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Abstract

A typical audio signal processing pipeline in-

cludes multiple disjoint analysis stages, includ-

ing calculation of a time-frequency representation

followed by spectrogram-based feature analysis.

We show how time-frequency analysis and non-

negative matrix factorisation can be jointly for-

mulated as a spectral mixture Gaussian process

model with nonstationary priors over the ampli-

tude variance parameters. Further, we formulate

this nonlinear model’s state space representation,

making it amenable to infinite-horizon Gaussian

process regression with approximate inference via

expectation propagation, which scales linearly in

the number of time steps and quadratically in the

state dimensionality. By doing so, we are able to

process audio signals with hundreds of thousands

of data points. We demonstrate, on various tasks

with empirical data, how this inference scheme

outperforms more standard techniques that rely

on extended Kalman filtering.

1. Introduction

Uncovering the high-resolution spectral and temporal infor-

mation present in a natural auditory scene is a challenging

task. Loosely following the approach taken by the human

auditory system, we decompose a one-dimensional audio

signal into its high-dimensional set of time-varying spectral

components, and then utilise the statistical features of these

components to perform some auditory task such as classi-

fication or source separation. The highly ill-posed nature

of this decomposition necessitates the use of prior informa-

tion about the behaviour of the spectral components, which

strongly encourages a probabilistic modelling perspective.
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Figure 1. Nonstationary modelling of audio data: a recording of

female speech (bottom). We decompose the signal into Gaussian

process carrier waverforms (blue block) multiplied by a spectro-

gram (red block). The spectrogram is learned from data as a

nonnegative weight matrix times positive modulators (top).

A typical (non-probabilistic) way to perform feature anal-

ysis on an audio signal is to apply nonnegative matrix fac-

torisation (NMF) to the amplitude components of a time-

frequency (TF) representation – the spectrogram. As out-

lined in (Turner & Sahani, 2014), this approach is limited

since it discards phase information calculated during the TF

stage, as well as dependencies between TF coefficients. It

also fails to capture and share any uncertainty information

between the analysis stages.

Moreover, the map that takes the waveform to the space

of TF coefficients is not a bijection. This means that any

function operating on the signal in the TF domain, e.g. noise

removal, might push the signal outside the manifold of

realisable waveforms (Turner, 2010). Hence, the modified

TF representation must be projected back to the manifold

of valid TF representations before the waveform can be re-

synthesized (e.g., Griffin & Lim, 1984). This projection

might distort the signal and introduce undesirable artefacts.
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These issues have motivated a large body of research on

probabilistic models that operate directly on signal wave-

forms rather than on TF representations. Such models have

been shown to outperform their spectrogram-based counter-

parts on several tasks, including source separation (Liutkus

et al., 2011; Alvarado et al., 2019; Magron & Virtanen,

2019), audio inpainting and denoising (Badeau & Plumbley,

2014; Turner & Sahani, 2014). The limitations of spec-

trogram analysis have also motivated end-to-end machine

learning algorithms for audio generation (Engel et al., 2017;

Dieleman et al., 2018), generally based on neural networks

that require large amounts of training data. In this paper we

leverage prior knowledge to construct a probabilistic model

that enables inference and learning for short- to medium-

duration audio signals.

It has been shown that probabilistic TF analysis can be per-

formed using a Gaussian process (GP) model whose kernel

is a sum of quasi-periodic functions (Wilkinson et al., 2019).

A GP formulation for combining TF analysis with nonneg-

ative matrix factorization (NMF) has also been proposed

(Turner & Sahani, 2014). However, the observation mecha-

nism in this joint model is a nonlinear function of the latent

components, making inference non-trivial. Previous work

relies on a suboptimal inference scheme, where the separate

model components are updated independently in an iterative

fashion. Moreover, inference in GPs typically scales poorly

in the number of time steps, making analysis infeasible for

long audio signals. Hence, the full potential of probabilistic

models for audio analysis has not yet been realised.

In this work, we propose a probabilistic model and an asso-

ciated scalable inference algorithm that makes end-to-end

audio analysis using GPs possible.† The contributions of

this paper are as follows:

• We construct the state space form of a spectral mixture

Gaussian process (GP) with nonstationary NMF priors

over the amplitude variance parameters, showing that

this model is equivalent to a Gaussian time-frequency

NMF model (see Fig. 1 for an overview of the idea).

• We design an inference procedure for this nonlinear

model based on power expectation propagation in the

Kalman smoother setting.

