
Imitation Learning from Observation

A. Proof of Theorem 3.1
Before proving the theorem, we introduce some notations and useful lemmas.
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where we used the fact that |f(x)|  1, 8x, ⇡(a|x)  1, 8x, a, and the last inequality uses the fact that ai
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is sampled from a
uniform distribution over A. With that, we can apply Bernstein’s inequality to {vi} together with a union bound over ⇧ and
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Let us define two loss functions for ⇡ and f :
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For any f, g : X ⇥A ⇥ X ! R, define hf, gi = E(x,a)⇠Dx,a
f(x, a)g(x, a), where we overload the notation and denote

D as the empirical distribution over the dataset D (i.e., put probability 1/|D| over each data point in D), and Dx,a as the
marginal distribution over x, a. With this notation, we can see that `t(⇡) can be written as a linear functional with respect to
⇡:
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It is easy to verify that Algorithm 1 is running Best Response on loss {ct(f)}t and running FTRL on loss {`t(⇡)}t. Using
the no-regret guarantee from FTRL, for {⇡t
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Denote ⇡̂? and f̂? as the minimizer and maximizer of Eqn 2, i.e.,

(⇡̂?, f̂?) = argmin
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argmax
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where ⇡̂?, f̂? is defined in (10).

Proof. Using the definition of `t and the no-regret property on {⇡t}, we have:
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Since f t = argmaxf2F ct(f), we have:
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where the first inequality uses the definition of min⇡2⇧, the second inequality uses the fact that the maximum is larger than
the average, and the last inequality uses the fact that f̂? is the maximizer with respect to ⇡̂?.

Combining the above results, we have:
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Denote ⇡? and f? as
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Now we are ready to prove Theorem 3.1

Proof of Theorem 3.1. Denote CN = 4
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On the other hand, for ⇡?, f?, we have:
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where the first equality uses the definition of f̄?, the second inequality uses Lemma A.2, the third inequality uses the fact
that ⇡̂? and f̂? are the min-max solution of (10), and the fifth inequality uses the fact that f? is the maximizer of (11) given
⇡?. Hence, we prove the theorem.

B. Proof of Theorem 3.2
Lemma B.1. There exists a distribution D 2 �(X ), such that for any two datasets S1 = {x1, . . . , xM} and S2 =
{x0

1, . . . , x
0

M
} where xi and x0

i
are drawn i.i.d from D, as long as M = O(log(|X |)), then:
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Proof. We simply set D to be a uniform distribution of X . Denote |X | = N , and M = O(log(N)). The probability of S1

and S2 does not have any overlap samples can be easily computed as:

P(S1 \ S2 = ;) � P(S1 \ S2 = ; and S1 does not have repeated samples).

Note that the probability that S1 does not have repeated samples can be computed as:
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Hence we prove the lemma by coming two results above.

We construct the MDP using the above lemma. The MDP has H = 2, two actions {a, a?}, and the initial distribution ⇢
assigns probability one to a unique state x̂ 2 X . The expert policy ⇡? is designed to be ⇡?(a?|x̂) = 1, i.e., the expert’s
action at time step h = 1 is a?. We split the state space X into half and half, denoted as X1 and X2, such that X1 \ X2 = ;

and |X1| = |X2| = N/2. We design the MDP’s dynamics such that P (·|x̂, a) assigns probability 2/N to each state in X1

and assigns probability 0 to any other state in X2. We design P (·|x̂, a?) such that it assigns probability 2/N to each state in
X2 and zero to each state in X1.

Denote D
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?, unless M = ⌦(poly(N)) = ⌦(poly(|X |)).

C. Proof of Theorem 3.3
We first present some extra notations and useful lemmas below.
Lemma C.1 (Performance Difference Lemma (Kakade & Langford, 2002)). Consider a policy ⇡ = {⇡1, . . . ,⇡H} and
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where we use Bellman equations, i.e., Q?
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where the first inequality comes from the triangle inequality, the second inequality comes from the fact that V ?
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Now we are ready to prove the main theorem.

