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I. RESTATEMENT OF THE MAIN RESULT AND ITS PROOF

We restate Theorem 1 below which now includes the pde formulation as well.

Theorem 1. Consider the variational problem (11)-(14).

(i) For the probabilistic form (11) of the variational problem, the optimal control U∗t =

eαt−γtYt , where the optimal trajectory {(Xt ,Yt)}t≥0 evolves according to the Hamilton’s odes:

dXt

dt
=U∗t = eαt−γtYt , X0 ∼ ρ0 (I.1a)

dYt

dt
=−eαt+βt+γt ∇ρF(ρt)(Xt), Y0 = ∇φ0(X0) (I.1b)

where φ0 is a convex function, and ρt = Law(Xt).

(ii) For the pde form (14) of the variational problem, the optimal control is u∗t = eαt−γt ∇φt(x),

where the optimal trajectory {(ρt ,φt)}t≥0 evolves according to the Hamilton’s pdes:

∂ρt

∂ t
=−∇ · (ρt eαt−γt ∇φt︸ ︷︷ ︸

u∗t

), initial condn. ρ0 (I.2a)

∂φt

∂ t
=−eαt−γt

|∇φt |2

2
− eαt+γt+βt ∇ρF(ρ) (I.2b)

(iii) The solutions of the two forms are equivalent in the following sense:

Law(Xt) = ρt , Ut = ut(Xt), Yt = ∇φt(Xt)

(iv) Suppose additionally that the functional F is displacement convex and ρ∞ is its minimizer.

Define

V (t) =
1
2
E(|Xt + e−γtYt−T ρ∞

ρt (Xt)|2)+ eβt (F(ρ)−F(ρ∞)) (I.3)

where the map T ρ∞

ρt : Rd → Rd is the optimal transport map from ρt to ρ∞. Assume the

dimension d = 1. Consequently, the following rate of convergence is obtained along the

optimal trajectory

F(ρt)−F(ρ∞)≤ O(e−βt ), ∀t ≥ 0

Proof. (i) The Hamiltonian function defined in (12) is equal to

H(t,x,ρ,y,u) = y ·u− eγt−αt
1
2
|u|2 + eαt+γtβt F̃(ρ,x)
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after inserting the formula for the Lagrangian. According to the maximum principle in

probabilistic form for (mean-field) optimal control problems (see [1, Sec. 6.2.3]), the optimal

control law U∗t = arg minvH(t,Xt ,ρt ,Yt ,v) = eαt−γtYt and the Hamilton’s equations are

dXt

dt
=+∇yH(t,Xt ,ρt ,Yt ,U∗t ) =U∗t = eαt−γtYt

dYt

dt
=−∇xH(t,Xt ,ρt ,Yt ,U∗t )− Ẽ[∇ρH(t, X̃t ,ρt ,Ỹt ,Ũ∗t )(Xt)]

where X̃t ,Ỹt ,Ũ∗t are independent copies of Xt ,Yt ,U∗t . The derivatives

∇xH(t,x,ρ,y,u) = eαt+βt+γt ∇xF̃(ρ,x)

∇ρH(t,x,ρ,y,u) = eαt+βt+γt ∇ρ F̃(ρ,x)

It follows that

dYt

dt
=−eαt+βt+γt

(
∇xF̃(ρt ,Xt)+ Ẽ[∇ρ F̃(ρt , X̃t)(Xt)]

)
=−eαt+βt+γt ∇ρF(ρ)(Xt)

where we used the definition F(ρ) =
∫

F̃(x,ρ)ρ(x)dx and the identity [1, Sec. 5.2.2 Example

3]

∇ρF(ρ)(x) = ∇xF̃(ρ,x)+
∫

∇ρ F̃(ρ, x̃)(x)ρ(x̃)dx̃

(ii) The Hamiltonian function defined in (15) is equal to

H (t,ρ,φ ,u) =
∫ [

∇φ(x) ·u(x)− 1
2

eγt−αt |u(x)|2
]