• We construct the corresponding infinite-horizon GP

(Solin et al., 2018) method for this model, which scales

as O(M2T ) in time and O(MT ) in memory, where

M is the dimensionality of the state and T the number

of time steps.

• We show performance of this approximate inference

scheme on various tasks, and compare it to the classi-

†Matlab code for all methods: https://github.com/AaltoML/
nonstationary-audio-gp

cal signal processing approach: the iterated extended

Kalman filter. By doing so, we demonstrate the flexi-

bility of this generative model.

In Sec. 2 we review the background material and related

work on Gaussian process–based models for audio analysis.

Sec. 3 introduces the proposed model and the associated

inference algorithm. Sec. 4 demonstrates performance of

the proposed method using a set of audio experiments.

2. Gaussian Process Time-Frequency Analysis

To specify a probabilistic end-to-end model for the audio

processing pipeline, we must replace or remodel the stan-

dard processing stages with their probabilistic counterparts.

Gaussian processes (GPs, Rasmussen & Williams, 2006)

are a flexible tool for specifying probability distributions

over functions, and can be deployed in many such cases.

GP models for time series typically admit the form:

f(t) ∼ GP(0, κ(t, t′)), (1a)

y | f ∼

T
∏

k=1

p(yk | f(tk)), (1b)

where the one-dimensional input t represents time, Eq. (1a)

defines the Gaussian process prior and Eq. (1b) the likeli-

hood (observation) model. The data D = {(tk, yk)}
T
k=1

consist of input–output pairs and κ(t, t′) is a covariance

function encoding the prior assumptions of the latent (hid-

den) process f(t).

Following the typical approach (see, e.g., Rasmussen &

Nickisch, 2010, for an overview) we seek an approximate

posterior of the form:

q(f |D) = N(f |Kα, (K−1 +V)−1), (2)

where the covariance matrix Ki,j = κ(ti, tj) comes from

the prior, α ∈ R
T , and the likelihood precision matrix V is

diagonal.

The predictive distribution for a test input t∗ with train-

ing locations t is obtained by integrating the Gaus-

sian latent marginal distribution N(f∗ |µf,∗, σ
2
f,∗), where

µf,∗ = K(t∗, t)α and σ2
f,∗ = K(t∗, t∗) − K(t∗, t)(K +

V−1)−1K(t, t∗), against the likelihood p(y∗ | f∗) to obtain

p(y∗) =
∫

p(y∗ | f∗)N(f∗ |µf,∗, σ
2
f,∗) df∗, the predictive

distribution describing the unknown y∗.

A probabilistic way of learning the hyperparameters θ of the

covariance function and the observation model is by max-

imising the log marginal likelihood function (Rasmussen &

Williams, 2006) (or an approximation of it),

log p(y |θ) = log

∫

N(f |0,Kθ)
∏

k

p(yk | fk,θ) df .

(3)

https://github.com/AaltoML/nonstationary-audio-gp
https://github.com/AaltoML/nonstationary-audio-gp
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Issues in dealing with the latent functions Given the

well-established GP modelling framework, it may seem

surprising that these methods are not widely used in au-

dio modelling. However, the prohibitive computational

cubic time-scaling in the number of data renders this naive

approach useless for most audio applications where data

samples are typically acquired at thousands of samples per

second (say, 16 kHz).

Standard approaches for speeding up GP inference, such as

inducing input (Quiñonero-Candela & Rasmussen, 2005;

Snelson & Ghahramani, 2006; Titsias, 2009), interpolation

approaches (Wilson & Nickisch, 2015), stochastic methods

(Hensman et al., 2013; Krauth et al., 2017), basis func-

tion approximations (Lázaro-Gredilla et al., 2010; Hensman

et al., 2018; Solin & Särkkä, 2014a) scale poorly in long

(or potentially unbounded) time series models such as au-

dio analysis. Band-structured or Toeplitz methods (Saatçi,

2012) work for data whose sampling is fixed, but would, for

example, fail in missing data analysis and only be applicable

in batch data scenarios.

Recent advances in combining GP models with efficient

signal processing methods have lead to schemes that refor-

mulate the GP prior in terms of a state space model and

conduct inference by Kalman filtering in linear time com-

plexity (Reece & Roberts, 2010; Särkkä et al., 2013). If

the GP prior exhibits Markov structure, these models are

exact and no approximations are needed. Recently, Nickisch

et al. (2018) bridged the gap between the state space and ker-

nel based GP methods, by providing a unifying framework

for inference in non-Gaussian likelihoods with established

inference schemes like the Laplace approximation, direct

KL minimisation, variational Bayes, and single-sweep ex-

pectation propagation (EP). We build on these state space

methods for linear-time inference for GP audio modelling.

