

Wt+1 = Wt +
1
m

∑
j∈Bt

(∇ fj(yt ) − ∇ fj(βtj)).

9: end for
10: Randomly choose a t∗ from {1, ...,T} and output xt

∗ .

For problems satisfying the additional assumptions given in Assumption 2 and Assumption 3, the generalized C-SAGA
algorithm has linear convergence and attains the sample complexity O

(
m + n + κ(m + n)2/3 log( 1ε )

)
. Such an extension is

similar to the case for C-SAGA and we omit the proof here. In the rest of this section, we prove the sublinear convergence
result given in Theorem 4.

First, parallel to Lemma 1, the following lemma bounds the variances of yt , zt and wt , as well as the squared bias of ∇̃F(xt ).

Lemma 11. Let yt, zt,wt be defined in Algorithm 2, then


E[yt |xt ] = g(xt ),

E[‖yt − g(xt )‖2 |xt ] ≤
`2
g

s
1
n

n∑
j=1
‖xt − αt

j ‖
2,

18
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E[zt |xt ] = g′(xt ),

E[‖zt − g′(xt )‖2 |xt ] ≤
L2
g

s
1
n

n∑
j=1
‖xt − αt

j ‖
2,


E[wt |yt ] = ∇ f (yt ),

E[‖wt − ∇ f (yt )‖2 |yt ] =
L2
f

b
1
m

m∑
j=1
‖yt − β

t
j ‖

2.

For the approximate gradient ∇̃F(xt ), we have

E
[
‖∇̃F(xt ) − F ′(xt )‖2

]
≤

Gx

s
E

[
1
n

n∑
j=1
‖xt − αt

j ‖
2

]
+

Gy

b
E

[
1
m

m∑
j=1
‖yt − β

t
j ‖

2

]
.

Proof. The variance bounds on yt and zt are inherited from Lemma 1 directly. And the proof of the variance bound on wt is
similar to them. For ∇̃F(xt ) = zTt wt , we have

‖∇̃F(xt ) − ∇F(xt )‖2 ≤ 2‖zTt wt − zTt ∇ f (yt )‖2 + 2‖zTt ∇ f (yt ) − ∇F(xt )‖2

≤ 18`2
g‖wt − ∇ f (yt )‖2 + 2‖zTt ∇ f (yt ) − ∇F(xt )‖2.

Taking expectation over both sides of the above inequality and using the bounds for E[‖wt − ∇ f (yt )‖2 |yt ] and ‖zTt ∇ f (yt ) −
∇F(xt )‖2 in Lemma 1, we finish the proof of the lemma. �

Lemma 2 can be adapted to its new counterpart

E
[
‖G(xt )‖2

]
≤ 2E

[
‖G̃(xt )‖2

]
+

2Gx

s
E

[
1
n

n∑
j=1
‖xt − αt

j ‖
2

]
+

2Gy

b
E

[
1
m

m∑
j=1
‖yt − β

t
j ‖

2

]
. (49)

Due to the new bounds on E[‖∇̃F(xt ) − ∇F(xt )‖2], the counterpart of Lemma 3 is

Lemma 12. If the sequence {xt } is generated by Algorithm 2, then the following descent result holds,

E[Φ(xt+1)] ≤ E[Φ(xt )] − E

[(η
2
−

LFη
2

2

)
‖G̃(xt )‖2 +

Gxη

4s
1
n

n∑
j=1
‖xt − αt

j ‖
2 +

Gyη

4b
1
m

m∑
j=1
‖yt − β

t
j ‖

2

]
+

3Gxη

4s
E

[
1
n

n∑
j=1
‖xt − αt

j ‖
2

]
+

3Gyη

4b
E

[
1
m

m∑
j=1
‖yt − β

t
j ‖

2

]
. (50)

Let px be the probability that any index i ∈ {1, . . . , n} is chosen to be included in the set St , and py be the probability that
any index j ∈ {1, . . . ,m} is chosen to be included in the set Bt . Then we have

px = 1 −
(
1 −

1
n

)s
≥

s
2n
, py = 1 −

(
1 −

1
m

)b
≥

b
2m

.

The following result is parallel to Lemma 4.

