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Abstract

Understanding generalization in reinforcement
learning (RL) is a significant challenge, as many
common assumptions of traditional supervised
learning theory do not apply. We focus on the
special class of reparameterizable RL problems,
where the trajectory distribution can be decom-
posed using the reparametrization trick. For this
problem class, estimating the expected return is
efficient and the trajectory can be computed de-
terministically given peripheral random variables,
which enables us to study reparametrizable RL
using supervised learning and transfer learning
theory. Through these relationships, we derive
guarantees on the gap between the expected and
empirical return for both intrinsic and external
errors, based on Rademacher complexity as well
as the PAC-Bayes bound. Our bound suggests the
generalization capability of reparameterizable RL
is related to multiple factors including “smooth-
ness” of the environment transition, reward and
agent policy function class. We also empirically
verify the relationship between the generalization
gap and these factors through simulations.

1. Introduction
Reinforcement learning (RL) has proven successful in a se-
ries of applications such as games (Silver et al., 2016; 2017;
Mnih et al., 2015; Vinyals et al., 2017; OpenAI, 2018),
robotics (Kober et al., 2013), recommendation systems (Li
et al., 2010; Shani et al., 2005), resource management (Mao
et al., 2016; Mirhoseini et al., 2018), neural architecture
design (Baker et al., 2017), and more. However some key
questions in reinforcement learning remain unsolved. One
that draws more and more attention is the issue of overfit-
ting in reinforcement learning (Sutton, 1995; Cobbe et al.,
2018; Zhang et al., 2018b; Packer et al., 2018; Zhang et al.,
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2018a). A model that performs well in the training envi-
ronment, may or may not perform well when used in the
testing environment. There is also a growing interest in
understanding the conditions for model generalization and
developing algorithms that improve generalization.

In general we would like to measure how accurate an al-
gorithm is able to predict on previously unseen data. One
metric of interest is the gap between the training and test-
ing loss or reward. It has been observed that such gaps are
related to multiple factors: initial state distribution, environ-
ment transition, the level of “difficulty” in the environment,
model architectures, and optimization. Zhang et al. (2018b)
split randomly sampled initial states into training and testing
and evaluated the performance gap in deep reinforcement
learning. They empirically observed overfitting caused by
the randomness of the environment, even if the initial distri-
bution and the transition in the testing environment are kept
the same as training. On the other hand, Farebrother et al.
(2018); Justesen et al. (2018); Cobbe et al. (2018) allowed
the test environment to vary from training, and observed
huge differences in testing performance. Packer et al. (2018)
also reported very different testing behaviors across models
and algorithms, even for the same RL problem.

Although overfitting has been empirically observed in RL
from time to time, theoretical guarantees on generalization,
especially finite-sample guarantees, are still missing. In this
work, we focus on on-policy RL, where agent policies are
trained based on episodes of experience that are sampled
“on-the-fly” using the current policy in training. We identify
two major obstacles in the analysis of on-policy RL. First,
the episode distribution keeps changing as the policy gets
updated during optimization. Therefore, episodes have to be
continuously redrawn from the new distribution induced by
the updated policy during optimization. For finite-sample
analysis, this leads to a process with complex dependencies.
Second, state-of-the-art research on RL tends to mix the
errors caused by randomness in the environment and shifts
in the environment distribution. We argue that actually
these two types of errors are very different. One, which we
call intrinsic error, is analogous to overfitting in supervised
learning, and the other, called external error, looks more like
the errors in transfer learning.

Our key observation is there exists a special class of RL,
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called reparameterizable RL, where randomness in the en-
vironment can be decoupled from the transition and initial-
ization procedures via the reparameterization trick (Kingma
& Welling, 2014). Through reparameterization, an episode’s
dependency on the policy is “lifted” to the states. Hence,
as the policy gets updated, episodes are deterministic given
peripheral random variables. As a consequence, the ex-
pected reward in reparameterizable RL is connected to the
Rademacher complexity as well as the PAC-Bayes bound.
The reparameterization trick also makes the analysis for the
second type of errors, i.e., when the environment distribution
is shifted, much easier since the environment parameters are
also “lifted” to the representation of states.

Related Work Generalization in reinforcement learning
has been investigated a lot both theoretically and empiri-
cally. Theoretical work includes bandit analysis (Agarwal
et al., 2014; Auer et al., 2002; 2009; Beygelzimer et al.,
2011), Probably Approximately Correct (PAC) analysis
(Jiang et al., 2017; Dann et al., 2017; Strehl et al., 2009; Lat-
timore & Hutter, 2014) as well as minimax analysis (Azar
et al., 2017; Chakravorty & Hyland, 2003). Most works
focus on the analysis of regret and consider the gap between
the expected value and optimal return. On the empirical
side, besides the previously mentioned work, Whiteson et al.
(2011) proposes generalized methodologies that are based
on multiple environments sampled from a distribution. Nair
et al. (2015) also use random starts to test generalization.