Probabilistic time-frequency analysis It has been

shown that standard approaches to probabilistic time-

frequency analysis are equivalent to Gaussian process re-

gression where the GP kernels are a sum of quasi-periodic

components (Wilkinson et al., 2019). Such kernels, known

as spectral mixtures (Wilson & Adams, 2013), can be writ-

ten generally as

κsm(t, t
′) =

D
∑

d=1

κ(d)z (t, t′), (4a)

κ(d)z (t, t′) = σ2
d cos(ωd(t− t′))κd(t, t

′), (4b)

and κd is free to be chosen, but is typically from the Matérn

class. Parameters ωd determine the periodicity of the kernel

components, which can be interpreted as the centre frequen-

cies of the filters in a probabilistic filter bank. By choosing

the exponential kernel κd(t, t
′) = exp(|t − t′|/ℓd) we re-

cover exactly the probabilistic phase vocoder (Cemgil &

Godsill, 2005), and the lengthscales ℓd control the filter

bandwidths.

The drawback of this model for audio data is that it assumes

independence across frequency channels. Correlation be-

tween amplitudes of harmonics or modes of vibration is

crucial for representing audio signals and is a key compo-

nent of auditory perception (Turner, 2010; McDermott et al.,

2013). This motivates a model that explicitly captures these

intra-channel correlations. However, such models no longer

observe data through linear combinations of the latent func-

tions, and typical techniques for dealing with these cases

tend to fail due to the complex interactions present in audio

data. This paper is concerned with addressing these issues.

Nonnegative matrix factorisation To capture the desired

dependencies across channels, we follow Turner & Sahani

(2014) by utilising nonnegative matrix factorisation (NMF)

(Lee & Seung, 1999). NMF decomposes a high-dimensional

matrix A ∈ R
D×T , such as the spectrogram of an audio sig-

nal, into a product of two lower-rank nonnegative matrices:

a temporal dictionary G, and a spectral dictionary W,

A ≃ WG. (5)

Typically W ∈ R
D×N and G ∈ R

N×T are learnt by min-

imising the divergence between the left and right hand sides

of Eq. (5). In the next section, we place a GP prior over the

rows of G and treat the elements of W as free parameters

of our probabilistic model.

3. Methods

In this section we will first write down the model along

with its equivalent presentation as a nonstationary spectral

mixture GP. We’ll then discuss how it can be constructed as

a stochastic differential equation in state space form, before

outlining the potential inference methods available.

3.1. Gaussian Time-Frequency Nonnegative Matrix

Factorisation Model (GTF-NMF)

We aim to decompose an input signal {yk}
T
k=1 into D un-

known frequency (oscillator) channels, whose relative am-

plitudes are modulated by N temporal NMF components.

The GP priors for the D+N latent model component func-

tions are:

gn(t) ∼ GP(0, κ(n)g (t, t′)), n = 1, 2, . . . , N, (6a)

zd(t) ∼ GP(0, κ(d)z (t, t′)), d = 1, 2, . . . , D, (6b)

where gn(t) denotes the nth temporal NMF component func-

tion and zd(t) the dth frequency channel. The kernel κ
(d)
z

is chosen to be a quasi-periodic function, i.e. the dth com-

ponent of a spectral mixture, Eq. (4b). κ
(n)
g should be de-

termined by our assumptions about the behaviour of the

amplitude modulators, such as their smoothness properties.
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The likelihood model is given by:

yk =
∑

d

ad(tk) zd(tk) + σy εk, (7)

for square amplitudes (the magnitude spectrogram):

a2d(tk) =
∑

n

Wd,n ψ(gn(tk)). (8)

Positivity of the NMF components is enforced by a link

function, the softplus ψ(gn) = log(1 + egn). W ∈ R
D×N

are the NMF weights determining which modulators affect

which oscillators. If we setN < D, then the model captures

amplitude behaviour shared across frequency channels.

Note that if we set ad(tk) = 1, ∀ d, k then Eq. (7) reduces

to standard probabilistic time-frequency analysis, the model

given in Wilkinson et al. (2019). If we discard zd(tk) by

calculating a fixed spectrogram, such that a2d(tk) become

our observations, then Eq. (8) is standard temporal NMF

(Bertin et al., 2010). Further removing the GP prior over gn
brings us back to the NMF model in Eq. (5).

