
Domain Adaptation with Asymmetrically-Relaxed Distribution Alignment

A. Proofs
Derivation of (1).

EU (φ, h) =

∫
dxpU (x) |h(φ(x))− f(x)|

=

∫
dx

∫
dzpφU (z)φU (x|z) |h(φ(x))− f(x)|

=

∫
dzpφU (z)

∫
dxφU (x|z) |h(z)− f(x)|

=

∫
dzpφU (z)

∣∣∣∣h(z)−
∫

dxφU (x|z)f(x)

∣∣∣∣
.
=

∫
dzpφU (z)

∣∣∣h(z)− fφU (z)
∣∣∣

.
=

∫
dzpφU (z)rU (z;φ, h)

where we use the following fact: For any fixed z, h(z) ∈ {0, 1}, if h(z) = 0 then |h(z)− f(x)| = f(x)− h(z) for all x.
Similarly, when h(z) = 1, we have |h(z)− f(x)| = h(z)− f(x) for all x. Thus we can move the integral over x inside the
absolute operation.

Proof of Proposition 3.1. First we have

ρU =

∫
dxpU (x)f(x) =

∫
dx

∫
dzpφU (z)φU (x|z)f(x) =

∫
dzpφU (z)fφU (z) .

When ES(φ, h) = 0 we have∣∣∣∣∫ dzpφS(z)h(z)− ρS
∣∣∣∣ =

∣∣∣∣∫ dzpφS(z)h(z)−
∫

dzpφS(z)fφS (z)

∣∣∣∣ ≤ ∫ dzpφS(z)
∣∣∣h(z)− fφS (z)

∣∣∣ = ES(φ, h) = 0

thus
∫

dzpφS(z)h(z) = ρS .

Applying the fact that pφS(z) = pφT (z) for all z ∈ Z ,

ET (φ, h) =

∫
dzpφT (z)

∣∣∣h(z)− fφT (z)
∣∣∣ ≥ ∣∣∣∣∫ dzpφT (z)h(z)−

∫
dzpφT (z)fφT (z)

∣∣∣∣
=

∣∣∣∣∫ dzpφS(z)h(z)−
∫

dzpφT (z)fφT (z)

∣∣∣∣ = |ρS − ρT | ,

which concludes the proof.

Proof of Proposition 3.2. Let pS be the uniform distribution over [0, 1] and pT be the uniform distribution over [2, 3]. The
labeling function f is set as f(x) = 1 iff x ∈ [0, ρS ] ∪ [2, 2 + ρT ] such that the definition of ρS and ρT is preserved. We
construct the following mapping φ: For x ∈ [0, 1] φ(x) = x. For x ∈ [2, 2+ρT ] φ(x) = (x−2)ρS/ρT . For x ∈ [2+ρT , 3]

φ(x) = 1− (3− x)(1− ρS)/(1− ρT ). φ maps both source and target data into [0, 1] with pφS to be uniform over [0, 1] and
pφT (z) = ρT /ρS when z ∈ [0, ρS ] and pφT (z) = (1− ρT )/(1− ρS) when z ∈ [ρS , 1]. Since pφS(z) = 1 for all z ∈ [0, 1] we

can conclude that supz∈Z p
φ
T (z)/pφS(z) ≤ max

{
ρT
ρS
, 1−ρT

1−ρS

}
.

Proof of Theorem 4.3. Instead of working with Assumption 4.2 we first extend Construction 4.1 with the following addition

Construction A.1. (Connectedness from target domain to source domain.) Let CT ⊂ X be a set of points in the raw data
space that satisfy the following conditions:

1. φ(CT ) ⊂ φ(C0 ∪ C1).
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2. For any x ∈ CT , there exists x′ ∈ CT ∩ (C0 ∪ C1) such that one can find a sequence of points x0, x1, ..., xm ∈ CT
with x0 = x, xm = x′, f(x) = f(x′) and dX (xi−1, xi) <

∆
L for all i = 1, ...,m.

3. pT (CT ) ≥ 1− δ3.

We now proceed to prove bound based on Constructions 4.1 and A.1. Later on we will show that Assumption 4.2 indicates
the existence of Construction A.1 so that the bound holds with a combination of Constructions 4.1 and Assumption 4.2.

