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Abstract
Analyzing multivariate time series data is impor-
tant to predict future events and changes of com-
plex systems in finance, manufacturing, and ad-
ministrative decisions. The expressiveness power
of Gaussian Process (GP) regression methods has
been significantly improved by compositional co-
variance structures. In this paper, we present a
new GP model which naturally handles multiple
time series by placing an Indian Buffet Process
(IBP) prior on the presence of shared kernels. Our
selective covariance structure decomposition al-
lows exploiting shared parameters over a set of
multiple, selected time series. We also investigate
the well-definedness of the models when infinite
latent components are introduced. We present
a pragmatic search algorithm which explores a
larger structure space efficiently. Experiments
conducted on five real-world data sets demon-
strate that our new model outperforms existing
methods in term of structure discoveries and pre-
dictive performances.

1. Introduction
Time series data analysis is important for numerous real-
world applications: signal processing of audio and video
data; the study of financial variables such as stocks, cur-
rencies, and crude oil prices. When several data sources
are correlated, a model that exploits a group structure often
demonstrates competitive predictive performance (Yuan &
Lin, 2006). It is critical to learn how multiple time series
are correlated. Many practical applications i.e. visualiz-
ing, filtering or generating reports from multiple time series,
depend on their inherent encoded relations. However, it is
non-trivial to extract such important relations among them.

A recent work contributed a highly general framework called
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the Automatic Bayesian Covariance Discovery (ABCD)
which solves regression tasks using Gaussian Process (GP)
models (Duvenaud et al., 2013; Lloyd et al., 2014; Ghahra-
mani, 2015; Hwang et al., 2016; Malkomes et al., 2016;
Kim & Teh, 2018). Previously, selecting GP kernels was
heavily based on expert knowledge or trial-and-error. The
ABCD automatically extracts an appropriate compositional
covariance structure to fit data based on grammar rules;
then it generates human-friendly reports explaining data.
The compositional covariance structure makes the GP mod-
els more expressive and interpretable so that GP kernels
are explained in a form of natural language. There are
cognitive studies (Schulz et al., 2016; 2017) showing that
compositional functions are intuitively preferred by humans.
Exploiting these key properties of compositional kernel, we
develop a kernel composition framework for multiple time
series which produces explainable outputs with improved
predictive accuracy.

A solid foundation for multi-task GP regression methods has
been established in (Bonilla et al., 2007; Titsias & Lázaro-
Gredilla, 2011; Álvarez et al., 2012; Wilson et al., 2012;
Guarnizo et al., 2015). However, assigning compositional
kernel structures has not yet been investigated in the exist-
ing multi-task GP regression methods. Notably, the multi-
output GP regression network (GPRN) (Wilson et al., 2012)
is highly general, and models data by the combinations of la-
tent GP functions and weights which are also GPs. Applying
structure search is challenging due to the huge search space
to cover the whole network. In order to select appropriate
covariance structures for multiple correlated sequences, we
model time series by additive structures which are, instead
of staying fixed, searched over a set of kernels. We place In-
dian Buffet Process (IBP) (Griffiths & Ghahramani, 2005;
2011) prior over an indicator matrix that represents whether
the time series share one or many of these additive kernels.
Furthermore, we introduce a search algorithm which enables
us to explore a large kernel space.

Here, we present a new model to handle heterogeneous,
correlated multiple time series by stochastic GP kernels. The
combination of latent features and interpretable covariance
structures brings a new tool to understand multiple time
series better. Our model outputs human-readable reports
with high-level abstraction as well as the relation among
time series. We believe such results potentially facilitate
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the process of decision making in many fields i.e. scientific
discovery, financial management.

This paper offers the following contributions: (1) we in-
troduce the Latent Kernel Model (LKM), justify its well-
definedness and develop its approximate inference algo-
rithm; (2) we introduce a search procedure applicable to
multiple time series and our working model; (3) an applica-
tion making comparison reports among multiple time series.

This paper is structured as follows. Section 4 presents
our LKM. Section 5 introduces a search procedure working
with this model. Section 6 shows our experiments on several
real-world data sets and gives comparison reports produced
from our models. We conclude in Section 7.

