
On the Generalization Gap in Reparameterizable RL

A. Proof of Lemma 3
Lemma. For Reparameterizable RL, given assumptions

1, 2, and 3, the empirical reward R defined in (10), as a

function of the parameter ✓, has a Lipschitz constant of
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where ⌫ = Lt1 + Lt2L⇡1.

Proof. Let’s denote s
0
t = st(✓0), and st = st(✓). We start

by investigating the policy function across different time
steps:
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The first inequality is the triangle inequality, and the second
is from our Lipschitz assumption 2.

If we look at the change of states as the episode proceeds:
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Now combine both (17) and (18),
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In the initialization, we know s
0
0 = s0 since the initializa-

tion process does not involve any computation using the
parameter ✓ in the policy ⇡.

By recursion, we get
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By assumption 3, r(s) is Lr-Lipschitz, so
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So the reward
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B. Proof of Lemma 6
Lemma. In reparameterizable RL, suppose the initializa-

tion function I 0
in the test environment satisfies k(I 0 �

I)(⇠)k  �, and the transition function is the same for both

training and testing environment. If assumptions (1), (2),

and (3) hold then
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Proof. Denote the states at time t with I 0 as the initializa-
tion function as s0t. Again we look at the difference between
s
0
t and st. By triangle inequality and assumptions 1 and 2,
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where the last inequality is due to the assumption that
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Also since r(s) is also Lipschitz,
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The argument above holds for any given random input ⇠, so
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C. Proof of Lemma 7
Lemma. In reparameterizable RL, suppose the transi-

tion T 0
in the test environment satisfies 8x, y, z, k(T 0 �

T )(x, y, z)k  �, and the initialization is the same for both

the training and testing environment. If assumptions (1), (2)

and (3) hold then
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where ⌫ = Lt1 + Lt2L⇡1

Proof. Again let’s denote the state at time t with the new
transition function T 0 as s0t, and the state at time t with the
original transition function T as st, then
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Again we have the initialization condition

s
0
0 = s0

since the initialization procedure I stays the same. By
recursion we have
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By assumption 3,
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where ⌫ = Lt1 + Lt2L⇡1. Again the argument holds for
any given random input ⇠, so
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D. Proof of Theorem 1
Theorem. In reparameterizable RL, suppose the transi-

tion T 0
in the test environment satisfies 8x, y, z, k(T 0 �

T )(x, y, z)k  ⇣ , and suppose the initialization function I 0

in the test environment satisfies 8⇠, k(I 0 � I)(⇠)k  ✏. If

assumptions (1), (2) and (3) hold, the peripheral random

variables ⇠
i

for each episode are i.i.d., and the reward is

bounded |R(s)|  c/2, then with probability at least 1� �,

for all policy ⇡ 2 ⇧,
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where ⌫ = Lt1 + Lt2L⇡1, and
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is the Rademacher complexity of R(s(⇠;⇡, T , I)) under the

training transition T , the training initialization I, and n is

the number if training episodes.

Proof. Note
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Then theorem 1 is a direct consequence of Lemma 2, Lemma
6, and Lemma 7.


