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Abstract
Deep learning has aroused extensive attention due
to its great empirical success. The efficiency of
the block coordinate descent (BCD) methods has
been recently demonstrated in deep neural net-
work (DNN) training. However, theoretical stud-
ies on their convergence properties are limited
due to the highly nonconvex nature of DNN train-
ing. In this paper, we aim at providing a general
methodology for provable convergence guaran-
tees for this type of methods. In particular, for
most of the commonly used DNN training models
involving both two- and three-splitting schemes,
we establish the global convergence to a critical
point at a rate of O(1/k), where k is the number
of iterations. The results extend to general loss
functions which have Lipschitz continuous gradi-
ents and deep residual networks (ResNets). Our
key development adds several new elements to the
Kurdyka-Łojasiewicz inequality framework that
enables us to carry out the global convergence
analysis of BCD in the general scenario of deep
learning.

1. Introduction
Tremendous research activities have been dedicated to deep
learning due to its great success in some real-world ap-
plications such as image classification in computer vision
(Krizhevsky et al., 2012), speech recognition (Hinton et al.,
2012; Sainath et al., 2013), statistical machine translation
(Devlin et al., 2014), and especially outperforming human
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in Go games (Silver et al., 2016).

The practical optimization algorithms for training neural
networks can be mainly divided into three categories in
terms of the amount of first- and second-order information
used, namely, gradient-based, (approximate) second-order
and gradient-free methods. Gradient-based methods make
use of backpropagation (Rumelhart et al., 1986) to compute
gradients of network parameters. Stochastic gradient de-
scent (SGD) method proposed by Robbins & Monro (1951)
serve as the basis. Much of research endeavour is devoted
to adaptive variants of vanilla SGD in recent years, includ-
ing AdaGrad (Duchi et al., 2011), RMSProp (Tieleman &
Hinton, 2012), Adam (Kingma & Ba, 2015) and AMSGrad
(Reddi et al., 2018). (Approximate) second-order methods
mainly include Newton’s method (LeCun et al., 2012), L-
BFGS and conjugate gradient (Le et al., 2011). Despite
the great success of these gradient-based methods, they
may suffer from the vanishing gradient issue for training
deep networks (Goodfellow et al., 2016). As an alterna-
tive to overcome this issue, gradient-free methods have
been recently adapted to the DNN training, including (but
not limited to) block coordinate descent (BCD) methods
(Carreira-Perpiñán & Wang, 2014; Zhang & Brand, 2017;
Lau et al., 2018; Askari et al., 2018; Gu et al., 2018) and al-
ternating direction method of multipliers (ADMM) (Taylor
et al., 2016; Zhang et al., 2016). The main reasons for the
surge of attention of these two algorithms are twofold. One
reason is that they are gradient-free, and thus are able to deal
with non-differentiable nonlinearities and potentially avoid
the vanishing gradient issue (Taylor et al., 2016; Zhang &
Brand, 2017). As shown in Figure 1, it is observed that
vanilla SGD fails to train a ten-hidden-layer MLPs while
BCD still works and achieves a moderate accuracy within a
few epochs. The other reason is that BCD and ADMM can
be easily implemented in a distributed and parallel manner
(Boyd et al., 2011; Mahajan et al., 2017), therefore in favour
of distributed/decentralized scenarios.

The BCD methods currently adopted in DNN training run
into two categories depending on the specific formulations
of the objective functions, namely, the two-splitting for-
mulation and three-splitting formulation (shown in 2.2
and 2.4), respectively. Examples of the two-splitting for-
mulation include Carreira-Perpiñán & Wang (2014); Zhang
& Brand (2017); Askari et al. (2018); Gu et al. (2018),
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Figure 1. Comparison of training and test accuracies of BCD and
SGD for training ten-hidden-layer MLPs on the MNIST dataset.
Refer to Appendix F for details of this experiment2.

whilst Taylor et al. (2016); Lau et al. (2018) adopt the three-
splitting formulation. Convergence studies of BCD methods
appeared recently in more restricted settings. In Zhang &
Brand (2017), a BCD method was suggested to solve the
Tikhonov regularized deep neural network training problem
using a lifting trick to avoid the computational hurdle im-
posed by ReLU. Its convergence was established through
the framework of Xu & Yin (2013), where the block mul-
ticonvexity3 and differentiability of the unregularized part
of the objective function play central roles in the analysis.
However, for other commonly used activations such as sig-
moid, the convergence analysis of Xu & Yin (2013) cannot
be directly applied since the block multiconvexity may be
violated. Askari et al. (2018) and Gu et al. (2018) extended
the lifting trick introduced by Zhang & Brand (2017) to deal
with a class of strictly increasing and invertible activations,
and then adapted BCD methods to solve the lifted DNN
training models. However, no convergence guarantee was
provided in both Askari et al. (2018) and Gu et al. (2018).
Following the similar lifting trick as in Zhang & Brand
(2017), Lau et al. (2018) proposed a proximal BCD based
on the three-splitting formulation of the regularized DNN
training problem with ReLU activation. The global conver-
gence was also established through the analysis framework
of Xu & Yin (2013). However, similar convergence results
for other commonly used activation functions are still lack-
ing.