ρ(x)dx+ eαt+γt+βtF(ρ)

after inserting the formula for the Lagrangian. According to the maximum principle for pde

formulation of mean-field optimal control problems (see [1, Sec. 6.2.4]) the optimal control

vector field is u∗t = arg minv H (t,ρt ,φt ,v) = eαt−γt ∇φt and the Hamilton’s equations are:

∂ρt

∂ t
=+

∂H

∂φ
(t,ρt ,φt ,ut) =−∇ · (ρt∇u∗t )

∂φt

∂ t
=−∂H

∂ρ
(t,ρt ,φt ,ut) =−(∇φ ·u∗− eγt−αt

1
2
|u∗t |2 + eαt+γt+βt

∂F

∂ρ
(ρt))

inserting the formula u∗t = eαt−γt ∇φt concludes the result.
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(iii) Consider the (ρt ,φt) defined from (I.2). The distribution ρt is identified with a stochastic

process X̃t such that dX̃t
dt = eαt−γt ∇φt(X̃t) and Law(X̃t) = ρt . Then define Ỹt =∇φt(X̃t). Taking

the time derivative shows that

dỸt

dt
=

d
dt

∇φt(X̃t) = ∇
2
φt(X̃t)

dX̃t

dt
+∇

∂φt

∂ t
(Xt)

= eαt−γt ∇
2
φt(X̃t)∇φt(X̃t)− eαt−γt ∇

2
φt(X̃t)∇φt(Xt)− eαt+βt+γt ∇

∂F

∂ρ
(ρt)(X̃t)

=−eαt+βt+γt ∇
∂F

∂ρ
(ρt)(X̃t)

=−eαt+βt+γt ∇ρF(ρt)(X̃t)

with the initial condition Ỹ0 = ∇φ0(X̃0), where we used the identity ∇x
∂F
∂ρ

(ρ) = ∇ρF(ρ) [1,

Prop. 5.48]. Therefore the equations for X̃t and Ỹt are identical. Hence one can identify

(Xt ,Yt) with (X̃t ,Ỹt).

(iv) The energy functional

V (t) =
1
2
E
[
|Xt + e−γtYt−T ρ∞

ρt (Xt)|2
]

︸ ︷︷ ︸
first term

+eβt (F(ρ)−F(ρ∞))︸ ︷︷ ︸
second term

Then the derivative of the first term is

E
[
(Xt + e−γtYt−T ρ∞

ρt (Xt)) · (eαt−γtYt− γ̇te−γtYt− eαt+βt ∇ρF(ρt)(Xt)+ξ (T ρ∞

ρt (Xt)))
]

where ξ (T ρ∞

ρt (Xt)) := d
dt T ρ∞

ρt (Xt). Using the scaling condition γ̇t = eαt the derivative of the

first term simplifies to

E
[
(Xt + e−γtYt−T ρ∞

ρt (Xt)) · (−eαt+βt ∇ρF(ρt)(Xt)+ξ (T ρ∞

ρt (Xt)))
]

We claim that when the dimension d = 1, the expectation

E[(Xt + e−γtYt−T ρ∞

ρt (Xt)) ·ξ (T ρ∞

ρt (Xt))] = 0 (I.4)

We present the proof for the claim at the end. Assuming that the claim is true, the derivative

of the first term simplifies to

E
[
(Xt + e−γtYt−T ρ∞

ρt (Xt)) · (−eαt+βt ∇ρF(ρt)(Xt))
]

The derivative of the second term is

d
dt
(second term) = β̇teβt (F(ρt)−F(ρ∞))+ eβt

d
dt
F(ρt)

= eαt+βt (F(ρt)−F(ρ∞))+ eβtE[∇ρF(ρt)(Xt)eαt−γtYt ]
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where we used the scaling condition β̇t = eαt and the chain-rule for the Wasserstein gradi-

ent [2, Ch. 10, E. Chain rule]. Adding the derivative of the first and second term yields:

dV
dt

(t) = eαt+βt
(
F(ρt)−F(ρ∞)−E

[
(Xt−T ρ∞

ρt (Xt)) ·∇ρF(ρt)(Xt)
])

which is negative by variational inequality characterization of the displacement convex

function F(ρ) [2, Eq. 10.1.7].