Fig. 1 shows the model diagrammatically – the frequency

channel subbands zd are D independent, unit variance GPs

with quasi-periodic covariance functions. The modulators

gn and the NMF weights constitute a model for the spectro-

gram, the squared amplitudes of the frequency channels.

The inference methods we will next present allow for any

choice of κg, κz , so long as they can be written in state

space form, either approximately or exactly. See Särkkä &

Solin (2019) for a guide to writing kernels in the appropriate

way. We focus on the Matérn kernel class due to their

strong connection to autoregressive filters, and because their

parameters have convenient interpretations for our task –

their lengthscales and variances relate to the bandwidth and

scale of the filters in a filter bank (Wilkinson et al., 2019).

If we write down our model in its hierarchical form, we

observe a striking similarity to the nonstationary spectral

mixture GPs presented in Remes et al. (2017). This hierar-

chical form has a hyper-GP prior gn(t) ∼ GP(0, κ
(n)
g (t, t′))

for each component with an NMF-like positivity mapping

α2
d(t) =

∑

nWd,n ψ(gn(t)), and the final model becomes:

z(t) ∼ GP

(

0,

D
∑

d=1

αd(t)αd(t
′) cos(ωd(t− t′))κd(t, t

′)

)

,

(9a)

yk = z(tk) + σy εk. (9b)

This is a nonstationary spectral mixture GP with fixed fre-

quencies ωd and lengthscales ℓd, with an NMF mapping

in the GP prior over the time-varying amplitude variances

α2
d(t). This equivalence means that the inference methods

laid out in Secs. 3.3 and 3.4 also apply to nonstationary spec-

tral mixtures, as do their formulation as SDEs in Sec. 3.2.

3.2. State Space Methods for the Latent Functions

For scalable computation, we transform the GP model in

Eq. (6) into state space form by mapping the associated

covariance functions to stochastic differential equations

(SDEs). If the GP priors admit (high-order) Markovian

structure (as they do in our case), the model has an exact

representation in terms of an SDE (see Solin, 2016, for

examples and discussion). In continuous time, the system

of independent GP priors is given by the following linear

time-invariant SDE:

ẋ(t) = Fx(t) + Lw(t), (10)

where F ∈ R
M×M and L ∈ R

M×S , for S = 2D +N , are

the feedback and noise effect matrices, respectively. The

driving process w(t) ∈ R
S is a multivariate white noise

process with spectral density matrix Qc ∈ R
S×S .

The state x(t) corresponds to a stacked multi-output stochas-

tic process representing the GP priors zd(t), d = 1, . . . , D
and gn(t), n = 1, . . . , N . Each of the GP components have

a representation in terms of submatrices of F, L, and Qc.

The SDE representation of the D + N Gaussian process

priors can be written in the following block-Kronecker form:

F = blkdiag(F(1)
cos ⊕ F

(1)
mat, . . . ,F

(D)
cos ⊕ F

(D)
mat,

F
(1)
mat, . . . ,F

(N)
mat), (11a)

L = blkdiag(L(1)
cos ⊗ L

(1)
mat, . . . ,L

(D)
cos ⊗ L

(D)
mat,

L
(1)
mat, . . . ,L

(N)
mat), (11b)

Qc = blkdiag(I2 ⊗Q
(1)
c,mat, . . . , I2 ⊗Q

(D)
c,mat,

Q
(1)
c,mat, . . . ,Q

(N)
c,mat), (11c)

where ‘⊕’ and ‘⊗’ denote the Kronecker sum and product.

The submatrices F
(1)
mat, F

(1)
cos, L

(1)
mat etc. correspond to the

matrices that make up the SDE representation for the Matérn

and cosine kernels (Solin & Särkkä, 2014b). Here we have

assumed a Matérn kernel for κd, κn, but this can be altered

as necessary.

The audio data (observations) are evenly spaced in time,

which simplifies the discrete-time solution to the SDE in

Eq. (10). For discrete input values tk, this translates into

xk ∼ N(Axk−1,Q) (12)

with x0 ∼ N(0,P0). The discrete-time dynamical model

is solved through a matrix exponential A = exp(F∆t).
For stationary covariance functions, the process noise co-

variance is given by Q = P∞ − AP∞ A⊤. The sta-

tionary state (corresponding to the initial state P0) is dis-

tributed by x∞ ∼ N(0,P∞) and the stationary covariance

can be found by solving the Lyapunov equation Ṗ∞ =
FP∞ +P∞ F⊤ + LQc L

⊤ = 0.
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3.3. Linearisation-Based Inference