2. Related work
In the compositional kernel, there have been efforts on im-
proving the efficiency of model selection i.e. using Bayesian
optimization, or sparse GP (Malkomes et al., 2016; Kim &
Teh, 2018; Lu et al., 2018) and relating human cognitive
procedures (Schulz et al., 2016; 2017). Recently, (Sun et al.,
2018) proposed a neural network construction of composi-
tional kernels with a guarantee in approximation capacity.
Yet, the framework is less interpretable. For multiple time
series, (Hwang et al., 2016) introduced a global shared infor-
mation among multiple sequences and individual kernels for
each kernel. Our model is more general because no strong
correlation assumption is required, the relation among time
series is automatically discovered by IBP matrix instead.

Stochastic grammar for ABCD (Schaechtle et al., 2015)
is introduced where interpretable kernels are selected via
Bayesian learning over a binomial distribution imposed
on the presence of kernels. It provides a sampling ap-
proach based on Venture probabilistic programming lan-
guage (Mansinghka et al., 2014). Another work (Tong &
Choi, 2016) represents kernel compositions in Stan lan-
guage (Carpenter et al., 2017). A recent work (Saad et al.,
2019) built on the top of Venture as well presents a pro-
gram synthesis approach to extract compositional kernels.
However, these works only can apply to a single time se-
ries. While in our case, we work on multiple time series
using IBP prior with an in-depth investigation of the model
construction.

In the multi-task learning perspective, multi-task learning
for GP regression has been studied extensively (Teh et al.,
2005; Bonilla et al., 2007; Álvarez et al., 2012; Wilson
et al., 2012; Titsias & Lázaro-Gredilla, 2011; Guarnizo et al.,
2015; Guarnizo & Álvarez, 2015). These methods com-
monly share limitations that GP kernel structures are fixed
or given, not having the flexibility in selecting GP kernels.
The additive kernel construction of our model is common
with the Linear Model of Coregionalization (LMC) (Álvarez

et al., 2012) and extensions (Álvarez & Lawrence, 2008;
Ulrich et al., 2015; Parra & Tobar, 2017) where kernels
are constructed by a linear combination of kernels. While
LMC optimizes these weights together with GP hyperparam-
eters, our model is based on a Bayesian approach to infer Z.
More importantly, the binary latent matrix Z enhances the
interpretability transparency over real-valued weights.

In terms of stochastic kernel generation, (Jang et al., 2017b)
proposed a Lévy kernel process where the mixture of kernels
is obtained by placing a Lévy prior over the corresponding
spectral density. The LKM is one of the attempts to put
uncertainty on kernel constructions using IBP prior to select
a set of interpretable kernels.

It is worth mentioning methods which learn complex func-
tions including convolutional networks (LeCun et al., 1989)
and sum-product networks (Poon & Domingos, 2011).
AND-like and OR-like operation have the intuitively similar
mechanisms of multiplication and summation in composi-
tional kernels. Beyond this similarity between these opera-
tions and composing kernel operations, our work targets to
study multiple complex functions where sharing kernels can
be understood as AND-like operation among sequences.

3. Background
In this section, we provide a brief review of the Au-
tomatic Bayesian Covariance Discovery (ABCD) frame-
work (Grosse et al., 2012; Duvenaud et al., 2013; Lloyd
et al., 2014; Ghahramani, 2015) and Indian Buffet Process
(IBP) (Griffiths & Ghahramani, 2005).

Gaussian Process (GP) Gaussian Process (GP) (Ras-
mussen & Williams, 2005) is defined as a multivariate
Gaussian distribution over a (possibly infinite) collection
of random variables. Whenever we select a subset from
this collection, the distribution over the subset also is Gaus-
sian. Commonly, GP is used as a prior over function values,
denoted as f(x) ∼ GP(m(x), k(x, x′)) with m(x) is the
mean function, k(x, x′) is the covariance (kernel) function.
In practice, the mean function is usually chosen as a zero
mean function. Like many other kernel methods, kernel
tricks are applicable to construct new kernels for GP, be one
of the key properties in the framework that we will describe
next.

The ABCD framework The ABCD framework follows
a typical Bayesian modeling process (see MacKay (2002)),
being composed of several parts e.g. a language of models,
a search procedure among models, and a model evaluation.
The framework makes use of Gaussian Processes (GPs) to
perform various regression tasks.

