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1. Analysis of Optimal Selection Algorithm
Now we closely study how the optimal decision for a given
context depends on the vector ((x0i , ri), i = 1..n) in the
case of an objective measure Q satisfying the following
requirements:
R1. For any lists X,Y and items d, d′, we have

Q(X a (d, d′) a Y ) ≥ Q(X a (d′, d) a Y )⇐⇒
⇐⇒ r(d) ≥ r(d′), (1)

where "a" means concatenation. That is, permutation of
two neighboring items in a list changes its relevance accord-
ingly to the order of relevances of these items.
R2. If Q(X a Y ) < Q(X a Y F ) for some lists
X,Y and selection algorithm F , then Q(XF ′

a Y ) <
Q(XF ′

a Y F ) for any selection algorithm F ′. That is,
the fewer items are located above a given tail of a list,
the more useful applying a given selection algorithm to
this tail is. In the most practical case of an additive mea-
sure Q(d1, . . . , dn) =

∑n
i=1 wiri, wi > 0, it is equivalent

to non-strict logarithmic convexity of wi as a function of
the position i, i.e., wi/wi+1 ≥ wi+1/wi+2 ∀i ∈ N, and
covers cases of DCG and RBP with wi = 1

log2(i+1) and
wi = (1− p)pi−1 respectively.

Under these requirements, the following proposition is valid.

Proposition 1 The optimal selection for a list L =
(d1, . . . , dn) has the form F (di) = 1{ri > t(i)}, where
t(·) is a non-increasing function.

Proof 1 For a fixed position i, obviously, the optimal de-
cision Fopt(di) on the item di is a threshold-based func-
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tion of its relevance ri, i.e., F (di) = 1{ri > t(i)} for
some function t(·). Assume it is not a non-increasing one.
Then, there exist such lists A,B,C and items d1, d2 with
r1 ≤ r2, and a list L = A a (d1) a B a (d2) a C
such, that the optimal selection for the list L provides the
list L∗ = A′ a (d1) a B′ a C ′, where the item d2 is not
selected and X ′ denotes the list X after selection. Assume
w.l.o.g. that d1 is the lowest item in L∗ located above d2 in
L and having relevance r ≤ r2. Then, for each item d ∈ B′
its relevance r satisfies r > r2 ≥ r1. It allows us to apply
the property R1 to d1 and each d ∈ B′ from top to bottom
consequently and yield

Q(L∗) = Q(A′ a (d1) a B′ a C ′) ≤
≤ Q(A′ a B′ a (d1) a C ′) (2)

Further,

Q(A′ a B′ a (d1) a C ′) < Q(A′ a B′ a (d2) a C ′) ≤
≤ Q(A′ a B′ a C ′), (3)

where the first inequality is the consequence of increasing
monotonicity of Q w.r.t. the relevance of each item and the
second follows from the inequality

Q(A′ a (d1) a B′ a (d2) a C ′) < L∗ =

= Q(A′ a (d1) a B′ a C ′)

and the property R2 applied to X = A′ a (d1) a B′,
Y = (d2) a C ′, XF ′

= A′, Y F = C ′. Combining the
inequalities (2) and (3), we obtain

Q(L∗) < Q(A′ a B′ a C ′)

, what contradicts the optimality of the selected listL∗, since
A′ a B′ a C ′ is obtained from L by selection.

Why position i is generally unknown Note that the po-
sition i of an item is not commonly known at search engines
of the first stage, since it is a global feature of the item.
Similarly to selection, even its calculation on the basis of a
considerable number of items is highly undesirable from the
point of view of efficiency. Of course, we anyway should
choose top-m items (for some fixed m) by the dedicated
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Figure 1. Result pages for the query "global warming" submitted to www.ebay.com for ordering by relevance (top) and price (bottom)

attribute to send them to the meta-search level. However,
choosing tom-m is the partial sorting problem, which could
be solved in timeO(n′+m·log n′) (Martınez, 2004), where
n′ is the number of candidate items considered by the search
engine. This complexity is significantly lower than one of
the sorting procedure, n′ · log n′.