Other research has also examined generalization from a
transfer learning perspective. Lazaric (2012); Taylor &
Stone (2009); Zhan & Taylor (2015); Laroche (2017) exam-
ine model generalization across different learning tasks, and
provide guarantees on asymptotic performance.

There are also works in robotics for transferring policy from
simulator to real world and optimizing an internal model
from data (Kearns & Singh, 2002), or works trying to solve
abstracted or compressed MDPs (Majeed & Hutter, 2018).

Our Contributions:

• A connection between (on-policy) reinforcement learn-
ing and supervised learning through the reparameteri-
zation trick. It simplifies the finite-sample analysis for
RL, and yields Rademacher and PAC-Bayes bounds on
Markov Decision Processes (MDP).

• Identifying a class of reparameterizable RL and pro-
viding a simple bound for “smooth” environments and
models with a limited number of parameters.

• A guarantee for reparameterized RL when the environ-
ment is changed during testing. In particular we discuss
two cases in environment shift: change in the initial
distribution for the states, or the transition function.

2. Notation and Formulation
We denote a Markov Decision Process (MDP) as a 5-tuple
(S,A,P, r,P0). Here S is the state space, A is the action-
space, P(s, a, s′) : S × A × S → [0, 1] is the transition
probability from state s to s′ when taking action a, r(s) :
S → R represents the reward function, and P0(s) : S →
[0, 1] is the initial state distribution. Let π(s) ∈ Π : S → A
be the policy map that returns the action a at state s.

We consider episodic MDPs with a finite horizon. Given
the policy map π and the transition probability P , the state-
to-state transition probability is Tπ(s, s′) = P(s, π(s), s′).
Without loss of generality, the length of the episode is T +1.
We denote a sequence of states [s0, s1, . . . , sT ] as s. The
total reward in an episode is R(s) =

∑T
t=0 γ

trt, where
γ ∈ (0, 1] is a discount factor and rt = r(st).

Denote the joint distribution of the sequence of states in an
episode s = [s0, s1, . . . , sT ] as Dπ . Note Dπ is also related
to P and P0. In this work we assume P and P0 are fixed,
so Dπ is a function of π. Our goal is to find a policy that
maximizes the expected total discounted reward (return):

π∗ = arg max
π∈Π

Es∼DπR(s) = arg max
π∈Π

Es∼Dπ

T∑
t=0

γtrt.

(1)

Suppose during training we have a budget of n episodes,
then the empirical return is

π̂ = arg max
π∈Π,si∼Dπ

1

n

n∑
i=1

R(si), (2)

where si = [si0, s
i
1, . . . , s

i
T ] is the ith episode of length

T + 1. We are interested in the generalization gap

Φ =

∣∣∣∣∣ 1n
n∑
i=1

R(si)− Es∼D′π̂R(s)

∣∣∣∣∣ . (3)

Note that in (3) the distribution D′π̂ may be different from
Dπ̂ since in the testing environment P ′ as well as P ′0 may
be shifted compared to the training environment.

3. Generalization in Reinforcement Learning
v.s. Supervised Learning

Generalization has been well studied in the supervised learn-
ing scenario. A popular assumption is that samples are
independent and identically distributed (xi, yi) ∼ D,∀i ∈
{1, 2, . . . , n}. Similar to empirical return maximization
discussed in Section 2, in supervised learning a popular
algorithm is empirical risk minimization:

f̂ = arg min
f∈F

1

n

n∑
i=1

`(f, xi, yi), (4)
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where f ∈ F : X → Y is the prediction function to be
learned and ` : F ×X ×Y → R+ is the loss function. Sim-
ilarly generalization in supervised learning concerns the gap
between the expected loss E[`(f, x, y)] and the empirical
loss 1

n

∑n
i=1 `(f, xi, yi).

It is easy to find the correspondence between the episodes
defined in Section 2 and the samples (xi, yi) in supervised
learning. Just like supervised learning where (x, y) ∼ D, in
(episodic) reinforcement learning si ∼ Dπ . Also the reward
function R in reinforcement learning is similar to the loss
function ` in supervised learning. However, reinforcement
learning is different because

• In supervised learning, the sample distribution D is
kept fixed, and the loss function ` ◦ f changes as we
choose different predictors f .

• In reinforcement learning, the reward function R is
kept fixed, but the sample distribution Dπ changes as
we choose different policy maps π.