Selecting kernel functions plays a crucial role in learning
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GP. ABCD searches a model out of an open-ended language
of models which is constituted from a context-free grammar
and base kernels. The base kernels model different char-
acteristics of data such as white noise (WN), constant (C),
smoothness (SE), periodicity (PER), and trending (LIN) (see
Appendix A). The grammar makes it possible to explore and
generate new kernels from base ones via composition rules
such as the product rule and the sum rule. A greedy search
is applied in ABCD like in Grosse et al. (2012), picking the
most appropriate model based on a criterion e.g. Bayesian
Infomation Criteria (BIC). Once the search procedure is
finished, a human-readable report is generated from the
interpretability of GP base kernels and their compositions.

Indian Buffet Process The IBP (Griffiths & Ghahramani,
2005) defines a distribution over a binary matrix Z with a
finite number of rows and an infinite number of columns:
Z ∼ IBP(α), with α is the concentration parameter. The
matrix indicates feature assignments where the element at
the i-th row and the j-th column expresses the presence or
absence of the j-th feature in the i-th object. A natural ap-
plication of IBP is the linear-Gaussian latent feature model
(LFM) (Griffiths & Ghahramani, 2005). Data represented
by X is factorized into an IBP latent matrix Z multiplying
with a feature matrix A with a Gaussian noise matrix E :
X = ZA+ E .

4. Latent Kernel Model (LKM)
In this section, we define the Latent Kernel Model (LKM)
and discuss its theoretical properties and unique characteris-
tics. Then we will introduce inference algorithms for LKM.

4.1. Definition

Notation Let us denote xn = (xn1, ..., xnD)
> be a vector

representing the n-th time series where xnd is the data point
of the n-th time series at the d-th time step td. Here, N
is the number of time series and D is the number of data
points in each time series. To clarify further notations, we
denote a data matrix X taking xn, n = 1 . . . N as rows. We
introduce a latent matrix Z taking zn, n = 1 . . . N as rows.

Given a set of GP kernels {Ck}Kk=1, we wish to model each
time series xn with

Z ∼ IBP(α),

fn ∼ GP(0,
K∑
k=1

znkCk),

xn ∼ N (fn, σ
2
nI),

(4.1)

where α is the IBP concentration parameter. By the above
model construction, an observation xnd corresponds to a GP
latent function variable fn(td). The p(X|Z) is the product

of all p(xn|zn) where

p(xn|zn) = |2πD(zn)|−
1/2

exp

(
−1

2
x>nD(zn)

−1xn

)
,

(4.2)
with D(zn) =

∑K
k=1 znkCk + σ2

nI, and znk ∈ {0, 1} is
the element of N ×K matrix Z indicating whether the n-th
time series has additive kernel Ck. Since we place IBP
on Z, it can have infinitely many columns as K → ∞.
This model focuses on the process of creating the stochastic
kernel D(zn) for each xn. The kernel selection procedure
relies on learning IBP matrix via Bayesian inference.

4.2. Properties

Well-definedness of LKM Since an IBP prior is imposed
on the matrix Z, the number of its columns can go to infin-
ity. Thus we may have an infinite number of kernels. It is
important to verify whether p(X|Z) forms a well-defined
probability distribution even with an infinite number of ker-
nels. Griffiths & Ghahramani (2011) gave a detailed anal-
ysis in the case of LFM. In fact, p(X|Z) in LFM is inde-
pendent to feature matrix because of marginalization over
feature matrix. However, p(X|Z) in LKM is still associ-
ated with kernels in its representation. We will justify the
well-definedness in the case of LKM as follow.

Proposition 1. The likelihood of LKM is well-defined.

Proof. The likelihood can be easily obtained by

p(X|Z) =
N∏
n=1

p(xn|zn).

We will use lof operator on Z. The lof transforms a binary
matrix by reordering its columns by the binary number asso-
ciated to that column (Griffiths & Ghahramani, 2011). Since
all kernels Ck are commutative, lof performs on Z without
affecting p(X|Z) as kernels are exchanged accordingly.
We apply lof on Z to obtain [Z+Z0] where Z+ contains
K+ nonzero columns and Z0 contains K0 zero columns.
Each row in Z+ contributes to generate kernel D(zn) =∑K+

k=1 z
+
nkCk + σ2

nI. When K →∞, K+ still stays finite
as the property of IBP. Thus, D(zn) is now the sum of a
finite number of covariances kernels Ck. This means that
each multivariate Gaussian likelihood p(xn|zn) has a well-
defined covariance. Finally, we can conclude that p(X|Z)
is well-defined.

