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1 Proofs

1.1 Proof of Proposition 2

We prove the proposition for the case that r < 0; the case for » > 0 is similar.
From Section III, we have that

p(U,v) =gr+ g1 —r?

Since each 0; (i = 3,4,...,n) is a coordinate on an (n — 3)-sphere, it can be
re-parameterized [Muller(1959)] by sampling n — 2 standard normal random
variables and normalizing, i.e.:
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where each z; ~ N(0,1). A false positive correlation thus occurs when 43 is at
least ¢ = |gr|/v/1 — r? more than its expected value gr:

V1—¢%xz
Pr[iz > ¢] =Pr #zc
no 2
> j=3Zj
Due to the inequality, we must handle the cases that z3 > 0 and z3 < 0 sepa-

rately. Note that the latter case contributes 0 probability since ¢ > 0 and ¢ > 0.
Also, since z3 is a standard normal random variable, Pr[zz > 0] = 0.5.
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For n > 3, each side of the inequality is a sum of squared normally distributed
random variables, i.e., a y?-random variable (though with different degrees of
freedom). We can thus rewrite this probability as
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where x? and X%n—S) are x? random variables with 1 and (n — 3) degrees of
freedom, respectively. The probability is equivalent to the integral because, for
any value ¢ of the x? variable, we require that the x2_5 variable be less than t
(after applying a scaling factor). To our knowledge, there is no closed formula
for this integral, but we can compute it numerically. For n = 3, we have
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since a y2-random variable is non-negative, and where the probability of ¢ <
1 —¢? is 1 if the inequality is true and 0 otherwise.

1.2 Proof of Proposition 3

. 1—q?—c?
For convenience, define a = ~—4;

h(n+1,q,7) — h(n,q,r)
= /O (1) Fng1)-3 (at) — fi(t)Fo_z (at)] dt

— /0 h J1(t) [Fro—z (at) — Fo_g (at)] dt

Ghosh [Ghosh(1973)] proved that, for any fixed ¢t > 0, Pr[x7 > t] is mono-
tonically increasing in the degrees of freedom k; hence, Fy(t) is monotonically
decreasing in k. Therefore, F),_o (at) — F,_3 (o) < 0 for all ¢. Since f; is a
non-negative function for all &, then the integral in Equation 1 must be negative;
hence, h is monotonically decreasing in n for every ¢ > 0 and ¢ € (0, 1].



1.3 Proof of Proposition 4
First, we show that o is monotonically decreasing in ¢2:
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The first term is monotonically decreasing in g2, and the second term is constant
in ¢°.
Next, let € be a positive real number such that g +¢ < 1:
h(na q+e, T) - h(nz q, T)
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Since F,,_3 is monotonically increasing, then the expression in brackets is neg-
ative. Since f; is non-negative, then the entire integral must be less than 0.

2 Sampling distribution Pr(q | ¢,n)

The sampling distribution can be computed exactly [Fisher(1915)], but this is
computationally feasible only for small n. Hence, we use the approximation from
Soper [Soper(1913)]: Let ¢ denote the population Pearson correlation coefficient,
and let q denote the sample correlation from n data. Then
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