In this paper, we aim to fill these gaps. Our main contri-
bution is to provide a general methodology to establish the
global convergence4 of these BCD methods in the com-
mon DNN training settings, without requiring the block
multiconvexity and differentiability assumptions as in Xu &
Yin (2013). Instead, our key assumption is the Lipschitz

2Codes available at: https://github.com/timlautk/
BCD-for-DNNs-PyTorch.

3A function f with multi-block variables (x1, . . . ,xp) is
called block multiconvex if it is convex with respect to each block
variable when fixing the other blocks, and f is called blockwise
Lipschitz differentiable if it is differentiable with respect to each
block variable and its gradient is Lipschitz continuous while fixing
the others.

4Global convergence refers to the case that the algorithm con-
verges starting from any finite initialization.

continuity of the activation on any bounded set (see Assump-
tion 1(b)). Specifically, Theorem 1 establishes the global
convergence to a critical point at anO(1/k) rate of the BCD
methods using the proximal strategy, while extensions to
the prox-linear strategy for general losses are provided in
Theorem 2 and to residual networks (ResNets) are shown in
Theorem 3. Our assumptions are applicable to most cases
appeared in the literature. Specifically in Theorem 1, if the
loss function, activations, and convex regularizers are lower
semicontinuous and either real-analytic (see Definition 1)
or semialgebraic (see Definition 2), and the activations are
Lipschitz continuous on any bounded set, then BCD con-
verges to a critical point at an O(1/k) rate starting from
any finite initialization, where k is the number of iterations.
Note that these assumptions are satisfied by most commonly
used DNN training models, where (a) the loss function can
be any of the squared, logistic, hinge, exponential or cross-
entropy losses, (b) the activation function can be any of
ReLU, leaky ReLU, sigmoid, tanh, linear, polynomial, or
softplus functions, and (c) the regularizer can be any of the
squared `2 norm, squared Frobenius norm, the elementwise
1-norm, or the sum of squared Frobenuis norm and element-
wise 1-norm (say, in the vector case, the elastic net by Zou
& Hastie, 2005), or the indicator function of the nonnegative
closed half space or a closed interval (see Proposition 1).

Our analysis is based on the Kurdyka-Łojasiewicz (KŁ)
inequality (Łojasiewicz, 1993; Kurdyka, 1998) framework
formulated in Attouch et al. (2013). However there are
several different treatments compared to the state-of-the-art
work (Xu & Yin, 2013) that enables us to achieve the gen-
eral convergence guarantee aforementioned. According to
Attouch et al. (2013, Theorem 2.9), the sufficient descent,
relative error and continuity conditions, together with the
KŁ assumption yield the global convergence of a nonconvex
algorithm. In order to obtain the sufficient descent condition,
we exploit the proximal strategy for all non-strongly convex
subproblems (see Algorithm 2 and Lemma 1), without re-
quiring the block multiconvexity assumption used in Xu &
Yin (2013, Lemma 2.6). In order to establish the relative
error condition, we use the Lipschitz continuity of the ac-
tivation functions and perform some careful treatments on
the specific updates of the BCD methods (see Lemma 2),
without requiring the (locally) Lipschitz differentiability of
the unregularized part as used in Xu & Yin (2013, Lemma
2.6). The continuity condition is established via the lower
semicontinuity assumptions of the loss, activations and reg-
ularizers. The treatments of this paper are of their own value
to the optimization community. The detailed comparisons
between this paper and the existing literature can be found
in Section 4.

The rest of this paper is organized as follows. Section 2
describes the BCD methods when adapted to the splitting
formulations of DNN training problems. Section 3 estab-

https://github.com/timlautk/BCD-for-DNNs-PyTorch
https://github.com/timlautk/BCD-for-DNNs-PyTorch
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lishes their global convergence results, followed by some
extensions. Section 4 illustrates the key ideas of proof with
some discussions. We conclude this paper in Section 5.

2. DNN training via BCD
In this section, we describe the specific forms of BCD in-
volving both two- and three-splitting formulations.

2.1. DNN training with variable splitting

Consider N -layer feedforward neural networks with N − 1
hidden layers of the neural networks. Particularly, let
di ∈ N be the number of hidden units in the i-th hid-
den layer for i = 1, . . . , N − 1. Let d0 and dN be
the number of units of input and output layers, respec-
tively. Let Wi ∈ Rdi×di−1 be the weight matrix be-
tween the (i − 1)-th layer and the i-th layer for any i =
1, . . . N .5 Let Z := {(xj ,yj)}nj=1⊂ Rd0 × RdN be n sam-
ples, where yj’s are the one-hot vectors of labels. Denote
W := {Wi}Ni=1, X := (x1,x2, . . . ,xn) ∈ Rd0×n and
Y := (y1,y2, . . . ,yn) ∈ RdN×n. With the help of these
notations, the DNN training problem can be formulated as
the following empirical risk minimization:

min
W
Rn(Φ(X;W),Y ), (2.1)

where Rn (Φ(X;W),Y ) := 1
n

∑n
j=1 ` (Φ(xj ;W),yj),

` : RdN × RdN → R+ ∪ {0} is some loss function,
Φ(xj ;W) = σN (WNσN−1(WN−1 · · ·W2σ1(W1xj)) is
the neural network model with N layers and weights W
and σi is the activation function of the i-th layer (generally,
σN ≡ Id, i.e., the identity function) and Rn is called the
empirical risk (also known as the training loss).