As a consequence, the training procedure in reinforcement
learning is also different. Popular methods such as RE-
INFORCE (Williams, 1992), Q-learning (Sutton & Barto.,
1998), and actor-critic methods (Mnih et al., 2016) draw new
states and episodes on the fly as the policy π is being up-
dated. That is, the distribution Dπ from which episodes are
drawn always changes during optimization. In contrast, in
supervised learning we only update the predictor f without
affecting the underlying sample distribution D.

4. Intrinsic vs External Generalization Errors
The generalization gap (3) can be bounded

Φ ≤

∣∣∣∣∣ 1n
n∑
i=1

R(si)− Es∼Dπ̂R(s)

∣∣∣∣∣︸ ︷︷ ︸
intrinsic

+
∣∣∣Es∼Dπ̂R(s)− Es∼D′π̂R(s)

∣∣∣︸ ︷︷ ︸
external

(5)

using the triangle inequality. The first term in (5) is the
concentration error between the empirical reward and its
expectation. Since it is caused by intrinsic randomness of
the environment, we call it the intrinsic error. Even if the
test environment shares the same distribution with training,
in the finite-sample scenario there is still a gap between
training and testing. This is analogous to the overfitting
problem studied in supervised learning. Zhang et al. (2018b)
mainly focuses on this aspect of generalization. In particular,
their randomness is carefully controlled in experiments to
only come from the initial states s0 ∼ P0.

We call the second term in (5) external error, as it is caused
by shifts of the distribution in the environment. For example,
the transition distribution P or the initialization distribution
P0 may get changed during testing, which leads to a differ-
ent underlying episode distributionD′π . This is analogous to
the transfer learning problem. For instance, generalization
as in Cobbe et al. (2018) is mostly external error since the
number of levels used for training and testing are different
even though the difficult level parameters are sampled from
the same distribution. The setting in Packer et al. (2018)
covers both intrinsic and external errors.

5. Why Intrinsic Generalization Error?
If π is fixed, by concentration of measures, as the number of
episodes n increases, the intrinsic error decreases roughly
with 1√

n
. For example, if the reward is bounded |R(si)| ≤

c/2, by McDiarmid’s bound, with probability at least 1− δ,

∣∣∣∣∣ 1n
n∑
i=1

R(si)− Es∼D[R(s)]

∣∣∣∣∣ ≤ c
√

log 2
δ

2n
, (6)

where c > 0. Note the bound above also holds for the test
samples if the distribution D is fixed and stest ∼ D.

For the population argument (1), π∗ is defined deterministi-
cally since the value Es∼DπR(s) is a deterministic function
of π. However, in the finite-sample case (2), the policy
map π̂ is stochastic: it depends on the samples si. As a
consequence, the underlying distribution Dπ̂ is not fixed. In
that case, the expectation Es∼Dπ̂ [R(s)] in (6) becomes a
random variable so (6) does not hold any more.

One way of fixing the issue caused by random Dπ̂ is to
prove a bound that holds uniformly for all policies π ∈ Π.
If π is finite, by applying a union bound, it follows that:

Lemma 1. If Π is finite, and |R(s)| ≤ c/2, then with
probability at least 1− δ, for all π ∈ Π

∣∣∣∣∣ 1n
n∑
i=1

R(si)− Es∼Dπ [R(s)]

∣∣∣∣∣ ≤ c
√

log 2|Π|
δ

2n
, (7)

where |Π| is the cardinality of Π.

Unfortunately in most of the applications, Π is not finite.
One difficulty in analyzing the intrinsic generalization error
is that the policy changes during the optimization proce-
dure. This leads to a change in the episode distribution Dπ .
Usually π is updated using episodes generated from some
“previous” distributions, which are then used to generate
new episodes. In this case it is not easy to split episodes into
a training and testing set, since during optimization samples
always come from the updated policy distribution.
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Algorithm 1 Reparameterized MDP

Initialization: Sample ginit, g0, g1, . . . , gT ∼ G|S|. s0 =
arg max (ginit + logP0), R = 0.
for t in 0, . . . , T do
R = R+ γtr(st)
st+1 = arg max (gt + logP(st, π(st)))

end for
return R.

6. Reparameterization Trick
The reparameterization trick has been popular in the opti-
mization of deep networks (Kingma & Welling, 2014; Mad-
dison et al., 2017; Jang et al., 2017; Tokui & Sato, 2016)
and used, e.g., for the purpose of optimization efficiency. In
RL, suppose the objective (1) is reparameterizable:

Es∼DπR(s) = Eξ∼p(ξ)R(s(f(ξ, π))).