The third term of (2) can be written as∫
dzpφS(z)

(
pφT (z)

pφS(z)
− 1

)
rS(z;φ, h)

≤ inf
B⊆Z

∫
B

dzpφS(z)

(
pφT (z)

pφS(z)
− 1

)
rS(z;φ, h) +

∫
Bc

dzpφS(z)

(
pφT (z)

pφS(z)
− 1

)
rS(z;φ, h)

≤ inf
B⊆Z

(
sup
z∈B

pφT (z)

pφS(z)
− 1

)∫
B

dzpφS(z)rS(z;φ, h) +

∫
Bc

dzpφT (z)rS(z;φ, h)

≤ inf
B⊆Z

(
sup
z∈B

pφT (z)

pφS(z)
− 1

)
ES(φ, h) + pφT (Bc)

≤ βES(φ, h) + δ1 . (12)

For the second term of (2), plugging in rU (z;φ, h) =
∣∣∣h(z)− fφU (z)

∣∣∣ gives∫
dzpφT (z) (rT (z;φ, h)− rS(z;φ, h))

=

∫
dzpφT (z)

(∣∣∣h(z)− fφT (z)
∣∣∣− ∣∣∣h(z)− fφS (z)

∣∣∣)
=

∫
dzpφT (z)

∣∣∣fφT (z)− fφS (z)
∣∣∣

=

∫
dzpφT (z)

∣∣∣fφT (z)− fφS (z)
∣∣∣ (1 {z ∈ φ(C0)}+ 1 {z ∈ φ(C1)}+ 1 {z ∈ (φ(C0) ∪ φ(C1))

c})

=

∫
dzpφT (z)

∣∣∣fφT (z)− fφS (z)
∣∣∣1 {z ∈ φ(C0)}+

∫
dzpφT (z)

∣∣∣fφT (z)− fφS (z)
∣∣∣1 {z ∈ φ(C1)}

+

∫
dzpφT (z)

∣∣∣fφT (z)− fφS (z)
∣∣∣1 {z ∈ (φ(C0) ∪ φ(C1))

c} (13)

Applying
∣∣∣fφT (z)− fφS (z)

∣∣∣ ≤ fφT (z) + fφS (z) to the first part of (13) gives∫
dzpφT (z)

∣∣∣fφT (z)− fφS (z)
∣∣∣1 {z ∈ φ(C0)}

≤
∫

dzpφT (z)fφT (z)1 {z ∈ φ(C0)}+

∫
dzpφT (z)fφS (z)1 {z ∈ φ(C0)}

=

∫
dzpφT (z)

∫
dxφT (x|z)f(x)1 {z ∈ φ(C0)}+

∫
dzpφT (z)fφS (z)1 {z ∈ φ(C0)}

=

∫
dxf(x)

∫
dzpφT (z)φT (x|z)1 {z ∈ φ(C0)}+

∫
dzpφT (z)fφS (z)1 {z ∈ φ(C0)}

=

∫
dxf(x)pT (x)1 {φ(x) ∈ φ(C0)}+

∫
dzpφT (z)fφS (z)1 {z ∈ φ(C0)}

=

∫
dxpT (x)1 {f(x) = 1, φ(x) ∈ φ(C0)}+

∫
dzpφT (z)fφS (z)1 {z ∈ φ(C0)} (14)
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Similarly, applying
∣∣∣fφT (z)− fφS (z)

∣∣∣ =
∣∣∣(1− fφT (z))− (1− fφS (z))

∣∣∣ ≤ (1− fφT (z)) + (1− fφS (z)) to the second part of
(13) gives ∫

dzpφT (z)
∣∣∣fφT (z)− fφS (z)

∣∣∣1 {z ∈ φ(C1)}

≤
∫

dzpφT (z)(1− fφT (z))1 {z ∈ φ(C1)}+

∫
dzpφT (z)(1− fφS (z))1 {z ∈ φ(C1)}

=

∫
dzpφT (z)

(
1−

∫
dxφT (x|z)f(x)

)
1 {z ∈ φ(C1)}+

∫
dzpφT (z)(1− fφS (z))1 {z ∈ φ(C1)}

=

∫
dx(1− f(x))

∫
dzpφT (z)φT (x|z)1 {z ∈ φ(C1)}+

∫
dzpφT (z)(1− fφS (z))1 {z ∈ φ(C1)}

=

∫
dx(1− f(x))pT (x)1 {φ(x) ∈ φ(C1)}+

∫
dzpφT (z)(1− fφS (z))1 {z ∈ φ(C1)}

=

∫
dxpT (x)1 {f(x) = 0, φ(x) ∈ φ(C1)}+

∫
dzpφT (z)(1− fφS (z))1 {z ∈ φ(C1)} (15)