With the above proposition, IBP prior becomes a regularizer
preventing the degradation of kernel construction (an explo-
sion of the kernel variances) when increasing the number of
kernels K.
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Figure 1: Fitting two functions using LKM. The toy data set
contains two realizations generated from a GP prior with a
periodic kernel.

Comparisons with existing models Feature sharing
models (Titsias & Lázaro-Gredilla, 2011; Wilson et al.,
2012; Guarnizo et al., 2015) commonly represent data as

xn =

K∑
k=1

wkfk + εn,

with fk, k = 1 . . .K are shared features, εn, n = 1 . . . N
are Gaussian noise vectors. Each fk is a drawn GP real-
ization from Ck. The wk can be placed spike and slab
prior (Titsias & Lázaro-Gredilla, 2011) or are samples from
GPs (Wilson et al., 2012).

Our LKM is more expressive than the feature sharing family
in terms of function realizations. Suppose the posterior
decomposition of additive Gaussian distributions presents as:
If f = f1 + f2, where f1 ∼ N (0,K1), f2 ∼ N (0,K2),
the conditional distribution of f1 given the sum f is

f1|f ∼ N (K>1 (K1+K2)
−1f ,K1−K>1 (K1+K2)

−1K1).

In the multiple time series setting, each decomposed compo-
nent under the same GP prior could be realized differently
in different time series. In other words, for a specific k,
the posterior fk|xn varies whenever xn changes even with
the fixed covariance Ck. A simple setup in Figure 1 can
verify this observation. We generate two sequences from a
single periodic GP and then run LKM on this data with two
different periodic kernels C1 and C2. When we learn LKM,
Z = [0, 1; 0, 1] is obtained. That is, LKM is able to recog-
nize these two realizations from one GP.

We also emphasize that the Bayesian approach that is consid-
ered in our kernel construction, can be viewed as a stochastic
kernel generative process (Jang et al., 2017b).

Figure 2 illustrates the plate notations of LKM and R-
ABCD (Hwang et al., 2016). R-ABCD shares a global
kernel for all time series and allocates a distinctive kernel
Cn for each time series. Note that spectral mixture ker-
nel (Wilson & Adams, 2013) is used for Cn in R-ABCD
prevents ones from deriving interpretable models.

4.3. Inference algorithm

Variational inference Variational inference methods ap-
proximate the true posterior p(Z|X) by a variational distri-

xn

(b) R-ABCD

fn

GP

shared kernel

Cnσn

sn

n

xn

(a) LKM

fn

GP

znk

πk

α

Ck

k

n

Figure 2: Graphical model of (a) LKM and (b) R-ABCD.

bution q(Z). The method converts the optimization problem
of KL divergence between p and q into an equivalent prob-
lem by maximizing the evidence lower bound (ELBO) L,

log p(X) ≥ E[log p(X,Z)] +H[q]

= E[log p(Z)] + E[log p(X|Z)] +H[q] , L.

where E indicates the expectation over the approximate
posterior distribution q(Z), and H[q] is the entropy of q.
The last equation in the above derivation comes from the
model definition in Equation 4.1 where the joint distribution
p(X,Z) is in the form of p(X|Z)p(Z). Here, we choose
the variational distribution q(Z) in the mean-field family. It
is factorized into q(znk) = Bernoulli(znk; νnk).

The first term E[log p(Z)] in L is explained in Ap-
pendix B (Doshi et al., 2009).

Now our main focus is to estimate E[log p(X|Z)].
Recall that p(X|Z)=∏N

n=1 p(xn|zn), we can break
E[log p(X|Z)] into the sum of E[log p(xn|zn)]. The
evaluation of each E[log p(xn|zn)] is expensive since
it needs to compute the expectation of GP likelihood
functions associated with discrete random variables Z.
Specifically, E[log p(xn|zn)] is written as the sum of
− 1

2x
>
nE
[
D(zn)

−1]xn (or the expectation of data-fit term
in GP likelihood), − 1

2E [log |2πD(zn)|] (or the expectation
of GP model complexity) and a constant term. Each ex-
pectation is the sum of following 2K terms: (1) p(zn =
t)D(t)−1 for all t ∈ {0, 1}K in the case of the expec-
tation of inverse matrix; (2) p(zn = t) log |2πD(t)| for
all t ∈ {0, 1}K in the case of the expectation of log-
determinant. Hence, it is not practical to estimate an ex-
ponential number of inverse and determinant operations.