2. Proof of Theorem 1
Proof 2 1) In the case of logarithmically convex wi, con-
sider the following example:
L = (d1, d2, d3), r1 = r3((w1 − w2

w1
− ε),

r2 = r3(
w2−w3

w2
+ ε) and ε = w1w3−w2

2

2(2w1−w2)w2
.

Let evaluate the lists that are candidates to be the best
selected ones:
Q(d1, d2, d3) = r3(w1 − ε(w1 − w2))
Q(d1, d3) = r3(w1 − εw1)
Q(d2, d3) = r3(w1 − w1w3

w2
+ w2 + εw1)

Q(d3) = r3w1

It is easy to check that

Q(d3) > Q(d1, d2, d3) > Q(d1, d3) and Q(d2, d3) (4)

Now, we note that both Qsmooth and Qlow
smooth are monotone

functions of each model prediction f(xj). Indeed, the sign

of both derivatives ∂Qlow
smooth

∂f(xj)
(see Equation 6 in the main

text) and ∂Qsmooth

∂f(xj)
(Equation 5 in the main text) does not

depend on f(xj), what is a sufficient condition for mono-
tonicity. For the latter derivative, it is easy to see that by
presenting the derivative as

∂Qsmooth

∂f(xj)
(F,L) =

= σ′|f(xi)(EF Q(LF |pj = 1)− EF Q(LF |pj = 0))

Next, according to inequalities (4), excluding any one item
cannot improve the list L in terms of Q, which coincides
with Qsmooth and Qlow

smooth on deterministic selection algo-
rithms (i.e., ones with pi ∈ {0, 1}). In combination with

www.ebay.com
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monotonicity of these metrics, it means that L is a local ex-
tremum point for G1 and G2, while L∗ = (d3) is the global
extremum.

In the case of logarithmically concave wi, the following
example can be checked by analogy with the first case:
L = (d1, d2, d3), r1 = r3((w1 − w2

w1
+ ε),

r2 = r3(
w2−w3

w2
− ε) and ε = w2

2−w1w3

4w1w2
.

2) Assume the contrary, there is a point L1 of local but
not global maximum. According to monotonicity proved
above this point presents a deterministic selection algorithm.
Consider the last item dj with the decision pj on it different
from the optimal decision poptj . Consider w.l.o.g. poptj =
0. Then, the list L1 and the optimal selected list can be
presented as L1 = (A a (dj) a B) and L∗ = (A′ a B)
for some lists A and B. Since, due to a geometric form of
weights wi, differences Q(A a (dj) a B) − Q(A a B)
and Q(A′ a (dj) a B)−Q(A′ a B) have the same sign,
we have Q(L1) = Q(A a (dj) a B) < Q(A a B), what
contradicts the local optimality of L1.

3. Features and Their Importance
In our experiments, we utilize all the features (in all methods
including baselines) used in the production ranker of the
search engine under study, besides additional features de-
scribed in Section 5.1. These features include price features
(offer price, price aggregated over different categories the
offered product belongs to), features of query-offer pairs
(e.g., text-based features indicating relevance of the offer
to the query, click-based statistics), offer features (e.g., fea-
tures describing the offered product, the shop, shipping,
payment).

In order to analyze importance of different groups of fea-
tures described in Section 5 of the main paper, in LSO
task and compare it with their importance for the prediction
of the production relevance, we sum the values of feature
importance over all the features in each group. The fea-
ture importance is defined as the sum of the reductions in
the loss functions over all splits based on a given feature
(Diaz et al. (Diaz et al., 2010)). The resulting statistics for
OFP + PG and for the production relevance prediction is
presented in Table 1. Expectedly, price-based features (both
production ones and AvPricePred) are much more impor-
tant for LSO. Besides, query features remain important for
LSO, since they contain the signal about relevance and price
distribution over offers w.r.t. the query.