Then under some weak assumptions

∇θEs∼DπθR(s) = ∇θ
[
Eξ∼p(ξ)R(s(f(ξ, πθ)))

]
= Eξ∼p(ξ) [∇θR(s(f(ξ, πθ)))] (8)

The reparameterization trick has already been used: for
example, PGPE (Rückstieß et al., 2010) uses policy repa-
rameterization, and SVG (Heess et al., 2015) uses policy and
environment dynamics reparameterization. In this work, we
will show the reparameterization trick can help to analyze
the generalization gap. More precisely, we will show that
since both P and P0 are fixed, even if they are unknown,
as long as they satisfy some “smoothness” assumptions, we
can provide theoretical guarantees on the test performance.

7. Reparameterized MDP
We start our analysis with reparameterizing a Markov Deci-
sion Process with discrete states. We will give a general ar-
gument on reparameterizable RL in the next section. In this
section we slightly abuse notation by letting P0 and P(s, a)
denote |S|-dimensional probability vectors for multinomial
distributions for initialization and transition respectively.

One difficulty in the analysis of the generalization in rein-
forcement learning rises from the sampling steps in MDP
where states are drawn from multinomial distributions spec-
ified by either P0 or P(st, at), because the sampling pro-
cedure does not explicitly connect the states and the distri-
bution parameters. We can use standard Gumbel random
variables g ∼ exp(−g + exp(−g)) to reparameterize sam-
pling and get a procedure equivalent to classical MDPs but
with slightly different expressions, as shown in Algorithm 1.

In the reparameterized MDP procedure, G|S| is an |S|-
dimensional Gumbel distribution. g0, . . . , gT are |S|-

dimensional vectors with each entry being a Gumbel ran-
dom variable. Also g0 + logP0 and gt + logP(st, at) are
entry-wise vector sums, so they are both |S|-dimensional
vectors. arg max(v) returns the index of the maximum en-
try in the |S|-dimensional vector v. In the reparameterized
MDP procedure shown above, the states st are represented
as an index in {1, 2, . . . , |S|}. After reparameterization, we
may rewrite the RL objective (2) as:1

π̂ = arg max
π∈Π,gi∼G|S|T

1

n

n∑
i=1

R(si(gi;π)), (9)

where gi = [gi0, g
i
1, . . . , g

i
T ], git is an |S|-dimensional Gum-

bel random variable, and

R(si(gi;π)) =

T∑
t=0

γtr(sit(g
i
0, g

i
1, . . . , g

i
t;π)) (10)

is the discounted return for one episode of length T + 1.

The reparameterized objective (9) maximizes the empirical
reward by varying the policy π. The distribution from which
the random variables gi are drawn does not depend on the
policy π anymore, and the policy π only affects the reward
R(si(gi;π)) through the states si.

The objective (9) is a discrete function due to the arg max
operator. One way to circumvent this is to use Gumbel
softmax to approximate the arg max operator (Maddison
et al., 2017; Jang et al., 2017). If we denote s as a one-
hot vector in R|S|, and further relax the entries in s to take
positive values that sum up to one, we may use the softmax
to approximate the arg max operator. For instance, the
reparametrized initial-state distribution becomes:

s0 =
exp{(g + logP0)/τ}
‖ exp{(g + logP0)/τ}‖1

, (11)

where g is an |S|-dimensional Gumbel random variable, P0

is an |S|-dimensional probability vector in multinomial dis-
tribution, and τ is a positive scalar. As the temperature τ →
0, the softmax approaches s = arg max (g + logP0) ∼ P0

in terms of the one-hot vector representation.

8. Reparameterizable RL
In general, as long as the transition and initialization process
can be reparameterized so that the environment parameters
are separated from the random variables, the objective can
always be reformulated so that the policy only affects the
reward instead of the underlying distribution. The reparam-
eterizable RL procedure is shown in Algorithm 2.

1Again we abuse the notation by denoting si(f(gi;π)) as
si(gi;π).
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Algorithm 2 Reparameterizzble RL

Initialization: Sample ξ0, ξ1, . . . , ξT . s0 = I(ξ0), R =
0.
for t in 0, . . . , T do
R = R+ γtr(st)
st+1 = T (st, π(st), ξt)

end for
return R.

In this procedure, ξs are d-dimensional random variables
but they are not necessarily sampled from the same dis-
tribution.2 In many scenarios they are treated as random
noise. I : Rd → R|S| is the initialization function. Dur-
ing initialization, the random variable ξ0 is taken as input
and the output is an initial state s0. The transition function
T : R|S|×R|A|×Rd → R|S|, takes the current state st, the
action produced by the policy π(st), and a random variable
ξt to produce the next state st+1.