In classical signal processing, the most widely used tech-

nique for dealing with nonlinear/non-Gaussian inference

problems in state space models is the extended Kalman fil-

ter (EKF, Jazwinski, 1970; Bar-Shalom et al., 2001). The

EKF, together with the backward-pass known as the ex-

tended Rauch–Tung–Striebel smoother, provides a means

of approximating the state distributions p(x |y1:T ) with

Gaussians (corresponding to the time-marginals of Eq. 2):

q(xk |D) ≃ N(xk |mk,Pk). (13)

In the EKF, these approximations are formed by first-order

linearisations of the nonlinearities (see Särkkä, 2013, for a

detailed presentation of the extended Kalman filtering re-

cursion). For GPs, a related local linearisation scheme is

known as the Laplace approximation, where the approxi-

mation is improved iteratively by mode-seeking. In signal

processing, iterative versions of the EKF are known as it-

erated filters, where the iteration is typically in the inner

update loop (local iterated EKF, Jazwinski, 1970; May-

beck, 1982). Outer-loop variants which—similar to the GP

Laplace method—seek a global approximation are known

as the global iterated EKF (Zhang, 1997).

In Alg. 2 in the supplementary material, we present an

outer-loop extended Kalman filtering scheme for Laplace

approximation-like inference. The local linearisation is

done with respect to the measurement (likelihood) model

in Eq. (7) by deriving its closed-form Jacobian Hx(x). We

consider this algorithm as the baseline for our experiments.

3.4. Expectation Propagation in the GTF-NMF Model

The signal processing community has provided linear-time

algorithms for scaling linear state space models to huge,

unbounded time series. While scalable, these methods are

limited to systems that are well approximated by linear mod-

els and they are in general not capable of producing accurate

inference in the presence of strong nonlinear dependencies

such as in the model presented in Eq. (7). Nickisch et al.

(2018) proposed to combine the classical methods with mod-

ern tools for approximate inference, e.g. variational Bayes

and assumed density filtering (ADF), to overcome this issue.

We generalise this work by extending the ADF algorithm

to expectation propagation and thus combining the best

methods from the signal processing and machine learning

communities.

Expectation propagation (EP, Minka, 2001) and power

expectation propagation are methods for approximating in-

tractable probability distributions using tractable distribu-

tions from the exponential family. EP is a generalisation

of ADF and works by minimising local Kullback-Leibler

(KL) divergences in an iterative fashion. Power EP can be

seen as a further generalisation of EP that minimises local

α-divergences rather than KL divergences (Minka, 2005).

Using power EP, we approximate the intractable likelihood

terms as follows:

p(yk |gk, zk) ≈ qk(gk, zk), (14)

where each site approximation qk belongs to the exponential

family. Specifically, we assume that qk takes the form

qk(gk, zk) =
∏

n

N(gn,k | ν
g
n,k, τ

g
n,k)

∏

d

N(zd,k | ν
z
d,k, τ

z
d,k),

(15)

where νgn,k and τgn,k are the precision-adjusted mean and

precision, respectively, for gn,k etc. This choice leads to a

joint Gaussian posterior approximation. Rather than simply

matching the two distributions in Eq. (14), the EP algorithm

iteratively refines the posterior approximation by updating

each site approximation qk in the context of the so-called

cavity distribution q−k. The cavity distribution for the kth

observation is defined by removing the contribution of the

kth site approximation from the posterior approximation

q(gk, zk |D). That is,

q−k(gk, zk) ∝
q(gk, zk |D)

qk(gk, zk)η
(16)

for η ∈ (0, 1], where η = 1 corresponds to regular EP and

η < 1 to power EP.

The kth site approximation qk is then updated by min-

imising the KL-divergence between the tilted distribution

p̂k = 1
Zk

p(yk |gk, zk)
ηq−k(gk, zk) and the power EP ap-

proximation qk(gk, zk)
ηq−k(gk, zk) such that

q∗k (gk, zk |D) = argmin
qk

DKL [p̂k ‖ q
η
kq−k] , (17)

or equivalently, by matching the moments of the two distri-

butions. The normalisation constant Zk is given by

Zk = Eq
−k

[p(yk |gk, zk)
η] . (18)

The moments of the tilted distribution can be obtained

from the first two partial derivatives of logZk with respect

to two sets of cavity mean parameters {µg
n,−k}

N
n=1 and

{µz
d,−k}

D
d=1. For a full derivation of the normalisation con-

stant and its derivatives, see the supplementary material.