Note that the DNN training model (2.1) is highly nonconvex
as the variables are coupled via the deep neural network
architecture, which brings many challenges for the design
of efficient training algorithms and also its theoretical analy-
sis. To make Problem (2.1) more computationally tractable,
variable splitting is one of the most commonly used ways
(Taylor et al., 2016; Zhang & Brand, 2017; Askari et al.,
2018; Gu et al., 2018; Lau et al., 2018). The main idea
of variable splitting is to transform a complicated problem
(where the variables are coupled highly nonlinearly) into
a relatively simpler one (where the variables are coupled
much looser) via introducing some additional variables.

2.1.1. TWO-SPLITTING FORMULATION.

Considering general deep neural network architectures, the
DNN training problem can be naturally formulated as the

5To simplify notations, we regard the input and output layers
as the 0-th and N -th layers, respectively, and absorb the bias of
each layer into Wi.

following model (called two-splitting formulation)6:

min
W,V
L0 (W,V) := Rn(VN ;Y ) +

N∑
i=1

ri(Wi) +

N∑
i=1

si(Vi)

subject to Vi = σi(WiVi−1), i = 1, . . . , N, (2.2)

where Rn(VN ;Y ) := 1
n

∑n
j=1 ` ((VN ):j ,yj) denotes the

empirical risk, V := {Vi}Ni=1, (VN ):j is the j-th column
of VN . In addition, ri and si are extended-real-valued,
nonnegative functions revealing the priors of the weight
variableWi and the state variable Vi (or the constraints on
Wi and Vi) for each i = 1, . . . N , and define V0 := X .
In order to solve the two-splitting formulation (2.2), the
following alternative minimization problem was suggested
in the literature:

min
W,V
L (W,V) := L0 (W,V)+

γ

2

N∑
i=1

‖Vi−σi(WiVi−1)‖2F ,

(2.3)
where γ > 0 is a hyperparameter7.

The DNN training model (2.2) can be very general, where:
(a) ` can be the squared, logistic, hinge, cross-entropy or
other commonly used loss functions; (b) σi can be ReLU,
leaky ReLU, sigmoid, linear, polynomial, softplus or other
commonly used activation functions; (c) ri can be the
squared `2 norm, the `1 norm, the elastic net (Zou & Hastie,
2005), the indicator function of some nonempty closed con-
vex set8 (such as the nonnegative closed half space or a
closed interval [0, 1]); (d) si can be the `1 norm (Ji et al.,
2014), the indicator function of some convex set with simple
projection (Zhang & Brand, 2017). Particularly, if there is
no regularizer or constraint on Wi (or Vi), then ri (or si)
can be zero.

The network architectures considered in this paper exhibit
generality to various types of DNNs, including but not lim-
ited to the fully (or sparse) connected MLPs (Rosenblatt,
1961), convolutional neural networks (CNNs; Fukushima,
1980; LeCun et al., 1998) and residual neural networks
(ResNets; He et al., 2016). For CNNs, the weight matrixWi

is sparse and shares some symmetry structures represented
as permutation invariants, which are linear constraints and
up to a linear reparameterization, so all the main results
below are still valid.

Various existing BCD algorithms for DNN training
(Carreira-Perpiñán & Wang, 2014; Zhang & Brand, 2017;

6Here we consider the regularized DNN training model. The
model reduces to the original DNN training model (2.1) without
regularization.

7In (2.5), we use a uniform hyperparameter γ for the sum of all
quadratic terms for the simplicity of notation. In practice, γ can be
different for each quadratic term and our proof still goes through.

8The indicator function ιC of a nonempty convex set C is de-
fined as ιC(x) = 0 if x ∈ C and +∞ otherwise.
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Askari et al., 2018; Gu et al., 2018) can be regarded as
special cases in terms of the use of the two-splitting for-
mulation (2.2). In fact, Carreira-Perpiñán & Wang (2014)
considered a specific DNN training model with squared loss
and sigmoid activation function, and proposed the method
of auxiliary coordinate (MAC) based on the two-splitting
formulation of DNN training (2.2), as a two-block BCD
method with the weight variablesW as one block and the
state variables V as the other. For each block, a nonlinear
least squares problem is solved by some iterative meth-
ods. Furthermore, Zhang & Brand (2017) proposed a BCD
type method for DNN training with ReLU and squared loss.
To avoid the computational hurdle imposed by ReLU, the
DNN training model was relaxed to a smooth multicon-
vex formulation via lifting ReLU into a higher dimensional
space (Zhang & Brand, 2017). Such a relaxed BCD is in
fact a special case of two-splitting formulation (2.3) with
σi ≡ Id, ri ≡ 0, si(Vi) = ιX (Vi), i = 1, . . . , N , where X
is the nonnegative closed half-space with the same dimen-
sion of Vi, while Askari et al. (2018) and Gu et al. (2018)
extended such lifting trick to more general DNN training
settings, of which the activation function can be not only
ReLU, but also sigmoid and leaky ReLU. The general for-
mulations studied in these two papers are also special cases
of the two-splitting formulation with different σi, ri and si
for i = 1, . . . , N .