In reparameterizable RL, the peripheral random variables
ξ0, ξ1, . . . , ξT can be sampled before the episode is gener-
ated. In this way, the randomness is decoupled from the pol-
icy function, and as the policy π gets updated, the episodes
can be computed deterministically.

The class of reparamterizable RL problems includes those
whose initial state, transition, reward and optimal policy dis-
tribution can be reparameterized. Generally, a distribution
can be reparameterized, e.g., if it has a tractable inverse CDF,
is a composition of reparameterizable distributions (Kingma
& Welling, 2014), or is a limit of smooth approximators
(Maddison et al., 2017; Jang et al., 2017). Reparametrizable
RL settings include LQR (Lewis et al., 1995) and physical
systems (e.g., robotics) where the dynamics are given by
stochastic partial differential equations (PDE) with reparam-
eterizable components over continuous state-action spaces.

9. Main Result
For reparameterizable RL, if the environments and the
policy are “smooth”, we can control the error between the
expected and the empirical reward. In particular, the as-
sumptions we make are3

Assumption 1. T (s, a) : R|S| × R|A| → R|S| is Lt1-
Lipschitz in terms of the first variable s, and Lt2-Lipschitz
in terms of the second variable a. That is, ∀x, x′, y, y′, z,

‖T (x, y, z)− T (x′, y, z)‖ ≤ Lt1‖x− x′‖,
‖T (x, y, z)− T (x, y′, z)‖ ≤ Lt2‖y − y′‖.

2They may also have different dimensions. In this work, with-
out loss of generality, we assume the random variables have the
same dimension d.

3‖ · ‖ is the L2 norm, and θ ∈ Rm.

Assumption 2. The policy is parameterized as π(s; θ) :
R|S| × Rm → R|A|, and π(s; θ) is Lπ1-Lipschitz in terms
of the states, and Lπ2-Lipschitz in terms of the parameter
θ ∈ Rm, that is, ∀s, s′, θ, θ′

‖π(s; θ)− π(s′; θ)‖ ≤ Lπ1‖s− s′‖,
‖π(s; θ)− π(s; θ′)‖ ≤ Lπ2‖θ − θ′‖.

Assumption 3. The reward r(s) : R|S| → R is Lr-
Lipschitz:

|r(s′)− r(s)| ≤ Lr‖s′ − s‖.

If assumptions (1) (2) and (3) hold, we have the following:

Theorem 1. In reparameterizable RL, suppose the tran-
sition T ′ in the test environment satisfies ∀x, y, z, ‖(T ′ −
T )(x, y, z)‖ ≤ ζ , and suppose the initialization function I ′
in the test environment satisfies ∀ξ, ‖(I ′ − I)(ξ)‖ ≤ ε. If
assumptions (1), (2) and (3) hold, the peripheral random
variables ξi for each episode are i.i.d., and the reward is
bounded |R(s)| ≤ c/2, then with probability at least 1− δ,
for all policies π ∈ Π:

|Eξ[R(s(ξ;π, T ′, I ′))]− 1

n

∑
i

R(s(ξi;π, T , I))|

≤ Rad(Rπ,T ,I) + Lrζ

T∑
t=0

γt
νt − 1

ν − 1
+ Lrε

T∑
t=0

γtνt

+O

(
c

√
log(1/δ)

n

)
,

where ν = Lt1 + Lt2Lπ1, and Rad(Rπ,T ,I) =
EξEσ

[
supπ

1
n

∑n
i=1 σiR(si(ξi;π, T , I))

]
is the

Rademacher complexity of R(s(ξ;π, T , I)) under
the training transition T , the training initialization I, and
n is the number if training episodes.

Note the i.i.d. assumption on the peripheral variables ξi is
across episodes. Within the same episode, there could be
correlations among the ξits at different time steps.

Similar arguments can also be made when the transition
T ′ in the test environment stays the same as T , but the
initialization I ′ is different from I . In the following sections
we will bound the intrinsic and external errors respectively.

10. Bounding Intrinsic Generalization Error
After reparameterization, the objective (9) is essentially the
same as an empirical risk minimization problem in the su-
pervised learning scenario. According to classical learning
theory, the following lemma is straight-forward (Shalev-
Shwartz & Ben-David, 2014):
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Lemma 2. If the reward is bounded, |R(s)| ≤ c/2, c > 0,
and gi ∼ G|S|×T are i.i.d. for each episode, with probabil-
ity at least 1− δ, for ∀π ∈ Π:

|Eg∼G|S|×T [R(s(g;π))]− 1

n

∑
i

R(si(gi;π))|

≤ Rad(Rπ) +O

(
c

√
log(1/δ)

n

)
, (12)

where Rad(Rπ) = EgEσ
[
supπ

1
n

∑n
i=1 σiR(si(gi;π))

]
is the Rademacher complexity of R(s(g;π)).