The resulting expectations are analytically intractable be-

cause the likelihood is a nonlinear function of gk and zk.

We numerically approximate the N -dimensional integrals

required to calculate the expectations with 9th-order sigma-

point methods (McNamee & Stenger, 1967; Kokkala et al.,

2016). However, the number of sigma-points required in

this 9th-order approximation scales poorly with the number

of NMF components, 1
2 (2N

4 − 4N3 + 22N2 − 8N + 3),
which slows down inference for large N.
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Algorithm 1 EP using Kalman smoothing

Input: {tk, yk}
T
k=1 training inputs and targets

A, Q, H, P0 discretised state space model
τ ← 0, ν ← 0 likelihood eff. precision and location
while not converged do EP loop

for k = 1 to T do forward pass
if k == 1 then
mk ← 0; Pk ← P0 init

else
mk ← Amk−1; Pk ← APk−1A

⊤+Q predict
end if
if has label yk then
µ← Hmk; U← PkH

⊤; σ2 ← diag (HU)
if first EP iteration then

τ−k ← σ2; ν−k ← µ cavity
set (νk, τk) to minimise the KL div. in Eq. (17) by
calculating Zk in Eq. (18) and its gradients

end if
ck ← µ⊘ τk − νk

Kk ← U
(

σ2 + 1⊘ τk
)−1

Pk ← Pk −KkU
⊤ variance

mk ←mk +Kkck mean
end if

end for
for k = T − 1 to 1 do backward pass

Gk ← Pk A
⊤ (APk A

⊤ +Q)−1 gain
mk ←mk +Gk (mk+1 −Amk)
Pk ← Pk +Gk (Pk+1 −APk A

⊤ −Q)G⊤
k

µ← Hmk; σ2 ← diag
(

HPkH
⊤
)

latent

τ−k ← 1⊘ σ2 − ητk; ν−k ← µ⊘ σ2 − ηνk cavity
set (νk, τk) to minimise the KL div. in Eq. (17) by calcu-
lating Zk in Eq. (18) and its gradients

end for
end while
Return: E[gn(tk)] = hg

nmk;V[gn(tk)] = hg
nPkh

g⊤
n

E[zd(tk)] = hz
dmk;V[zd(tk)] = hz

dPkh
z⊤
d

log p(y |θ) ≃
∑

logZk

Notation: a ◦ b and a⊘ b denote the element-wise multi-

plication and element-wise divison of the vectors a and b,

respectively. H is the measurement model with rows h.

The proposed algorithm is prone to convergence issues. To

prevent EP from oscillating, we use damped updates for

the site parameters (Minka & Lafferty, 2002). That is, the

site parameters are updated as a convex combination of the

current parameter values and the new parameters values.

Given the large amount of damping required, we generally

had to run EP for 20 iterations to reach convergence, more

than the 5-10 that is often reported in simpler models.

Standard EP scales cubicly in the number of observations.

However, by using the Rauch–Tung–Striebel smoother to ap-

proximate the marginal posterior distributions q(gk, zk |D)
in Eq. (16), we can reduce the complexity of the algorithm

to be linear in the number of observations. The EP algorithm

is summarised in Alg. 1.

3.5. Infinite-Horizon Gaussian Processes

The inference in Alg. 1 has linear time complexity, O(TM3)
(with M ≪ T ), with respect to the number of data points

T , and state dimensionality M . The memory scaling is

O(TM2) due to the need for storing the state covariances

at every time step. However, in the case of audio data T
can be tens or hundreds of thousands even for short audio

segments. This is mainly problematic with regards to the

required memory (M typically in the range of 100–1000).

For example, for M = 100, the required memory is in the

range of 1.2 Gb per second of data.

To mitigate the memory bottleneck, we use the infinite-

horizon GP (IHGP) framework proposed by Solin et al.

(2018), where the GP is approximated by finding an as-

sociated posterior steady state of the filter for each of the

D + N latent functions. This way the propagation of the

covariance terms in Alg. 1 can be simplified, leading to a

computational time-scaling of O(TM2) and memory scal-

ing O(TM). Solin et al. (2018) derived their method to

work with ADF, but the EP formulation given in Alg. 1

directly lends itself to the approach by using the cavity pa-

rameters for updating the likelihood variance terms. With

these changes, the required memory drops by orders of

magnitude to 12.2 Mb per second of data.