Combining the second part of (14) and the second part of (15)∫
dzpφT (z)fφS (z)1 {z ∈ φ(C0)}+

∫
dzpφT (z)(1− fφS (z))1 {z ∈ φ(C1)}

=

∫
dz
pφT (z)

pφS(z)
pφS(z)fφS (z)1 {z ∈ φ(C0)} (1 {z ∈ B}+ 1 {z ∈ Bc})

+

∫
dz
pφT (z)

pφS(z)
pφS(z)(1− fφS (z))1 {z ∈ φ(C1)} (1 {z ∈ B}+ 1 {z ∈ Bc})

≤ (1 + β)

∫
dzpφS(z)fφS (z)1 {z ∈ φ(C0)}+ (1 + β)

∫
dzpφS(z)(1− fφS (z))1 {z ∈ φ(C1)}

+

∫
dzpφT (z)1 {z ∈ Bc} (1 {z ∈ φ(C0)}+ 1 {z ∈ φ(C1)})

≤ (1 + β)

∫
dxpS(x)1 {f(x) = 1, φ(x) ∈ φ(C0)}+ (1 + β)

∫
dxpS(x)1 {f(x) = 0, φ(x) ∈ φ(C1)}+ pT (Bc)

≤ (1 + β)

∫
dxpS(x) (1 {f(x) = 1, φ(x) ∈ φ(C0) ∨ f(x) = 0, φ(x) ∈ φ(C1)}) + δ1 (16)

For i ∈ {0, 1} if x ∈ Ci then f(x) = i and φ(x) ∈ Ci. So if f(x) = 1, φ(x) ∈ φ(C0) or f(x) = 0, φ(x) ∈ φ(C1) holds
we must have x /∈ C0 ∪ C1. Therefore, following (16) gives∫

dzpφT (z)fφS (z)1 {z ∈ φ(C0)}+

∫
dzpφT (z)(1− fφS (z))1 {z ∈ φ(C1)}

≤ (1 + β)

∫
dxpS(x)1 {x /∈ C0 ∪ C1}+ δ1

= (1 + β)(1− pS(C0 ∪ C1)) + δ1

≤ (1 + β)δ2 + δ1 (17)

Now looking at the first part of (14) and the first part of (15)∫
dxpT (x)1 {f(x) = 1, φ(x) ∈ φ(C0)}+

∫
dxpT (x)1 {f(x) = 0, φ(x) ∈ φ(C1)}

=

∫
dxpT (x)1 {f(x) = 1, φ(x) ∈ φ(C0), x ∈ CT }+

∫
dxpT (x)1 {f(x) = 1, φ(x) ∈ φ(C0), x /∈ CT }

+

∫
dxpT (x)1 {f(x) = 0, φ(x) ∈ φ(C1), x ∈ CT }+

∫
dxpT (x)1 {f(x) = 0, φ(x) ∈ φ(C1), x /∈ CT }

≤
∫

dxpT (x) (1 {f(x) = 1, φ(x) ∈ φ(C0), x ∈ CT }+ 1 {f(x) = 0, φ(x) ∈ φ(C1), x ∈ CT }) + pT (CcT )
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≤
∫

dxpT (x)1 {x ∈ CT }1 {f(x) = 1, φ(x) ∈ φ(C0) ∨ f(x) = 0, φ(x) ∈ φ(C1)}+ δ3 . (18)

Next we show that the first part of (18) is 0. Recall that φ(CT ) ⊂ φ(C0∪C1) and if x ∈ CT there exists x′ ∈ CT ∩(C0∪C1)
with a sequence of points x0, x1, ..., xm ∈ CT such that x0 = x, xm = x′, f(x) = f(x′) and dX (xi−1, xi) <