Relaxation To mitigate the difficulty in estimating
E[log p(xn|zn)], we first relax the discrete random variables
znk to a continuous ones, then estimate the expectation us-
ing Monte Carlo method. The relaxation turns the Bernoulli
random variables znk ∼ Bernoulli(νnk) into 2-dimensional
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continuous random variable [z̃nk,
˜
znk] ∼ Concrete(νnk, λ),

where λ is the temperature parameter (Maddison et al.,
2017). Here, the categorical random variable [znk, 1− znk]
corresponds to the relaxed one [z̃nk,

˜
znk]. We are interested

in z̃nk which corresponds to znk. A sample of z̃nk is drawn
by sampling g1 and g2 from Gumbel(0, 1) and computing
as

z̃nk =
exp( log(νnk)+g1λ )

exp( log(νnk)+g1λ ) + exp( log(1−νnk)+g2λ )
.

This is known as the Gumbel-Softmax trick (Maddison
et al., 2017; Jang et al., 2017a). The unbiased estimation of
E[log p(xn|zn)] after relaxation is

E[log(p(xn|zn)] ≈
1

m

m∑
i=1

log p(xn|z̃(i)n )),

where m is the number of samples, {z(i)n }mi=1 is the set of
samples. The kernel D(z̃n) now takes all Ck into account
since z̃n is in (0, 1)K instead of {0, 1}K . Now the number
of evaluations on matrix inversions and determinants is the
number of sample M , instead of the number of all (expo-
nential) configurations generated from K binary random
variables zn. Moreover, the estimation benefits from this
reparameterization trick to estimate gradients in stochastic
computation graph (Schulman et al., 2015).

5. Structure discovery in multiple time series
In this section, we present a search algorithm to discover GP
compositional kernels for multiple time series.

Search scheme To cope with the broad structure
space, our algorithms follows the principle of greedy
algorithms (Grosse et al., 2012; Duvenaud et al.,
2013; Lloyd et al., 2014). That is, we main-
tain a set of additive kernel structures {S(k)d |S

(k)
d =∏

l B
(kl)
d with B(kl)d s are base kernels, k = 1 . . .K} at a

search depth d. We map correspondingly S(k)d to the re-
quired kernels Ck in LKM. At the next depth, the set will
recruit new additive kernels by expanding some of the el-
ements of the set at the current depth d. The context-free
grammar rules of the expansion are the same with Com-
positional Kernel Learning (CKL) (Duvenaud et al., 2013).
However, for the case when S(k)d is expanded into a new
kernel which is written in an additive form as

∑M
m=1 S

(km)
d+1 ,

we will consider this expansion as M separated expansions
S(k)d → S(km)

d+1 . The generated structures S(km)
d+1 are added

to the set rather than the sum
∑M
m=1 S

(km)
d+1 . This procedure

always makes new candidate structures satisfy the definition
of {S(k)d } without assuming an arbitrary sum.

S(1)

S(1) S(4) S(5) S(6) S(3)

S(2) S3 PSE

Figure 3: PSE with S(2) expanded into 3 others to create a
new set.

Algorithm 1 Partial set expansion of LKM learning

Require: Input data and search depth D, initial {S(k)d }
1: for d = 1 . . . D do
2: for S in {S(k)d } of depth d do
3: Update {S(k)d } ← {S

(k)
d }\S ∪ expand(S)

4: Run LKM learning
5: if improvement in BIC then
6: Use this updated set {S(k)d }
7: else
8: Rollback to previous set {S(k)d }
9: end if

10: end for
11: end for

Partial set expansion (PSE) Our search algorithm it-
eratively expands S(k)d and obtain a set of candidates
{S(k1)d , . . . ,S(km)

d }. We make a new set which is the
union of the previous one excluded the selected struc-
ture {S(k)d }Kk=1\{S

(i)
d } and the new candidate structures

{S(i1)d , . . . ,S(im)
d } (Figure 3). Our variational inference al-

gorithm (described in Section 4.3) learns Z and GP kernels.
If there is an improvement in BIC (Schwarz, 1978.), we
keep the updated kernel set. Otherwise, it rolls back to the
previous one. We proceed to the next expansion using this
updated one (Algorithm 1).

Advantages of our PSE algorithm are (1) it does not make
drastic increases in structure space in each expansion, (2)
it carefully assesses models by a selection criterion (BIC)
and flexibly falls back to the previous model if the criterion
does not select the new one, (3) the fewer number of kernels
in PSE makes us easier to initialize GP hyperparameters as
well as reduce the number of restarts learning Z.