We now present the proof of the claim (I.4) under the assumption that d = 1. According

to Brenier theorem [3], there exists a convex function ψt such that T ρ∞

ρt (x) = ∇ψt(x) and

T ρt
ρ∞
(x) = ∇ψ?

t (x) where ψ?
t is the convex conjugate of ψt . Because ρ∞ is the push-forward

of ρt under the map ∇ψt , we have

E[g(∇ψt(Xt))] =
∫

g(x)ρ∞(x)dx,

for all measurable functions g. Upon taking the derivative with respect to time,

d
dt
E[g(∇ψt(Xt))] =

d
dt

∫
g(x)ρ∞(x)dx = 0

Hence by application of the dominated convergence theorem (DCT) and interchanging the

expectation and the derivative,

E[
d
dt

g(∇ψt(Xt))] = E[∇g(∇ψt(Xt)) ·ξ (∇ψt(Xt))] = 0 (I.5)

Letting g(x) = ψ∗(x)−e−γt
∫ x
−∞

∇φt(∇ψ?(z))dz− 1
2 |x|

2 where φt is defined in part-(ii) of the

theorem 1 concludes

0 = E[∇g(∇ψt(Xt)) ·ξ (∇ψt(Xt)))] = E[Xt− e−γt ∇φt(Xt)−∇ψt(Xt)) ·ξ (∇ψt(Xt)))]

= E[Xt− e−γtYt−∇ψt(Xt)) ·ξ (∇ψt(Xt)))]

where we used Yt = ∇φt(Xt) from part-(iii) of Theorem 1. This concludes the proof of

the claim. Note that the application of DCT in (I.5) follows from smoothness of g(x) and

assuming T ρ∞

ρt (x) is differentiable with respect to time. Showing T ρ∞

ρt (x) is differentiable

with respect to time is technical out of the scope of this work.
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II. WASSERSTEIN GRADIENT AND GÂTEAUX DERIVATIVE

This section contains definitions of the Wasserstein gradient and Gâteaux derivative [2], [1].

Let F : Pac,2(Rd)→ R be a (smooth) functional on the space of probability distributions.

Gâteaux derivative: The Gâteaux derivative of F at ρ ∈Pac,2(Rd) is a real-valued function on

Rd denoted as ∂F
∂ρ

(ρ) : Rd → R. It is defined as a function that satisfies the identity

d
dt
F(ρt)

∣∣∣∣
t=0

=
∫
Rd

∂F

∂ρ
(ρ)(x)(−∇ · (ρ(x)u(x)))dx

for all path ρt in Pac,2(Rd) such that ∂ρt
∂ t =−∇ · (ρtu) with ρ0 = ρ ∈Pac,2(Rd).

Wasserstein gradient: The Wasserstein gradient of F at ρ is a vector-field on Rd denoted as

∇ρF(ρ) : Rd → Rd . It is defined as a vector-field that satisfies the identity

d
dt
F(ρt)

∣∣∣∣
t=0

=
∫
Rd

∇ρF(ρ)(x) ·u(x) ρ(x)dx

for all path ρt in Pac,2(Rd) such that ∂ρt
∂ t =−∇ · (ρtu) with ρ0 = ρ ∈Pac,2(Rd).