∆
L for

all i = 1, ...,m. So for x ∈ CT and f(x) = i, we pick such x′. Since φ is L-Lipschitz and φ(CT ) ⊂ φ(C0 ∪ C1)
we have φ(x0), φ(x1), ..., φ(xm) ∈ φ(C0 ∪ C1) and dZ(φ(xi−1), φ(xi)) < ∆ for all i = 1, ...,m. Applying the fact
that infz0∈φ(C0),z1∈φ(C1) dZ(z0, z1) ≥ ∆ > 0 we know that if φ(x) = φ(x0) ∈ φ(Cj) for some j ∈ {0, 1} then
φ(x′) = φ(xm) ∈ φ(Cj). From x′ ∈ C0 ∪ C1 and f(x′) = f(x) = i we have φ(x′) ∈ φ(Ci). Since C0 ∩ C1 = ∅ we can
conclude i = j and thus φ(x) ∈ φ(Ci) if f(x) = i for any x ∈ CT . Therefore, if x ∈ CT , neither f(x) = 1, φ(x) ∈ φ(C0)
nor f(x) = 0, φ(x) ∈ φ(C1) can hold. Hence the first part of (18) is 0.

So far by combining (17) and (18) we have shown that the sum of (14) and (15) (which are the first two parts of (13)) can be
upper bounded by δ1 + (1 + β)δ2 + δ3. For the third part of (13) we have∫

dzpφT (z)
∣∣∣fφT (z)− fφS (z)

∣∣∣1 {z ∈ (φ(C0) ∪ φ(C1))
c}

≤
∫

dzpφT (z)1 {z ∈ (φ(C0) ∪ φ(C1))
c}

=

∫
dz
pφT (z)

pφS(z)
pφS(z)1 {z ∈ (φ(C0) ∪ φ(C1))

c} (1 {z ∈ B}+ 1 {z ∈ Bc})

≤
∫

dz
pφT (z)

pφS(z)
pφS(z)1 {z ∈ (φ(C0) ∪ φ(C1))

c}1 {z ∈ B}+

∫
dzpφT (z)1 {z ∈ Bc}

≤ (1 + β)

∫
dzpφS(z)1 {z ∈ (φ(C0) ∪ φ(C1))

c}+ δ1

= (1 + β)

(
1−

∫
dzpφS(z)1 {z ∈ φ(C0) ∪ φ(C1)}

)
+ δ1

= (1 + β)

(
1−

∫
dxpS(x)1

{
x ∈ φ−1 (φ(C0) ∪ φ(C1))

})
+ δ1

= (1 + β)
(
1− pS

(
φ−1 (φ(C0) ∪ φ(C1))

))
+ δ1

≤ (1 + β) (1− pS (C0 ∪ C1)) + δ1

≤ (1 + β)δ2 + δ1 . (19)

Putting (19) into (13) gives ∫
dzpφT (z) (rT (z;φ, h)− rS(z;φ, h)) ≤ 2δ1 + 2(1 + β)δ2 + δ3 . (20)

Plugging (12) and (20) into (2) gives the result of Theorem 4.3 under Constructions 4.1 and A.1.

It remains to show that Assumption 4.2 implies the existence of a Construction A.1. To prove this, we first write
φ(CT ) ⊂ φ(C0∪C1) as CT ⊂ φ−1(φ(C0∪C1)). By Construction 4.1 we have pS(C0∪C1) ≥ 1− δ2. From (19) we have

pT
(
φ−1(φ(C0 ∪ C1))

)
=

∫
dxpT (x)1

{
x ∈ φ−1(φ(C0 ∪ C1))

}
=

∫
dzpφT (z)1 {z ∈ φ(C0 ∪ C1)} ≥ (1 + β)δ2 + δ1 .

Setting BS = C0 ∪ C1 and BT = φ−1(φ(C0 ∪ C1) in Assumption 4.2 gives a construction of Construction A.1, thus
concluding the proof.

Proof of Corollary 4.5. Based on the statement of Corollary 4.5 it is obvious that Construction 4.1 can be made with δ1 = 0,
δ2 = 0 and a finitely large L. (Here we implicitly assume that φ is bounded on X ). It remains to show that Assumption 4.2
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holds with δ3 = 0. As δ1 = δ2 = 0, any BS and BT will be supersets of Supp(pS) and Supp(pT ) respectively. So it
sufficies to consider BS = Supp(pS) and BT = Supp(pT ).