3.6. Hyperparameter Tuning

Model learning is difficult in this setting due to the highly

correlated nature of the kernel hyperparameters and the non-

identifiability of the NMF mapping. We initialise the param-

eters via frequency domain fitting with the standard prob-

abilistic TF model, as outlined in Wilkinson et al. (2019),

which is fast and gives an accurate estimate of the subband

frequencies and lengthscales. We initialise the NMF weights

using standard NMF applied to a spectrogram calculated

with the subband model. Further tuning is then carried

out by direct optimisation of the (log) marginal likelihood,

log p(y |θ), which is calculated during Kalman smoothing

as shown in Alg. 1. We leave development of a more robust

learning scheme to future work.

4. Experiments

In this section we compare the proposed inference methods,

showing that fully iterated EP is absolutely necessary for

inference in the GTF-NMF model, since the iterated EKF

and single-sweep EP approaches fail to uncover the latent

functions with sufficient accuracy. Our generative model is

extremely flexible, and we demonstrate here how it can be

applied to three different real world tasks (and one simulated

task) with no adjustment of the model or algorithm: miss-

ing data synthesis, denoising and source separation. The

GTF-NMF performs on a similar level to application spe-
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Table 1. Performance measures for each inference scheme. ‘sim.’

shows fit to observed data y in the simulated data experiment

(likelihood noise variance is σ2
y = 10−4). ‘mis.’ shows mean miss-

ing data imputation results on a dataset of 10 musical instrument

sounds, with segments of 20ms removed. Signal-to-noise ratio (in

dB, larger is better) and root mean square error (smaller is better).

Based on predictive mean. MP is the matching pursuit baseline.

EP1 EP20 IHGP1 IHGP20 EKF1 EKF20 MP

RMSE (sim.) 0.044 0.003 0.042 0.029 0.124 0.128 —

SNR (mis.) 7.494 8.087 4.520 4.591 3.716 3.735 5.232
RMSE (mis.) 0.590 0.551 0.720 0.716 0.746 0.743 0.761

cific algorithms (better in missing data imputation, worse in

denoising), whilst being much more general.

For ease of comparison, in all the real-world experiments

we set D = 16, N = 3 and tune the parameters via single-

sweep EP (ADF), with η = 0.75 and damping of 0.1. We

use these parameters to directly compare the different in-

ference methods (with the exception of the simulated data

experiment where we use the known parameters). We use

the exponential and Matérn-5/2 kernels for κd and κg. The

advantages of the infinite-horizon approach become clear

when we consider the source separation problem, in which

the mixture signal contains multiple sources (leading to

a very high-dimensional state space M = 123), and is 6

seconds in duration (T = 96,000).

Simulated Data Experiment We set D = 5, N = 2 and

fix the hyperparameters by hand, before sampling from the

generative model to create synthetic data. Fig. 2 shows how

each of the proposed inference methods estimates the hidden

subband signals and NMF modulators. Uncovering the

latents is a highly non-identifiable problem, especially due

to the ambiguous nature of the model in which amplitude

variation can occur due to variance in the subbands or the

modulators. However, EP finds a much better match to the

ground truth than EKF, and we see that iterating the IHGP

method resolves part of the ambiguity. Table 1 shows how

closely the approximate inference methods are able to fit the

training data. Since σ2
y = 10−4, we would hope the RMSE

to be below σy = 0.01, a feat which only full EP manages.

Missing Data Imputation The generative model handles

missing data synthesis naturally by treating the time steps

where there are missing data as test locations and making

predictions as usual. Table 1 shows the results of the predic-

tion task on a dataset of 10 musical instrument recordings.

Fig. 3 shows an example segment. As a baseline we compare

our methods to a well known matching pursuit algorithm

(Adler et al., 2012), which was outperformed by the iterated

EP scheme, performing roughly in line with IHGP.

Denoising Assuming a signal is corrupted by Gaussian

noise of known variance, the GTF-NMF model can be
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Figure 2. A simulated data experiment examining the ability of

various inference methods to uncover the spectral components zd
and NMF components gn when the true parameters are known.

Due to the ambiguity inherent in the model, (multiple sources of

amplitude modulation), uncovering the latents is a difficult task.

Standard EP and the IHGP methods far outperform EKF. “EP 1”

relates to inference with 1 EP iteration (ADF). The iterated meth-

ods (dashed lines, each using 20 iterations) resolve the ambiguity

better than the single sweep approach, except in the EKF case.