Our kernel search procedure is a meta search algorithm
inspired from oracle machines in computational theory (Pa-
padimitriou, 1994). The LKM plays a role as an oracle.
Given a set of kernel structures, one tries to ask the oracle to
decide the appropriate structures. The oracle will response
an answer as Z in our case. Exploiting the returned Z,
the kernel structures will be elaborated more by perform-
ing PSE. The procedure is repeated by making new inquiry
based on the expanded structures.
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We emphasize that PSE with LKM considers a larger
number of kernel structures than those in CKL. Suppose
that CKL and our search algorithm have the same found
structure at a depth d. Whereas the CKL’s structure is
Sd = S(1)d + · · · + S(K)

d , PSE represents it as a set
{S(1)d , . . . ,S(K)

d }. Let L be the largest number of base
kernels in S(k)d , and R be the maximum number of gram-
mar rules per substructure. All possible search candidates
in CKL isO(RK2L+R2K) kernels, while PSE incorporat-
ing with LKM considers O(K2R2L+K) number of kernels.
Detailed analysis is provided in Appendix C.

Although our search algorithm explores a much larger
search space than CKL in theory, the prior over Z still limits
the expressiveness power of our model. Moreover, learn-
ing Z relies on a gradient-based method where the global
optimal is not guaranteed. Thus, our kernel search algo-
rithm may not find the optimal kernel over all the possible
candidates.

6. Experimental evaluations
In this section, we describe data sets and demonstrate both
qualitative and quantitative results.

6.1. Real-world time series data

Strongly correlated data sets We tested our algorithm
on three different data sets: US stock prices, US housing
markets and currency exchanges. These data sets are well-
described and publicly accessible (Hwang et al., 2016). The
US stock price data set consists of 9 stocks (GE, MSFT,
XOM, PFE, C, WMT, INTC, BP, and AIG) containing 129
adjusted closes taken from the second half of 2001. The
US housing market data set includes the 120-month hous-
ing prices of 6 cities (New York, Los Angeles, Chicago,
Phoenix, San Diego, San Francisco) from 2004 to 2013.
The currency data set includes 4 currency exchange rates
from US dollar to 4 emerging markets: South African
Rand (ZAR), Indonesian Rupiah (IDR), Malaysian Ring-
git (MYR), and Russian Rouble (RUB). Each currency ex-
change time series has 132 data points.
Heterogeneous data set We collected time series from
various domains into a data set. It consists of gold prices,
crude oil prices, NASDAQ composite index, and USD in-
dex1 from 2015 July 1st to 2018 July 1st. We call this data
set as GONU (Gold, Oil, NASDAQ, USD index). Each time
series has 157 weekly prices or indexes taken from Quandl
(2018). The interactions between this sets of time series are
known to be complex. For instance, the gold and oil prices
might have a negative correlation where one may increase
but the other decreases. There are many studies in the finan-

1Quandl codes respectively are WGC/GOLD DAILY USD,
FRED/DCOILBRENTEU, NASDAQOMX/COMP,FRED/DTWEXM

cial research focusing on these target time series (Filis et al.,
2011; Reboredo et al., 2014).

Epileptic seizure data set We retrieved the epileptic
seizure data set (Andrzejak et al., 2002) from UCI repos-
itory (Dheeru & Karra Taniskidou, 2017). This data set
contains EEG recordings of brain activities for 23.6s. Each
record corresponds to one out of 5 activities including eyes
open, eyes closed, identifying the tumor, located the tumor
and seizure activity. Each time series contains 178 data
points.

6.2. Qualitative results

With the motivation that interpretable machine learning mod-
els can help understand data better, thereby fostering scien-
tific discovery and decision making, we carried experiments
on the mentioned data sets to demonstrate the potential
applicability of our search algorithm on LKM.

6.2.1. EXPLOITING INFORMATION FROM Z

Learning Z We visualize the variational parameters ν in
Figure 4. The value of νnk is the probability of znk =
1. The bigger νnk is, the more probable the kernel Ck is
selected for time series xn.

Interpreting Z We randomly take 50 time series from the
epileptic seizure data where each activity has 10 time series.
Because finding a covariance kernel decomposition for a
large number of time series is time-consuming, and therefore
prohibits kernel structure search, we looked for latent ker-
nels from the set of kernels {SE1, SE2, PER1, PER2, SE3×
PER3, SE4 × PER4}. Figure 5 illustrates a summary of the
model outputs. Readers may refer Appendix E for the full
output.