The bound (12) holds uniformly for all π ∈ Π,
so it also holds for π̂. Unfortunately, in MDPs
Rad(Rπ) is hard to control, mainly due to the recur-
sive arg max in the representation of the states, st+1 =
arg max (gt + logP(st, π(st))).

On the other hand, for general reparameterizable RL we
may control the intrinsic generalization gap by assuming
some “smoothness” conditions on the transitions T , as well
as the policy π. In particular, it is straight-forward to prove
that the empirical return R is “smooth” if the transitions and
policies are all Lipschitz.

Lemma 3. For reparameterizable RL, given assumptions
1, 2, and 3, the empirical return R defined in (10), as a
function of the parameter θ, has a Lipschitz constant of

β = LrLt2Lπ2

T∑
t=0

γt
νt − 1

ν − 1
, (13)

where ν = Lt1 + Lt2Lπ1.

Also, if the number of parameters m in π(θ) is bounded,
then the Rademacher complexity Rad(Rπ) in Lemma 2 can
be controlled (van der Vaart., 1998; Bartlett, 2013).

Lemma 4. For reparameterizable RL, given assumptions
1, 2, and 3, if the parameters θ ∈ Rm is bounded such
that ‖θ‖ ≤ 1, and the function class of the reparameterized
rewardR is closed under negations, then the Rademacher
complexity Rad(Rπ) is bounded by

Rad(Rπ) = O

(
β

√
m

n

)
(14)

where β is the Lipschitz constant defined in (13), and n is
the number of episodes.

In the context of deep learning, deep neural networks are
over-parameterized models that have proven to work well in
many applications. However, the bound above does not ex-
plain why over-parameterized models also generalize well
since the Rademacher complexity bound (14) can be ex-
tremely large as m grows. To ameliorate this issue, re-
cently Arora et al. (2018) proposed a compression approach

that compresses a neural network to a smaller one with
fewer parameters but has roughly the same training errors.
Whether this also applies to reparameterizable RL is yet to
be proven. There are also trajectory-based techniques pro-
posed to sharpen the generalization bound (Li et al., 2018;
Allen-Zhu et al., 2018; Arora et al., 2019; Cao & Gu, 2019).

10.1. PAC-Bayes Bound on Reparameterizable RL

We can also analyze the Rademacher complexity of the em-
pirical return by making a slightly different assumption on
the policy. Suppose π is parameterized as π(θ), and θ is
sampled from some posterior distribution θ ∼ Q. Accord-
ing to the PAC-Bayes theorem (McAllester, 1998; 2003;
Neyshabur et al., 2018; Langford & Shawe-Taylor, 2002):

Lemma 5. Given a “prior” distribution D0, with probabil-
ity at least 1− δ over the draw of n episodes, ∀Q:

Eg[Rθ∼Q(g)] ≥ 1

n

∑
i

Rθ∼Q(gi)

− 2

√
2(KL(Q||D0) + log 2n

δ )

n− 1
, (15)

Rθ∼Q(gi) = Eθ∼Q
[
R(si(gi;π(θ)))

]
= Eθ∼Q

[
T∑
t=0

γtr(sit(g
i;π(θ)))

]
, (16)

where Rθ∼Q(g) is the expected “Bayesian” reward.

The bound (15) holds for all posterior Q. In particular it
holds if Q is θ + u where θ could be any solution provided
by empirical return maximization, and u is a perturbation,
e.g., zero-centered uniform or Gaussian distribution. This
suggests maximizing a perturbed objective instead may lead
to better generalization performance, which has already
been observed empirically (Wang et al., 2018b).

The tricky part about perturbing the policy is choosing the
level of noise. Suppose there is an empirical reward opti-
mizer π(θ̂). When the noise level is small, the first term in
(15) is large, but the second term may also be large since the
posteriorQ is too focused on θ̂ but the “prior”D0 cannot de-
pend on θ̂, and vice versa. On the other hand, if the reward
function is “nice”, e.g., if some “smoothness” assumption
holds in a local neighborhood of θ̂, then one can prove the
optimal noise level roughly scales inversely as the square
root of the local Hessian diagonals (Wang et al., 2018a).

11. Bounding External Generalization Error
Another source of generalization error in RL comes from
the change of environment. For example, in an MDP
(S,A,P, r,P0), the transition probability P or the initial-
ization distribution P0 is different in the test environment.
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Cobbe et al. (2018) and Packer et al. (2018) show that as the
distribution of the environment varies the gap between the
training and testing could be huge.