Lemma 13. Suppose St,Bt , xt+1, yt+1 and αt+1
j , βt+1

j are generated by the Algorithm 2, then the following result holds:

E

[
1
n

n∑
j=1
‖xt+1 − αt+1

j ‖
2

]
≤

(
1 +

1
Ax

)
E

[
‖xt+1 − xt ‖2

]
+ (1 − px)(1 + Ax)E

[
1
n

n∑
j=1
‖xt − αt

j ‖
2

]
(51)
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and

E

[
1
m

m∑
j=1
‖yt+1 − β

t+1
j ‖

2

]
≤ 3

(
1 +

1
Ay

) (
1 +

Ax + 1
Axs

)
`2
gE

[
‖xt+1 − xt ‖2

]
+

(
1 +

1
Ay

) (
1 + (1 − px)(1 + Ax)

) 3`2
g

s
E

[
1
n

n∑
j=1
‖xt − αt

j ‖
2

]
+(1 − py)(1 + Ay)E

[
1
m

m∑
j=1
‖yt − β

t
j ‖

2

]
, (52)

where Ax, Ay > 0 are two arbitrary positive constants.

Proof. Inequality (51) is directly inherited from Lemma 4. Similarly, for yt and βtj we have the following statement:

E

[
1
m

m∑
j=1
‖yt+1 − β

t+1
j ‖

2

]
≤

(
1 +

1
Ay

)
E

[
‖yt+1 − yt ‖

2] + (1 − py)(1 + Ay)E

[
1
m

m∑
j=1
‖yt − β

t
j ‖

2

]
. (53)

Also note that

E[‖yt − yt+1‖
2] ≤ 3E[‖yt − g(xt )‖2] + 3E[‖yt+1 − g(xt+1)‖2] + 3E[‖g(xt ) − g(xt+1)‖2]

≤
3`2

g

s
E

[
1
n

n∑
j=1
‖xt − αt

j ‖
2

]
+

3`2
g

s
E

[
1
n

n∑
j=1
‖xt+1 − αt+1

j ‖
2

]
+ 3`2

gE
[
‖xt − xt+1‖2

]
≤ 3`2

g

(
1 +

Ax + 1
Axs

)
E

[
‖xt+1 − xt ‖2

]
+

3`2
g

s

(
1 + (1 − px)(1 + Ax)

)
E

[
1
n

n∑
j=1
‖xt − αt

j ‖
2

]
, (54)

where in the second inequality we used Lemma 11 and in the last inequality we used (51). Finally combining (53) and (54)
proves (52). �

Next we define a new Lyapunov function

Pt := E

[
Φ(x) + ct

1
n

n∑
j=1
‖xt − αt

j ‖
2 + dt

1
m

m∑
j=1
‖yt − β

t
j ‖

2

]
, (55)

with 
dt = (1 − py)(1 + Ay)dt+1 +

3Gyη

4b
,

ct = (1 − px)(1 + Ax)ct+1 +
3`2

g

s

(
1 +

1
Ay

) (
1 + (1 − px)(1 + Ax)

)
dt+1 +

3Gxη

4s
,

(56)

and boundary condition cT = dT = 0. With this new Lyapunov function, we have
Lemma 14. Let Pt be defined according to (55) and ct, dt be defined according to (56). Then

E

[
γ‖G̃(xt )‖2 +

Gxη

4s
1
n

n∑
j=1
‖xt − αt

j ‖
2 +

Gyη

4b
1
m

m∑
j=1
‖yt − β

t
j ‖

2

]
≤ Pt − Pt+1, (57)

where γ := min
0≤t≤T−1

γt and

γt =
η

2
−

LFη
2

2
− η2

(
1 +

1
Ax

)
ct+1 − 3η2`2

g

(
1 +

1
Ay

) (
1 +

1 + Ax

Axs

)
dt+1.