2.1.2. THREE-SPLITTING FORMULATION.

Note that the variables Wi and Vi−1 are coupled by the
nonlinear activation function in the i-th constraint of the
two-splitting formulation (2.2), which may bring some dif-
ficulties and challenges for solving problem (2.2) efficiently,
particularly, when the activation function is ReLU. Instead,
the following three-splitting formulation was used in Tay-
lor et al. (2016); Lau et al. (2018):

min
W,V,U

L0 (W,V) subject to

Ui = WiVi−1, Vi = σi(Ui), i = 1, . . . , N, (2.4)

where U := {Ui}Ni=1. From (2.4), the variables are cou-
pled much more loosely, particularly for variablesWi and
Vi−1. As described later, such a three-splitting formulation
can be beneficial to designing some more efficient meth-
ods, though N extra auxiliary variables Ui’s are introduced.
Similarly, the following alternative unconstrained problem
was suggested in the literature:

min
W,V,U

L (W,V,U) := L0 (W,V)

+
γ

2

N∑
i=1

[
‖Vi − σi(Ui)‖2F + ‖Ui −WiVi−1‖2F

]
. (2.5)

2.2. Description of BCD algorithms

In the following, we describe how to adapt the BCD method
to Problems (2.3) and (2.5). The main idea of the BCD
method of Gauss-Seidel type for a minimization problem
with multi-block variables is to update all the variables cycli-
cally while fixing the remaining blocks at their last updated
values (Xu & Yin, 2013). In this paper, we consider the
BCD method with the backward order (but not limited to
this as discussed later) for the updates of variables, i.e., the
variables are updated from the output layer to the input layer,
and for each layer, we update the variables {Vi,Wi} cycli-
cally for Problem (2.3) as well as the variables {Vi,Ui,Wi}
cyclically for Problem (2.5). Since σN ≡ Id, the output
layer is paid special attention. Particularly, for most blocks,
we adopt the proximal update strategies for two major rea-
sons: (1) To practically stabilize the training process; (2) To
yield the desired “sufficient descent” property for theoretical
justification. For each subproblem, we assume that its mini-
mizer can be achieved. The BCD algorithms for Problems
(2.3) and (2.5) can be summarized in Algorithms 1 and 2,
respectively.

Algorithm 1 Two-splitting BCD for DNN Training (2.3)

Data: X ∈ Rd0×n, Y ∈ RdN×n
Initialization: {W 0

i ,V
0
i }Ni=1, V k

0 ≡ V0 := X
Parameters: γ > 0, α > 0 9

for k = 1, . . . do
V k
N = argminVN

{sN (VN ) + Rn(VN ;Y ) + γ
2
‖VN −

W k−1
N V k−1

N−1‖
2
F + α

2
‖VN − V k−1

N ‖2F }
W k

N = argminWN
{rN (WN )+ γ

2
‖V k

N −WNV k−1
N−1‖

2
F +

α
2
‖WN −W k−1

N ‖2F }
for i = N − 1, . . . , 1 do
V k
i = argminVi

{si(Vi) + γ
2
‖Vi −

σi(W
k−1
i V k−1

i−1 )‖2F + γ
2
‖V k

i+1 − σi+1(W
k
i+1Vi)‖2F +

α
2
‖Vi − V k−1

i ‖2F }
W k

i = argminWi
{ri(Wi)+

γ
2
‖V k

i −σi(WiV
k−1
i−1 )‖2F+

α
2
‖Wi −W k−1

i ‖2F }
end for

end for

One major merit of Algorithm 2 over Algorithm 1 is that in
each subproblem, almost all updates are simple proximal
updates10 (or just least squares problems), which usually
have closed form solutions to many commonly used DNNs,
while a drawback of Algorithm 2 over Algorithm 1 is that
more storage memory is required due to the introduction of
additional variables {Ui}Ni=1. Some typical examples lead-
ing to the closed form solutions include: (a) ri, si are 0 (i.e.,
no regularization), or the squared `2 norm (a.k.a. weight
decay), or the indicator function of a nonempty closed con-

9In practice, γ and α can vary among blocks and our proof still
goes through.