Indeed if the test distribution is drastically different from
the training environment, there is no guarantee the perfor-
mance of the same model could possibly work for testing.
On the other hand, if the test distribution D′ is not too far
away from the training distribution D then the test error can
still be controlled. For example, for supervised learning,
Mohri & Medina (2012) prove the expected loss of a drift-
ing distribution is also bounded. In addition to Rademacher
complexity and a concentration tail, there is one more term
in the gap that measures the discrepancy between the train-
ing and testing distribution.

For reparameterizable RL, since the environment parame-
ters are lifted into the reward function in the reformulated
objective (9), the analysis becomes easier. For MDPs, a
small change in environment could cause large difference in
the reward since arg max is not continuous. However if the
transition function is “smooth”, the expected reward in the
new environment can also be controlled. e.g., if we assume
the transition function T , the reward function r, as well as
the policy function π are all Lipschitz, as in section 10.

If the transition function T is the same in the test environ-
ment and the only difference is the initialization, we can
prove the following lemma:

Lemma 6. In reparameterizable RL, suppose the initializa-
tion function I ′ in the test environment satisfies ∀ξ, ‖(I ′ −
I)(ξ)‖ ≤ ζ for ζ > 0, and the transition function T in the
test environment is the same as training. If assumptions (1),
(2), and (3) hold, then:

|Eξ[R(s(ξ; I ′))]− Eξ[R(s(ξ; I))]|

≤ Lrζ
T∑
t=0

γt(Lt1 + Lt2Lπ1)t (17)

Lemma 6 means that if the initialization in the test environ-
ment is not too different from the training one, and if the
transition, policy and reward functions are smooth, then the
expected reward in the test environment won’t deviate from
that of training too much.

The other possible environment change is that the test ini-
tialization I stays the same but the transition changes from
the training transition T to T ′. Similar to before, we have:

Lemma 7. In reparameterizable RL, suppose the transi-
tion T ′ in the test environment satisfies ∀x, y, z, ‖(T ′ −
T )(x, y, z)‖ ≤ ζ, and the initialization I in the test envi-
ronment is the same as training. If assumptions (1), (2) and

Table 1. Intrinsic Gap versus Smoothness
Temperature Policy State Action

τ Gap 1
τΠl‖θ̂l‖F Gap Gap

0.001 0.554 2.20 · 106 0.632 0.612
0.01 0.494 4.46 · 105 0.632 0.608
0.1 0.482 1.74 · 105 0.633 0.603
1 0.478 8.83 · 104 0.598 0.598
10 0.479 5.06 · 104 0.588 0.594
100 0.468 4.77 · 104 0.581 0.594
1000 0.471 3.29 · 104 0.590 0.594

(3) hold then

|Eξ[R(s(ξ; T ′))]− Eξ[R(s(ξ; T ))]|

≤ Lrζ
T∑
t=0

γt
νt − 1

ν − 1
(18)

where ν = Lt1 + Lt2Lπ1.

The difference between (18) and (17) is that the change ζ in
transition T is further enlarged during an episode: as long
as ν > 1, the gap in (18) is larger and can become huge as
the length T of the episode increases.

12. Simulation
We now present empirical measurements in simulations to
verify some claims made in section 10 and 11. The bound
(14) suggests the gap between the expected reward and the
empirical reward is related to the Lipschitz constant β of R,
which according to equation (13) is related to the Lipschitz
constant of a series of functions including π, T , and r.

12.1. Intrinsic Generalization Gap

In (13), as the length of the episode T increases, the dominat-
ing factors in β are Lt1, Lt2 and Lπ1. Our first simulation
fixes the environment and verifies Lπ. In the simulation,
we assume the initialization I and the transition T are all
known and fixed. I is an identity function, and ξ0 ∈ R|S|
is a vector of i.i.d. uniformly distributed random variables:
ξ0[k] ∼ U [0, 1],∀k ∈ 1, . . . |S|. The transit function is
T (s, a, ξ) = sT1 + aT2 + ξT3, where s ∈ R|S|, a ∈ R|A|,
ξ ∈ R2 are row vectors, and T1 ∈ R|S|×|S|, T2 ∈ R|A|×|S|,
and T3 ∈ R2×|S| are matrices used to project the states,
actions, and noise respectively. T1, T2, and T3 are randomly
generated and then kept fixed during the experiment. We
use γ = 1 as the discounting constant throughout.

The policy π(s, θ) is modeled using a multiple layer per-
ceptron (MLP) with rectified linear as the activation. The
last layer of MLP is a linear layer followed by a softmax

function with temperature: q(x[k]; τ) =
exp

x[k]
τ∑

k exp
x[k]
τ

.
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By varying the temperature τ we are able to control the
Lipschitz constant of the policy class Lπ1 and Lπ2 if we
assume the bound on the parameters ‖θ‖ ≤ B is unchanged.