Besides, forOFP+PG, we evaluate the influence on DCG-
RR of featuresAvPricePred andAvRelPred constructed
specifically for the LSO task. The relative changes w.r.t. the
quality of WeakCutoff are presented in Table-2. These
features remarkably increase the quality of the selection and

Table 1. Feature importances

Feature groups OFP + PG Relevance prediction

AvPricePred 12.0 1.0
AvRelPred 3.5 2.8
Price 31.6 3.3
Query 19.0 20.7
QueryOffer+Offer 34.5 71.4

Table 2. Influence on DCG-RR, relative ∆ to WeakCutoff, %

Features (for OFP + PG) DCG-RR

AvPricePred+AvRelPred 4.33
AvPricePred 3.27
AvRelPred 3.25
- 2.55

confirm our conclusions about the importance of features
encoding distributions of the dedicated attribute and the
relevance over the original list of items.

4. CatBoost Parameters
For training each model, we use the fol-
lowing setting of CatBoost parameters:
depth = 6, leaf_estimation_iterations =
100, border_count = 32, random_strength =
0, bagging_temperature = 0, iterations = 1000,
loss_function = UserQuerywiseMetric. The best
iteration (upper limited by 1000) and the learning_rate
parameter were fitted in combination with specific hyperpa-
rameters of the algorithms by maximization of DCG-RR,
the rest of the CatBoost parameters have default values. All
the features are treated as numerical.

5. Relevance Labels
Production relevance of an item is its score used by the
chosen system for ranking without ordering by price. It is
calculated as a combination of a predicted relevance and a
machine-learned click-based component normalized in the
interval [0,1]. The first reason for combining is the well-
known fact that clicks provide a strong signal about item
relevance (Joachims et al., 2017), what motivates combining
relevance labels with clicks as targets in LTR (Svore et al.,
2011). The second reason is that the number of clicks di-
rectly influence the system revenue in Cost Per Mille (CPM)
payment scheme (Fain & Pedersen, 2006). In this scheme,
the shop pays to the system a fixed price per each thousand
of exposures of its offer, and an exposure occurs when the
user clicks on the corresponding item (offer snippet) on the
result page.
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Table 3. Descriptive statistics for selection algorithms

Approach
# of hard items # of excluded threshold
per list, Nhard per list (trelconst, t

rel or tprobconst)

ConstCutoff - 3.4 0.058
QueryCutoff - 41.3 [0.03, 0.67]
OFP 16.9 68.4 0.547
LBO 62.6 0 0.033
PG 58.9 0.2 0.703
OFP + LBO 6.1 73.1 0.552
OFP + PG 10.6 73.1 0.561
Oracle 0 78.9 -

Thus, we use the same combination of predictions (referred
as production relevance below) as a true relevance label ri
for each item di from our dataD for training and testing. We
use just relevance predictions instead of human relevance
judgments, since it is too expensive to collect the latter for
hundreds of items per query needed for the result page opti-
mization and evaluation. Indeed, in the case of e-commerce
search engines, a user looks through much more items per
query issue on average than in the case of web search en-
gines. It is also the case of social media services, whose
owners are highly interested in increasing user engagement,
that is, in users looking through deep feeds.

Both the model of assessor relevance prediction and the
click-based component were trained on hold-out datasets
collected from user sessions preceding ones from data D.
The first model uses for targets human relevance judgments
collected with the 4-grade scale for top-24 items by rele-
vance scores of the preceding production ranker. The second
model is trained on targets based on the user behavior on
the result page.
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Table 4. Performance, absolute for WeakCutoff and relative ∆ to WeakCutoff , % for others

Approach DCG-RR DCG@5 DCG@10 p@10 stup@12

WeakCutoff 0.52 0.69 1.07 0.73 0.06

ConstCutoff 0.05 2.91 2.94 1.55 -11.66
QueryCutoff 0.56 6.6 6.26 4.29 -17.49
OFP 3.86 23.8 20.3 10.71 -33.17
OFP + LBO 4.17 25.95 22.35 11.95 -37.61
OFP + PG 4.33 26.04 22.35 12.23 -36.78
Oracle 14.44