The two definitions imply the following relationship [1, Prop. 5.48]:

∇ρF(ρ)(·) = ∇x
∂F

∂ρ
(ρ)(·)

Example: Let F(ρ) =
∫

log( ρ(x)
ρ∞(x)

)ρ(x)dx be the relative entropy functional. Consider a path ρt

in Pac,2(Rd) such that ∂ρt
∂ t =−∇ · (ρtu) with ρ0 = ρ ∈Pac,2(Rd). Then

d
dt
F(ρt) =

∫
log(

ρt(x)
ρ∞(x)

)
∂ρt

∂ t
(x)dx+

∫
∂ρt

∂ t
(x)dx

=−
∫

log(
ρt(x)
ρ∞(x)

)∇ · (ρt(x)u(x))dx

=
∫

∇x log(
ρt(x)
ρ∞(x)

) ·u(x) ρt(x)dx

where the divergence theorem is used in the last step. The definitions of the Gâteaux derivative

and Wasserstein gradient imply

∂F

∂ρ
(ρ)(x) = log(

ρ(x)
ρ∞(x)

)

∇ρF(ρ)(x) = ∇x log(
ρ(x)
ρ∞(x)

)
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III. RELATIONSHIP WITH THE UNDER-DAMPED LANGEVIN EQUATION

A basic form of the under-damped (or second order) Langevin equation is given in [4]

dXt = vt dt

dvt =−γvt dt−∇ f (Xt)dt +
√

2dBt

(III.1)

where {Bt}t≥0 is the standard Brownian motion.

Consider next, the the accelerated flow (19). Denote vt := eαt−γtYt . Then, with an appropriate

choice of scaling parameters (e.g. αt = 0, βt = 0 and γt =−γt ):

dXt = vt dt

dvt =−γvt dt−∇ f (Xt)dt−∇x log(ρt(Xt))
(III.2)

The scaling parameters are chosen here for the sake of comparison and do not satisfy the

ideal scaling conditions of [5].

The sdes (III.1) and (III.2) are similar except that the stochastic term
√

2dBt in (III.1) is

replaced with a deterministic term −∇x log(ρt(Xt)) in (III.2). Because of this difference, the

resulting distributions are different. Let pt(x,v) denote the joint distribution on (Xt ,vt) of (III.1)

and let qt(x,v) denote the joint distribution on (Xt ,vt) of (III.2). Then the corresponding Fokker-

Planck equations are:

∂ p
∂ t

(x,v) =−∇x · (pt(x,v)v)+∇v · (pt(x,v)(γv+∇ f (x)))+∆v pt(x,v)

∂q
∂ t

(x,v) =−∇x · (qt(x,v)v)+∇v · (qt(x,v)(γv+∇ f (x)))+∇v · (qt(x,y)∇x log(ρt(x)))

where ρt(x) =
∫

qt(x,v)dv is the marginal of qt(x,y) on x. The final term in the Fokker-Planck

equations are clearly different. The joint distributions are different as well.

The situation is in contrast to the first order Langevin equation, where the stochastic term
√

2dBt and −∇ log(ρt(Xt)) are equivalent, in the sense that the resulting distributions have the

same marginal distribution as a function of time. To illustrate this point, consider the following

two forms of the Langevin equation:

dXt =−∇ f (Xt)dt +
√

2dBt (III.3)

dXt =−∇ f (Xt)dt−∇ log(ρt(Xt)) (III.4)
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Let pt(x) denote the distribution of Xt of (III.3) and let qt(x) denote the distribution of Xt

of (III.4). The corresponding Fokker-Planck equations are as follows

∂ p
∂ t

(x) =−∇ · (pt(x)∇ f (x))+∆pt(x)

∂q
∂ t

(x) =−∇ · (qt(x)∇ f (x))+∇ · (qt(x)∇ log(ρt(x)))

=−∇ · (qt(x)∇ f (x))+∇ · (qt(x)∇ log(qt(x)))

=−∇ · (qt(x)∇ f (x))+∆qt(x)

where we used ρt(x) = qt(x). In particular, this implies that the marginal probability distribution

of the stochastic process Xt are the same for first order Langevin sde (III.3) and (III.4) .
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