We observe several interesting properties. Located tumor
and identifying tumor are quite similar because the corre-
sponding block matrix from Z has the same sparsity. Also,
having fewer active SE kernels indicates that they do not
vary much. The activities of opening eyes and closed eyes
commonly have rapidly varying signals with small length-
scales. The seizure, on the other hand, has a similar level of
sparsity comparing to those of opening eyes or closed eyes.
However, there is no sign of low-frequency periodic pattern.

The latent matrix Z encodes certain relations between time
series in the light of kernel interpretability. Next, we fully
employ the description of kernels to generate comparison
reports.

6.2.2. COMPARISON REPORT

Overview comparison By taking the advantage of the
learned latent matrix Z and the descriptive properties of
found GP covariance structures, we generate a human-
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initial ν converged ν

Figure 4: The visualization of ν as the training of LKM goes on. The columns indicates time series. The row indicates kernels Ck.
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Figure 5: Epileptic seizure data set. There are 5 activities of EEG recording: seizure (act1), located tumor (act2), identifying tumor
(act3), eyes closed (act4), eyes open (act5). (a) Non-seizure. Left: part of learned Z corresponding to each activity, black means znk = 0,
otherwise white; Right: posterior of 3 last time series from act5 with their decomposition. (b) Seizure. Left: part of learned Z from act1;
Right: posterior plot of 3 first time series from act1 with their decomposition. The missing subplots or gray background plots indicate
znk = 0.

shared kernels

individual kernels

Gold Oil

Figure 6: A part of pairwise comparison between Gold and Oil in
GONU data set. The uppermost plots are the posterior means and
variances of two time series. The remaining plots contain shared
components and individual components with descriptions and pos-
teriors fk|xn for each time series. The blank in the individual
components means “not available”.

readable report containing the comparison among time se-
ries. For example, the generated text can have formats like

“[T1, . . . , Tm] share [description]”

where the replacement of [T1, . . . , Tm] is a set of time
series, [description] is generated by the found GP

Stocks

4

6

8

10

Houses

5

10

Currencies

100

200

300

400

GONU

0.6

0.8

1

1.2

Spike and Slab GPRN LMC
MOSM ABCD R-ABCD

LKM (ours)

Figure 7: RMSEs for each data set (9 stocks, 6 houses, 4
currencies, GONU) with corresponding methods.

structure. Below is extracted from GONU data set.
• Gold, Oil, NASDAQ, USD index share the following
property:
This component is periodic with a period of 1.4 years but
with varying amplitude. The amplitude of the function
increases linearly away from Apr 2017. The shape of this
function within each period has a typical lengthscale of
4.9 days.
• Gold, Oil, USD index share the following property:
This component is a smooth function with a typical
lengthscale of 2.7 weeks.
• NASDAQ has the following property:
This component is a linear function.

Pairwise comparison We provide another type of descrip-
tive comparisons. Given a set of N time series, the output
of our model can generate

(
N
2

)
reports which compare each

pair of time series. These reports give us a more detailed
insight than the overview comparison. A report consists of
shared components and individual ones between time series.
Alongside with the description of the kernel structure of
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9 stocks 6 houses 4 currencies GONU
RMSE MNLP RMSE MNLP RMSE MNLP RMSE MNLP

Spike and Slab 10.07±0.12 2.87±0.05 10.85±0.46 6.92±0.09 174.71±14.52 4.09±0.10 1.07±0.08 2.36±0.11
GPRN 6.11±0.09 2.78±0.14 8.96±0.17 6.64±0.46 193.13±49.40 4.24±0.20 1.16±0.12 2.46±0.28
LMC 8.20±0.53 2.24±0.23 11.31±1.04 5.90±0.46 394.83±40.54 4.90±0.15 1.01±0.14 1.43±0.11

MOSM 5.48±1.01 2.97±0.01 8.15±1.51 5.90±0.20 318.26±101.52 3.93±0.15 0.84±0.18 3.13±1.06
ABCD 8.37±0.03 2.58±0.05 7.98±0.03 5.61±0.05 325.58±8.64 4.47±0.04 0.86±0.01 2.21±0.03

R-ABCD 4.88±0.03 1.95±0.05 3.17±0.10 6.07±0.09 208.32±5.02 3.62±0.03 0.97±0.03 2.01±0.10

LKM 4.58±0.16 1.87±0.10 4.37±0.16 5.54±0.40 133.00±16.92 3.61±0.16 0.76±0.07 1.90±0.25

Table 1: RMSEs and NMLPs for each data set with corresponding methods (5 independent runs per method). In most cases, LKM has
lower RMSEs and NMLPs compared to those of existing methods.