10For V k
N -update, we can regard sN (VN ) +Rn(VN ;Y ) as a

new proximal function s̃N (VN ).
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Algorithm 2 Three-splitting BCD for DNN training (2.5)

Samples: X ∈ Rd0×n, Y ∈ RdN×n
Initialization: {W 0

i ,V
0
i ,U

0
i }Ni=1, V k

0 ≡ V0 := X
Parameters: γ > 0, α > 0

for k = 1, . . . do
V k
N = argminVN

{sN (VN ) + Rn(VN ;Y ) + γ
2
‖VN −

Uk−1
N ‖2F + α

2
‖VN − V k−1

N ‖2F }
Uk
N = argminUN

{ γ
2
‖V k

N − UN‖2F + γ
2
‖UN −

W k−1
N V k−1

N−1‖
2
F }

W k
N = argminWN

{rN (WN )+ γ
2
‖Uk

N −WNV k−1
N−1‖

2
F +

α
2
‖WN −W k−1

N ‖2F }
for i = N − 1, . . . , 1 do
V k
i = argminVi

{si(Vi) + γ
2
‖Vi − σi(U

k−1
i )‖2F +

γ
2
‖Uk

i+1 −W k
i+1Vi‖2F }

Uk
i = argminUi

{ γ
2
‖V k

i − σi(Ui)‖2F + γ
2
‖Ui −

W k−1
i V k−1

i−1 ‖
2
F + α

2
‖Ui −Uk−1

i ‖2F }
W k

i = argminWi
{ri(Wi) +

γ
2
‖Uk

i −WiV
k−1
i−1 ‖

2
F +

α
2
‖Wi −W k−1

i ‖2F }
end for

end for

vex set with a simple projection like the nonnegative closed
half space and the closed interval [0, 1]; (b) the loss func-
tion ` is the squared loss or hinge loss (see Lemma 14 in
Appendix E.2); and (c) σi is ReLU (see Lemma 13 in Ap-
pendix E.1), leaky ReLU, or linear link function. For other
cases in which ri and si are the `1 norm, σi is the sigmoid
function, and the loss ` is the logistic function, the associated
subproblems can be also solved cheaply via some efficient
existing methods. Discussions on specific implementations
of these BCD methods can be referred to Appendix A.

3. Global convergence analysis of BCD
In this section, we establish the global convergence of both
Algorithm 1 for Problem (2.3), and Algorithm 2 for Problem
(2.5), followed by some extensions.

3.1. Main assumptions

First of all, we present our main assumptions, which involve
the definitions of real analytic and semialgebraic functions.

Let h : Rp → R ∪ {+∞} be an extended-real-valued func-
tion (respectively, h : Rp ⇒ Rq be a point-to-set mapping),
its graph is defined by

Graph(h) := {(x, y) ∈ Rp × R : y = h(x)},
(resp. Graph(h) := {(x,y) ∈ Rp × Rq : y ∈ h(x)}),

and its domain by dom(h) := {x ∈ Rp : h(x) < +∞}
(resp. dom(h) := {x ∈ Rp : h(x) 6= ∅}). When h is
a proper function, i.e., when dom(h) 6= ∅, the set of its
global minimizers (possibly empty) is denoted by

argminh := {x ∈ Rp : h(x) = inf h}.

Definition 1 (Real analytic) A function h with domain an
open set U ⊂ R and range the set of either all real or
complex numbers, is said to be real analytic at u if the
function h may be represented by a convergent power series
on some interval of positive radius centered at u, i.e., h(x) =∑∞
j=0 αj(x − u)j , for some {αj} ⊂ R. The function is

said to be real analytic on V ⊂ U if it is real analytic at
each u ∈ V (Krantz & Parks, 2002, Definition 1.1.5). The
real analytic function f over Rp for some positive integer
p > 1 can be defined similarly.

According to Krantz & Parks (2002), typical real analytic
functions include polynomials, exponential functions, and
the logarithm, trigonometric and power functions on any
open set of their domains. One can verify whether a multi-
variable real function h(x) on Rp is analytic by checking
the analyticity of g(t) := h(x+ ty) for any x,y ∈ Rp.

Definition 2 (Semialgebraic)

(a) A set D ⊂ Rp is called semialgebraic (Bochnak et al.,
1998) if it can be represented as

D =

s⋃
i=1

t⋂
j=1

{x ∈ Rp : Pij(x) = 0, Qij(x) > 0} ,

where Pij , Qij are real polynomial functions for 1 ≤
i ≤ s, 1 ≤ j ≤ t.

(b) A function h : Rp → R ∪ {+∞} (resp. a point-to-set
mapping h : Rp ⇒ Rq) is called semialgebraic if its
graph Graph(h) is semialgebraic.

According to Łojasiewicz (1965); Bochnak et al. (1998) and
Shiota (1997, I.2.9, page 52), the class of semialgebraic
sets are stable under the operation of finite union, finite
intersection, Cartesian product or complementation. Some
typical examples include polynomial functions, the indica-
tor function of a semialgebraic set, and the Euclidean norm
(Bochnak et al., 1998, page 26).

Assumption 1 Suppose that

(a) the loss function ` is a proper lower semicontinuous11

and nonnegative function,

(b) the activation functions σi (i = 1 . . . , N − 1) are
Lipschitz continuous on any bounded set,

(c) the regularizers ri and si (i = 1, . . . , N ) are nonega-
tive lower semicontinuous convex functions, and

(d) all these functions `, σi, ri and si (i = 1, . . . , N ) are
either real analytic or semialgebraic, and continuous
on their domains.