We set the length of the episode T = 128, and randomly
sample ξ0, ξ1, . . . , ξT for n = 128 training and testing
episodes. Then we use the same random noise to evalu-
ate a series of policy classes with different temperatures
τ ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}.

Since we assume I and T are known, during training the
computation graph is complete. Hence we can directly
optimize the coefficients θ in π(s; θ) just as in supervised
learning.4 We use Adam (Kingma & Ba, 2015) to optimize
with initial learning rates 10−2 and 10−3. When the reward
stops increasing we halved the learning rate. and analyze
the gap between the average training and testing reward.

First, we observe the gap is affected by the optimization
procedure. For example, different learning rates can lead to
different local optima, even if we decrease the learning rate
by half when the reward does not increase. Second, even
if we know the environment I and T , so that we can opti-
mize the policy π(s; θ) directly, we still experience unstable
learning just like other RL algorithms. This suggests that
the unstableness of the RL algorithms may not rise from
the estimation of the environment for the model based algo-
rithms such as A2C and A3C (Mnih et al., 2016), since even
if we know the environment the learning is still unstable.

Given the unstable training procedure, for each trial we
ran the training for 1024 epochs with learning rate of 1e-2
and 1e-3, and the one with higher training reward at the
last epoch is used for reporting. Ideally as we vary τ , the
Lipschitz constant for the function class π ∈ Π is changed
accordingly given the assumption ‖θ‖ ≤ B. However, it is
unclear if B is changed or not for different configurations.
After all, the assumption that the parameters are bounded
is artificial. To ameliorate this defect we also check the
metric 1

τΠl‖θl‖F , where θl is the weight matrix of the lth
layer of MLP. In our experiment there is no bias term in
the linear layers in MLP, so 1

τΠl‖θ̂l‖F can be used as a
metric on the Lipschitz constant Lπ1 at the solution point
θ̂. We also vary the smoothness in the transition function
a a function of states (T1), and actions (T2), by applying
softmax with different temperatures τ to the singular values
of the randomly generated matrix.

Table 1 shows the average generalization gap roughly de-
creases as τ decreases. The metric 1

τΠl‖θ̂l‖F also decreases
similarly as the average gap. In particular, the 2nd and
3rd column shows the average gap as the policy becomes
“smoother”. The 4th column shows, if we fix the policy-τ

4In real applications this is not doable since T and I are un-
known. Here we assume they are known just to investigate the
generalization gap.

Params 65.6k 131.3k 263.2k 583.4k 1.1m
Gap 0.204 0.183 0.214 0.336 0.418

Table 2. Empirical gap vs #policy params.

ζ in I 1 10 100 1,000
Gap 0.481 0.477 0.659 0.532

Table 3. Empirical generalization gap vs shift in initialization.

ζ in T 1 10 100 1,000
Gap 11 451 8,260 73,300

Table 4. Empirical generalization gap vs shift in transition.

as well as setting T2 = 1, the generalization gap decreases
as we increase the transition-τ for T1 (states). Similarly the
last column is the gap as the transition-τ for actions (T2)
varies. In Table 2 the environment is fixed and for each
parameter configuration the gap is averaged from 100 trials
with randomly initialized and then optimized policies.

12.2. External Generalization Gap

To measure the external generalization gap, we vary the
transition T as well as the initialization I in the test envi-
ronment. For that, we add a vector of Rademacher random
variables ∆ to I or T , with ‖∆‖ = ζ. We adjust the level
of noise δ in the simulation and report the change of the av-
erage gap in Table 3 and Table 4. It is not surprising that the
change ∆T in transition T leads to a higher generalization
gap since the impact from ∆T is accumulated across time
steps. Indeed if we compare the bound (18) and (17), when
γ = 1 as long as ν > 1, the gap in (18) is larger.

13. Discussion and Future Work
Even though a variety of distributions, discrete or continu-
ous, can be reparameterized, and we have shown that the
classical MDP with discrete states is reparameterizable, it
is not clear in general under which conditions reinforce-
ment learning problems are reparameterizable. Classifying
particular cases where RL is not reparameterizable is an
interesting direction for future work. Second, the transitions
of discrete MDPs are inherently non-smooth, so Theorem
1 does not apply. In this case, the PAC-Bayes bound can
be applied, but this requires a totally different framework.
It will be interesting to see if there is a “Bayesian” version
of Theorem 1. Finally, our analysis only covers “on-policy”
RL. Studying generalization for “off-policy” RL remains an
interesting future topic.
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