Ck, this type of report presents the corresponding posterior
fk|xn which will illustrate the variations of GP realizations
on different time series (see Figure 6).

We bring a brief analysis of GONU data set as an example
after taking a quick look over the generated report. For
instance, the gold and oil prices share many common char-
acteristics (long and short lengthscale varying), showing a
marginally small difference. On the other hand, NASDAQ
and USD indices differ each other with many distinctive
individual kernels Cks. Interestingly, the negative correla-
tion behavior between the oil and USD indices (i.e. two
time series often go in opposite directions) can be observed
by shared kernels using LKM (see Appendix D). These re-
ports give an easy understanding for ones who do not have
knowledge in finance.

6.3. Quantitative results

Experiment setup All experiments are conducted to pre-
dict future events (extrapolation) by splitting all data sets
and trained with the first 90%, then tested with the remain-
ing 10% as in the standard setting for extrapolation tasks.
Root mean square error (RMSE) and Mean Negative Log
Likelihood (MNLP) (Lázaro-Gredilla et al., 2010) are the
main evaluation metrics in all data sets.

Compare to multi-task GPs We compare multi-task GP
models including ‘Spike and Slab’ model (Titsias & Lázaro-
Gredilla, 2011) , GP regression network (GPRN) (Wilson
et al., 2012; Nguyen & Bonilla, 2013), Linear Model of
Coregionalization (LMC) (Álvarez et al., 2012; GPy, since
2012) and Multi-Output Spectral Mixture (MOSM) (Parra
& Tobar, 2017). The result in Table 1 and Figure 7 indicates
that our methods significantly outperform these models.
This result could be attributed to that LKM leveraged
by PSE selects compositional kernels which are flexible
enough to fit complex data.

Compare to existing kernel composition approaches
We ran ABCD on individual time series then aggregated

the results to compare with our models. Our model outper-
forms ABCD which is known as one of the state-of-the-art
GP-based regression methods on univariate time series. It
proves that our belief about the correlations among multiple
time series is plausible.

We then compare with R-ABCD (Hwang et al., 2016).
Rather than making the assumption that all time series share
a single global kernel, our model recognizes which struc-
tures are shared globally or partially. Quantitatively, LKM
shows promising results in prediction tasks. It outruns R-
ABCD in most of the data sets (Table 1 and Figure 7). In a
relationally complex data set like GONU, LKM is signifi-
cantly better while R-ABCD failed as the restriction due to
its feature (function) sharing assumption.

Spike and Slab and GPRN models perform better
than ABCD and R-ABCD in the currency data set where it
contains highly volatile data. Although our model shares
some computational procedures with ABCD and R-ABCD,
our model is more robust to handle different types of time
series data.

7. Conclusion
In this paper, we study a new perspective of multi-task
GP learning where kernel structures are appropriately se-
lected. We introduce the LKM which learns kernel de-
compositions from a stochastic kernel process. We further
present a pragmatic search algorithm leveraging our models
to explore a larger structure space efficiently. Experimental
results demonstrate promising performance in prediction
tasks. Our proposed model also outputs a high-quality set of
interpretable kernels which produces a comparison reports
among multiple time series.
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buffet process for model selection in latent force models.
In CIARP, pp. 635–642, 2015.

Hwang, Y., Tong, A., and Choi, J. Automatic construction of
nonparametric relational regression models for multiple
time series. In ICML, pp. 3030–3039, 2016.

Jang, E., Gu, S., and Poole, B. Categorical reparameteriza-
tion with gumbel-softmax. In ICLR, 2017a.

Jang, P. A., Loeb, A., Davidow, M., and Wilson, A. G.
Scalable levy process priors for spectral kernel learning.
In NeurIPS, pp. 3943–3952. 2017b.

Kim, H. and Teh, Y. W. Scaling up the Automatic Statis-
tician: Scalable structure discovery using Gaussian pro-
cesses. In AISTATS, pp. 575–584, 2018.
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