11A function f : X → R is called lower semicontinuous if
lim infx→x0 f(x) ≥ f(x0) for any x0 ∈ X .
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According to Krantz & Parks (2002); Łojasiewicz (1965);
Bochnak et al. (1998) and Shiota (1997, I.2.9, page 52),
most of the commonly used DNN training models (2.2)
can be verified to satisfy Assumption 1 as shown in the
following proposition, the proof of which is provided in
Appendix B.

Proposition 1 Examples satisfying Assumption 1 include:

(a) ` is the squared, logistic, hinge, or cross-entropy
losses;

(b) σi is ReLU, leaky ReLU, sigmoid, hyperbolic tangent,
linear, polynomial, or softplus activations;

(c) ri and si are the squared `2 norm, the `1 norm, the
elastic net, the indicator function of some nonempty
closed convex set (such as the nonnegative closed half
space, box set or a closed interval [0, 1]), or 0 if no
regularization.

3.2. Main theorem

Under Assumption 1, we state our main theorem as follows.

Theorem 1 Let {Qk :=
(
{W k

i }Ni=1, {V k
i }Ni=1

)
}k∈N and

{Pk :=
(
{W k

i }Ni=1, {V k
i }Ni=1, {Uk

i }Ni=1

)
}k∈N be the se-

quences generated by Algorithms 1 and 2, respectively. Sup-
pose that Assumption 1 holds, and that one of the following
conditions holds: (i) there exists a convergent subsequence
{Qkj}j∈N (resp. {Pkj}j∈N); (ii) ri is coercive12 for any
i = 1, . . . , N ; (iii) L (resp. L) is coercive. Then for any
α > 0, γ > 0 and any finite initialization Q0 (resp. P0),
the following hold

(a) {L(Qk)}k∈N (resp. {L(Pk)}k∈N) converges to some
L∗ (resp. L∗).

(b) {Qk}k∈N (resp. {Pk}k∈N) converges to a critical
point of L (resp. L).

(c) 1
K

∑K
k=1 ‖gk‖2F → 0 at the rateO(1/K) where gk ∈

∂L(Qk). Similarly, 1
K

∑K
k=1 ‖ḡk‖2F → 0 at the rate

O(1/K) where ḡk ∈ ∂L(Pk).

Note that the DNN training problems (2.3) and (2.5) in this
paper generally do not satisfy such a Lispchitz differentiable
property, particularly, when ReLU activation is used. Com-
pared to the existing literature, this theorem establishes the
global convergence without the block multiconvexity and
Lipschitz differentiability assumptions used in Xu & Yin
(2013), which are often violated by the DNN training prob-
lems due to the nonlinearity of the activations.

12An extended-real-valued function h : Rp → R ∪ {+∞} is
called coercive if and only if h(x)→ +∞ as ‖x‖ → +∞.

3.3. Extensions

We extend the established convergence results to the BCD
methods for general losses with the prox-linear strategy, and
the BCD methods for training ResNets.

3.3.1. EXTENSION TO PROX-LINEAR

Note that in the VN -update of both Algorithms 1 and 2, the
empirical risk is involved in the optimization problems. It
is generally hard to obtain its closed-form solution except
for some special cases such as the case that the loss is the
square loss. For other smooth losses such as the logistic,
cross-entropy, and exponential losses, we suggest using the
following prox-linear update strategies, that is, for some
parameter α > 0, the VN -update in Algorithm 1 is

V k
N = argmin

VN

{
sN (VN ) + 〈∇Rn(V k−1

N ;Y ),VN − V k−1
N 〉

+
α

2
‖VN − V k−1

N ‖2F +
γ

2
‖VN −W k−1

N V k−1
N−1‖

2
F

}
,

(3.1)

and the VN -update in Algorithm 2 is

V k
N = argmin

VN

{
sN (VN ) + 〈∇Rn(V k−1

N ;Y ),VN − V k−1
N 〉

+
α

2
‖VN − V k−1

N ‖2F +
γ

2
‖VN −Uk−1

N ‖2F
}
. (3.2)

From (3.1) and (3.2), when sN is zero or its proximal opera-
tor can be easily computed, then VN -updates for both BCD
algorithms can be implemented with explicit expressions.
Therefore, the specific uses of these BCD methods are very
flexible, mainly depending on users’ understanding of their
own problems.

The claims in Theorem 1 still hold for the prox-linear up-
dates adopted for the VN -updates if the loss is smooth with
Lipschitz continuous gradient, as stated in the following
Theorem 2.

Theorem 2 (Global convergence for prox-linear update)
Consider adopting the prox-linear updates (3.1), (3.2) for
the VN -subproblems in Algorithms 1 and 2, respectively.
Under the conditions of Theorem 1, if further ∇Rn is
Lipschitz continuous with a Lipschitz constant LR and
α > max

{
0, LR−γ2

}
, then all claims in Theorem 1 still

hold for both algorithms.