Now we verify that CT = Supp(pT ) satisfies the requirements in Assumption 4.2. According to Assumption 4.4, for
any x ∈ Supp(pT ), there must exist ST,i,j such that x ∈ ST,i,j , ST,i,j is connected, f(x′) = i for all x′ ∈ ST,i,j and
ST,i,j ∩ Supp(pS) 6= ∅. Pick x′ ∈ ST,i,j ∩ Supp(pS). Such x′ satisfies x′ ∈ CT ∩ BS with our choice of CT and BS .
Since ST,i,j is connected we can find a sequence of points x0, ..., xm ∈ ST,i,j with x0 = 0, xm = x′ and dX (xi−1, xi) < ε
for any ε > 0. As ST,i,j is label consistent we have f(x) = f(x′). Picking ε = ∆

L concludes the fact that CT = Supp(pT )
satisfies the requirements in Assumption 4.2.

Since pT (Supp(pT )) = 1 we have δ3 = 0. As a result, ET (φ, h) ≤ (1 +β)ES(φ, h) holds according to Theorem 4.3, which
concludes the proof of Corollary 4.5.

Derivation of (6). The Fenchel Dual of f̄β(u) can be written as

f̄∗β(t) =

{
tf ′−1(t)− f̄β(f ′−1(t)) if t ≤ f ′( 1

1+β ) ,

+∞ if t > f ′( 1
1+β ) .

=

{
tf ′−1(t)− f(f ′−1(t)) + C if t ≤ f ′( 1

1+β ) ,

+∞ if t > f ′( 1
1+β ) .

=

{
f∗(t) + Cf,β if t ≤ f ′( 1

1+β ) ,

+∞ if t > f ′( 1
1+β ) .

,

where Cf,β = f( 1
1+β )− f ′( 1

1+β ) 1
1+β + f ′( 1

1+β ).

Therefore, the modified f̄β-divergence can be written as

Df,β(p, q) = sup
T :Z7→dom(f∗)∩(−∞,f ′( 1

1+β )]

Ez∼q [T (z)]− Ez∼p [f∗(T (z))]− Cf,β .

Derivation of (7). According to Nowozin et al. (2016), the GAN objecitve uses f(u) = u log u− (1+u) log(1+u). Hence
f∗(t) = − log(1− et), f ′(u) = log u

u+1 and f ′( 1
1+β ) = log 1

2+β . So we need to parameterize T : Z 7→
(
−∞, log 1

2+β

]
.

T (z) = log g(z)
2+β with g(z) ∈ (0, 1] satisfies the range constraint for T . Plugging T (z) = log g(z)

2+β into (6) gives the result of
(7).

B. Experiment Details
Synthetic datasets For source distribution, we sample class 0 from N ([−1,−0.3], diag(0.1, 0.4)) and class 1 from
N ([1, 0.3], diag(0.1, 0.4)). For target distribution, we sample class 0 from N ([−0.3,−1], diag(0.4, 0.1)) and class 1
from N ([0.3, 1], diag(0.4, 0.1)). For label classifier, we use a fully-connect neural net with 3 hidden layers (50, 50, 2) and
the latent space is set as the last hidden layer. For domain classifier (critic) we use a fully-connect neural net with 2 hidden
layers (50, 50).

Image datasets For MNIST we subsample 2000 data points and for USPS we subsample 1800 data points. The subsampling
process depends on the given label distribution (e.g. shift or no-shift). For label classifier, we use LeNet and the latent space
is set as the last hidden layer. For domain classifier (critic) we use a fully-connect neural net with 2 hidden layers (500, 500).

In all experiments, we use λ = 1 in the objective (4) and ADAM with learning rate 0.0001 and β1 = 0.5 as the optimizer.
We also apply a l2-regularization on the weights of φ and h with coefficient 0.001.

More discussion on synthetic experiments. The only unexcepted failure is WDANN1-2, which achieves only 20%
accuracy in 2-out-of-5 runs. Looking in to the low accuracy runs we found that the l2-norm of the encoder weights is
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clearly higher than the successful runs. Large l2-norm of weights in φ likely results in a high Lipschitz constant L, which
is undesirable according to our theory. We only implemented l2-regularization to encourage Lipschitz continuity of the
encoder φ, which might be insufficient. How to enforce Lipschitz continuity of a neural network is still an open question.
Trying more sophisticated approaches for Lipschitz continuity can a future direction.

Choice of β. Since a good value of β may depend on the knowledge of target label distribution which is unknown, we
experiment with different values of β. Empirically we did not find any clear pattern of correlation between value of β and
performance as long as it is big enough to accommodate label distribution shift so we would leave it as an open question. In
practice we suggest to use a moderate value such as 2 or 4, or estimate based on prior knowledge of target label distribution.