Only the mean of the predictive distributions are shown.

adapted to a denoising task by setting the measurement

noise variance σ2
y to the appropriate level. Fig. 5 is an exam-

ple of denoising a speech recording, where the clean signal

is corrupted with σ2
y = 0.3. Fig. 4 shows the denoising

results for the various inference methods for five different

noise levels. Here we also compare against a spectral sub-

traction algorithm (Ephraim & Malah, 1984). GP models

are expected to deal with Gaussian noise well, however the

approximate nature of inference in the GTF-NMF prevents

it from outperforming this application-specific approach.

Source Separation As a further demonstration, we fol-

low the approach taken in Alvarado et al. (2019) by training

the model on musical instrument notes (sources), and then
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Figure 3. An example of missing data imputation with the GTF-

NMF model for each inference method with 20 iterations. Grey

signal is the ground truth, a recording of a bamboo flute. The

yellow shaded region indicates where the data is missing. Blue

shaded area is the 95% confidence region for the EP method.
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Figure 4. Denoising with various inference methods across five

levels of corruption noise variance (0.01–0.5). y-axis is the signal-

to-noise ratio of the recovered waveform. Mean values across

10 speech signals are shown. Shaded areas are standard error.

SpecSub is the spectral subtraction baseline.

attempting to uncover these sources when they are mixed via

summation of their waveforms in a series of two-note chords.

The only inference method capable of processing these se-

ries of notes is IHGP, due to the computation and memory

requirements of stacking the sources in a state space model

for 6 seconds of data (sampled at 16 kHz, T = 96,000,

M = 123). Therefore we cannot compare performance on

this task, but we show an example separation result in Fig. 6.

5. Discussion and Conclusions

We have constructed a novel scheme for inference in the

Gaussian time-frequency NMF model based on expectation

propagation and infinite-horizon GPs, leading to an end-to-

end probabilistic approach for audio modelling. By outlin-

ing how this model is similar to a nonstationary spectral

mixture GP, we have further unified the theory connecting

probabilistic machine learning and signal processing.

We demonstrated that our inference scheme consistently

outperforms the extended Kalman filtering approach. This

suggests that it is indeed necessary to go beyond classical
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Figure 5. Spectrograms of a clean, corrupted, and reconstructed

signal (from top to bottom) for audio denoising in the GTF-NMF

model with inference via EP, applied to a speech signal.

Input audio, y

Source one: piano note C

Source two: piano note E

Source three: piano note G

1 2 3 4 5 6

Time [secs]

Figure 6. Infinite-horizon GP source separation example showing

three piano notes (sources) recovered from a mixture signal (top),

where two notes are played at a time in the original recording.

signal processing techniques if we are to build more in-

depth nonstationary methods for audio analysis, and that

probabilistic modelling has much potential in this domain.

By applying it to various real world tasks, we have shown

the flexibility of such end-to-end generative models.

For future work, it is necessary to further reduce the inherent

computational burden, and to develop more efficient and

robust parameter learning schemes to allow these models to

become more widely used.
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Solin, A. and Särkkä, S. Explicit link between periodic

covariance functions and state space models. In Artificial

Intelligence and Statistics, pp. 904–912, 2014b.

Solin, A., Hensman, J., and Turner, R. E. Infinite-horizon

Gaussian processes. In Advances in Neural Information

Processing Systems 31 (NeurIPS), pp. 3490–3499. 2018.

Titsias, M. K. Variational learning of inducing variables

in sparse Gaussian processes. In International Confer-

ence on Artificial Intelligence and Statistics (AISTATS),

volume 5 of PMLR, pp. 567–574, 2009.

Turner, R. E. Statistical Models for Natural Sounds. PhD

thesis, University College London, UK, 2010.

Turner, R. E. and Sahani, M. Time-frequency analysis as

probabilistic inference. IEEE Transactions on Signal

Processing, 62(23):6171, 2014.

Wilkinson, W. J., Riis Andersen, M., Reiss, J. D., Stow-

ell, D., and Solin, A. Unifying probabilistic models for

time-frequency analysis. In International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), pp.

3352–3356, 2019.

Wilson, A. and Adams, R. Gaussian process kernels for

pattern discovery and extrapolation. In Proceedings of

the 30th International Conference on Machine Learning

(ICML), 2013.

Wilson, A. G. and Nickisch, H. Kernel interpolation for

scalable structured Gaussian processes (KISS-GP). In

International Conference on Machine Learning (ICML),

volume 37 of PMLR, pp. 1775–1784, 2015.

Zhang, Z. Parameter estimation techniques: A tutorial with

application to conic fitting. Image and Vision Computing,

15(1):59–76, 1997.