The proof of Theorem 2 is presented in Appendix D. It es-
tablishes the global convergence of a BCD method for the
commonly used DNN training models with nonlinear losses,
such as logistic or cross-entropy losses, etc. Equipped with
the prox-linear strategy, all updates of BCD can be imple-
mented easily and allow large-scale distributed computa-
tions.
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3.3.2. EXTENSION TO RESNET TRAINING

In this section, we first adapt the BCD method to the resid-
ual networks (ResNets; He et al., 2016), and then extend
the established convergence results of BCD to this case.
Without loss of generality, similar to (2.2), we consider the
following simplified ResNets training problem,

min
W,V

Rn(VN ;Y ) +

N∑
i=1

ri(Wi) +

N∑
i=1

si(Vi)

s.t. Vi − Vi−1 = σi(WiVi−1), i = 1, . . . , N. (3.3)

Since the ReLU activation is usually used in ResNets, we
only consider the three-splitting formulation of (3.3):

min
W,V,U

Rn(VN ;Y ) +

N∑
i=1

ri(Wi) +

N∑
i=1

si(Vi)

s.t.Ui = WiVi−1, Vi−Vi−1 = σi(Ui), i = 1, . . . , N,

and then adapt BCD to the following minimization problem,

min
W,V,U

Lres(W,V,U), (3.4)

where W := {Wi}Ni=1, V := {Vi}Ni=1, U := {Ui}Ni=1 as
defined before, and

Lres(W,V,U) := Rn(VN ;Y ) +

N∑
i=1

ri(Wi) +

N∑
i=1

si(Vi)

+
γ

2

N∑
i=1

[
‖Vi − Vi−1 − σi(Ui)‖2F + ‖Ui −WiVi−1‖2F

]
.

When applied to (3.4), we use the same update order of
Algorithm 2 but slightly change the subproblems according
to the objective Lres in (3.4). The specific BCD algorithm
for ResNets is presented in Algorithm 3 in Appendix D.

Similarly, we establish the convergence of BCD for the
DNN training model with ResNets (3.4) as follows.

Theorem 3 (Convergence of BCD for ResNets)
Let {{W k

i ,V
k
i ,U

k
i }Ni=1}k∈N be a sequence generated by

BCD for the DNN training model with ResNets (i.e., Algo-
rithm 3). Let assumptions of Theorem 1 hold. Then all
claims in Theorem 1 still hold for BCD with ResNets by
replacing L with Lres.

Moreover, consider adopting the prox-linear update for the
VN -subproblem in Algorithm 3, then under the assump-
tions of Theorem 2, all claims of Theorem 2 still hold for
Algorithm 3.

The proof of this theorem is presented in Appendix D.
ResNets is one of the most popular network architectures

used in the deep learning community and has profound
applications in computer vision. How to efficiently train
ResNets is thus very important, especially since it is not of
a fully-connected structure. This theorem, for the first time,
shows that the BCD method might be a good candidate for
the training of ResNets with global convergence guarantee.

4. Keystones and discussions
In this section, we present the keystones of our proofs fol-
lowed by some discussions.

4.1. Main ideas of proofs

Our proofs follow the analysis framework formulated in
Attouch et al. (2013), where the establishments of the suf-
ficient descent and relative error conditions and the verifi-
cations of the continuity condition and KŁ property of the
objective function are the four key ingredients. In order to
establish the sufficient descent and relative error properties,
two kinds of assumptions, namely, (a) multiconvexity and
differentiability assumption, and (b) (blockwise) Lipschitz
differentiability assumption on the unregularized part of ob-
jective function are commonly used in the literature, where
Xu & Yin (2013) mainly used assumption (a), and the lit-
erature (Attouch et al., 2013; Xu & Yin, 2017; Bolte et al.,
2014) mainly used assumption (b). Note that in our cases,
the unregularized part of L in (2.3),

Rn(VN ;Y ) +
γ

2

N∑
i=1

‖Vi − σi(WiVi−1)‖2F ,

and that of L in (2.5),

Rn(VN ;Y )+
γ

2

N∑
i=1

[
‖Vi − σi(Ui)‖2F + ‖Ui −WiVi−1‖2F

]
usually do not satisfy any of the block multiconvexity
and differentiability assumptions (i.e., assumption (a)),
and the blockwise Lipschitz differentiability assumption
(i.e., assumption (b)). For instance, when σi is ReLU
or leaky ReLU, the functions ‖Vi − σi(WiVi−1)‖2F and
‖Vi − σi(Ui)‖2F are non-differentiable and nonconvex with
respect toWi-block and Ui-block, respectively.

In order to overcome these challenges, in this paper, we
first exploit the proximal strategies for all the non-strongly
convex subproblems (see Algorithm 2) to cheaply obtain the
desired sufficient descent property (see Lemma 1), and then
take advantage of the Lipschitz continuity of the activations
as well as the specific splitting formulations to yield the
desired relative error property (see Lemma 2). Below we
present these two key lemmas, while leaving other details in
Appendix (where the verification of the KŁ property for the
concerned DNN training models satisfying Assumption 1



Global Convergence of Block Coordinate Descent in Deep Learning

can be referred to Proposition 2 in Appendix C.1, and the
verification of the continuity condition is shown by (C.19) in
Appendix C.3.2). Based on Lemmas 1 and 2, Proposition 2
and (C.19), we prove Theorem 1 according to Attouch et al.
(2013, Theorem 2.9), with details shown in Appendix C.