This lemma can be proved by combining the definition (55), the recursive formula of ct and dt in (56) and Lemma 12. Our
goal now is to prove that γ is of order O(η), which is given by the next lemma.
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Lemma 15. Let ct and dt be defined according to (56) and let γ be defined according to Lemma 14. Then we have γ ≥ η
4 if

we choose
Ax =

s
4n
, Ay =

b
4m

, s = n2/3, b = 4m2/3,

and
η <

1

LF +

√
L2
F + 48Gx + 75`2

gGy

= O
( 1

LF

)
. (58)

Proof. To simplify the discussion, we assume m, n � 1 and drop the small terms whenever convenient; for example, we may
write 1 + m−1/3 ≈ 1. By (56), we first bound the scale of dt . Denote dmax := max0≤t≤T dt and cmax := max0≤t≤T ct . Then
completely parallel to Lemma 6, we have

dmax ≤
3Gyη

4bAy
=

3mGyη

b2 .

Through the same argument, we have

cmax ≤
1

Ax

(
3`2

g

s
(1 +

1
Ay
)(1 + (1 − px)(1 + Ax))dmax +

3Gxη

4s

)
≤

24n`2
g

s2
4m + b

b
dmax +

3nGxη

s2 .

Note that when we choose s = n2/3, b = 4m2/3, we have

dmax ≤
3Gyη

16m1/3 , cmax ≤

(
3Gx +

9`2
gGy

2

)
η

n1/3 .

Consequently,

γ ≥
η

2
−

LFη
2

2
− η2

(
1 +

1
Ax

)
cmax − 3η2`2

g

(
1 +

1
Ay

) (
1 +

1 + Ax

Axs

)
dmax

≥
η

2

(
1 − LFη − 24

(
Gx +

1
2
`2
gGy

)
η2 −

9Gy`
2
g

8
η2

)
=

η

2

(
1 − LFη −

(
24Gx + (37 + 1/8)`2

gGy

)
η2

)
.

Then we have γ ≥ η
4 by choosing η satisfying (58). �

Finally, we can prove Theorem 4 by following similar arguments for proving Theorem 1. The details are omitted.

K. Extended Numerical Experiments.
In addition to the experiments presented in Section 5, we provide additional numerical experiments in this section.

K.1. Risk-Averse Portfolio Optimization

Complementary to the experiments in the main paper where synthetic datasets are used, here we present some additional
experiments on real-world portfolio datasets. The tested datasets are obtained from the Keneth R. French Data Library2. We
choose three datasets which contain 30, 38 and 49 industrial stocks respectively. From these datasets, the daily records of the
most recent 1717, 2556 and 1279 days are extracted respectively to conduct the experiments. For the dataset with k stocks,
we denote it by Industrial-k dataset, that is, with k = 30, 38, 49. For the Industrial-38 dataset, the two stocks with many
missing records are deleted, hence the data of only 36 stocks are used in this test.

2 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Figure 3. Experiments on the risk-averse portfolio optimization problem on the Industrial-30 dataset.
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Figure 4. Experiments on the risk-averse portfolio optimization problem on the Industrial-38 dataset.
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Figure 5. Experiments on the risk-averse portfolio optimization problem on the Industrial-49 dataset.
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Figure 6. Experiments on the MDP policy evaluation problem with S = 500.
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Figure 7. Experiments on MDP policy evaluation problem with S = 1000.

In the new experiments, we set the relative weighting parameter λ = 0.2 and the `1-regularization parameters β = 0.01.
The batch size s is still chosen to be dn2/3e. For the ASC-PG method, the algorithmic parameters are chosen as before.
For VRSC-PG and C-SAGA, the learning rates were tuned through the same manner as stated in Section 5. In details,
for Industrial-30 and Industrial-38 datasets, the learning rate η = 0.01 works best for both VRSC-PG and C-SAGA. For
Industrial-49 dataset, the learning rate η = 0.1 works best for VRSC-PG and C-SAGA. The performance comparison are
shown in Figure 3, Figure 4 and Figure 5.

K.2. Policy Evaluation for MDP

For the MDP policy evaluation experiment, we have added two synthetic tests with larger problem sizes, specifically, with
S = 500 and S = 1000. Instead of the standard batch sizes, in this case, we would like to test the performance of the
algorithms under a smaller batch size s = 30. In these two cases, the best tuned learning rates for VRSC-PG and C-SAGA
are both η = 0.0001. However, for SCGD, ASCGD and ASC-PG, we fail to find the parameters under which they converge.
Also because these methods are significantly slower than VRSC-PG and C-SAGA, we only compare the performance of the
two variance-reduced algorithms. Their performance are shown in Figure 6 and Figure 7.
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