4.2. Sufficient descent lemma

We state the established sufficient descent lemma as follows.

Lemma 1 (Sufficient descent) Let {Pk}k∈N be a se-
quence generated by the BCD method (Algorithm 2). Then,
under the assumptions of Theorem 1,

L(Pk) ≤ L(Pk−1)− a‖Pk − Pk−1‖2F , (4.1)

for some constant a > 0 specified in the proof.

From Lemma 1, the Lagrangian sequence {L(Pk)} is mono-
tonically decreasing, and the descent quantity of each iterate
can be lower bounded by the discrepancy between the cur-
rent iterate and its previous iterate. This lemma is crucial for
the global convergence of a nonconvex algorithm. It tells at
least the following four important items: (i) {L(Pk)}k∈N
is convergent if L is lower bounded; (ii) {Pk}k∈N itself is
bounded if L is coercive and P0 is finite; (iii) {Pk}k∈N is
square summable, i.e.,

∑∞
k=1 ‖Pk − Pk−1‖2F <∞, imply-

ing its asymptotic regularity, i.e., ‖Pk − Pk−1‖F → 0 as
k → ∞; and (iv) 1

K

∑K
k=1 ‖Pk − Pk−1‖2F → 0 at a rate

of O(1/K). Leveraging Lemma 1, we can establish the
global convergence (i.e., the whole sequence convergence)
of BCD in DNN training settings. In contrast, Davis et al.
(2019) only establish the subsequence convergence of SGD
in DNN training settings. Such a gap between the subse-
quence convergence of SGD in Davis et al. (2019) and the
whole sequence convergence of BCD in this paper exists
mainly because SGD can only achieve the descent property
but not the sufficient descent property.

It can be noted from Lemma 1 that neither multiconvexity
and differentiability nor Lipschitz differentiability assump-
tions are imposed on the DNN training models to yield
this lemma, as required in the literature (Xu & Yin, 2013;
Attouch et al., 2013; Xu & Yin, 2017; Bolte et al., 2014).
Instead, we mainly exploit the proximal strategy for all non-
strongly convex subproblems in Algorithm 2 to establish
this lemma.

4.3. Relative error lemma

We now present the obtained relative error lemma.

Lemma 2 (Relative error) Under the conditions of Theo-
rem 1, let B be an upper bound of Pk−1 and Pk for any
positive integer k, LB be a uniform Lipschitz constant of σi
on the bounded set {P : ‖P‖F ≤ B}. Then for any positive

integer k, it holds that,

‖ḡk‖F ≤ b̄‖Pk − Pk−1‖F , ḡk ∈ ∂L(Pk)

for some constant b̄ > 0 specified later in the proof, where

∂L(Pk) := ({∂WiL}Ni=1, {∂ViL}Ni=1, {∂UiL}Ni=1)(Pk).

Lemma 2 shows that the subgradient sequence of the La-
grangian is upper bounded by the discrepancy between the
current and previous iterates. Together with the asymp-
totic regularity of {Pk}k∈N yielded by Lemma 1, Lemma 2
shows the critical point convergence. Also, together with the
claim (iv) implied by Lemma 1, namely, the O(1/K) rate
of convergence of 1

K

∑K
k=1 ‖Pk−Pk−1‖2F → 0, Lemma 2

yields the O(1/K) rate of convergence (to a critical point)
of BCD, i.e., 1

K

∑K
k=1 ‖ḡk‖F → 0 at the rate of O(1/K).

From Lemma 2, both differentiability and (blockwise) Lips-
chitz differentiability assumptions are not imposed. Instead,
we only use the Lipschitz continuity (on any bounded set) of
the activations, which is a very mild and natural condition
satisfied by most commonly used activation functions. In
order to achieve this lemma, we also need to do some spe-
cial treatments on the specific updates of BCD algorithms
as demonstrated in Appendix C.3.1.

5. Conclusion
The empirical efficiency of BCD methods in deep neural
network (DNN) training has been demonstrated in the lit-
erature. However, the theoretical understanding of their
convergence is still very limited and it lacks a general frame-
work due to the fact that DNN training is a highly nonconvex
problem. In this paper, we fill this void by providing a gen-
eral methodology to establish the global convergence of the
BCD methods for a class of DNN training models, which en-
compasses most of the commonly used BCD methods in the
literature as special cases. Under some mild assumptions,
we establish the global convergence at a rate of O(1/k),
with k being the number of iterations, to a critical point of
the DNN training models with several variable splittings.
Our theory is also extended to residual networks with gen-
eral losses which have Lipschitz continuous gradients. Such
work may lay a theoretical foundation of BCD methods for
their applications to deep learning.
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