Proof of Theorem 3.3. We consider the h’th iteration. Let us denote ⇡ = {⇡1, . . . ,⇡h�1} and µ⇡
h

as the observation
distribution at time step h of following policies ⇡ starting from the initial distribution ⇢. Denote µ?
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7Note that here we actually prove the theorem under a more general setting where we could have cost functions at any time step h.
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 max
f2Fh

��Ex⇠µ
⇡
h
[f(x)]� Ex⇠µ

?
h
[f(x)]

��+ 2Ex⇠(µ⇡
h+µ

?
h)/2

h
|ĝ(x)� Ea⇠⇡

?
h,x

0⇠Px,a f̂(x
0)|
i

 max
f2Fh

��Ex⇠µ
⇡
h
[f(x)]� Ex⇠µ

?
h
[f(x)]

��+ 2✏0be

= �h + 2✏0be,

where the first inequality comes from the realizable assumption that ⇡?

h
2 ⇧, the second inequality comes from an application

of triangle inequality, and the third inequality comes from the definition of ✏be and the fact that ĝ 2 Fh.

After learn ⇡h, ⇡ is updated to ⇡ = {⇡1, . . . ,⇡h}. For �h+1, we have:

�h+1 = max
f2Fh+1

���Ex⇠µ
⇡
h+1

[f(x)]� Ex⇠µ
?
h+1

[f(x)]
���

= max
f2Fh+1

��Ex⇠µ
⇡
h ,a⇠⇡h,x

0⇠Px,a [f(x
0)]� Ex⇠µ

?
h,a⇠⇡

?
h,x

0⇠Px,a [f(x
0)]
��

= dFh+1(⇡h|µ
⇡
h
, µ?

h+1)  min
⇡2⇧h

dFh+1(⇡|µ
⇡
h
, µ?

h+1) +O(✏)  �h + 2✏0be +O(✏).

Define �0 = maxf |Ex⇠⇢[f(x)]� Ex⇠⇢[f(x)]| = 0, we have for any h,

�h  2h✏0be +O(h✏).

Now we link �h to the performance of the policy J(⇡). From (16), we know that:
��Ex⇠µ

⇡
h

⇥
Ea⇠⇡h,x

0⇠Px,a

⇥
V ?

h+1(x
0)
⇤
� Ea⇠⇡

?
h,x

0⇠Px,a

⇥
V ?

h+1(x
0)
⇤⇤��

 dFh+1(⇡h|µ
⇡
h
, µ?

h+1) +�h + 2✏be

 �h +O(✏) + 2✏0be +�h + 2✏0be = 2�h + 4✏0be +O(✏)

 4h✏0be +O(2h✏) + 4✏0be +O(✏) = O(h✏0be) +O(h✏).

Using Performance Difference Lemma (Lemma C.1), we know that:

J(⇡)� J(⇡?) 
HX

h=1

��Ex⇠µ
⇡
h

⇥
Ea⇠⇡h,x

0⇠Px,a

⇥
V ?

h+1(x
0)
⇤
� Ea⇠⇡

?
h,x

0⇠Px,a

⇥
V ?

h+1(x
0)
⇤⇤��



HX

h=1

4h✏0be + 4✏0be +O(2h✏) +O(✏)

 4H2✏0be + 2H✏0be +O(2H2✏) +O(H✏) = O(H2✏0be) +O(H2✏)

D. Proof of Proposition 4.1
We first show the construction of the MDP below. The MDP has horizon H , 2H � 1 many states, and two actions {l, r}
standing for go left and go right respectively. All states are organized in a perfect balanced binary tree, with 2H�1 many
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leafs at level h = H , and the first level h = 1 contains only a root. The transition is deterministic such that at any internal
state, taking action l leads to the state’s left child, and taking action r leads to the state’s right child. Each internal node
has cost zero, and all leafs will have nonzero cost which we will specify later. Note that in such MDP, any sequence of
actions {a1, . . . , aH�1} with ai 2 {l, r} deterministically leads to one and only one leaf, and the total cost of the sequence
of actions is only revealed once the leaf is reached.

The first part of the proposition is proved by reducing the problem to Best-arm identification in multi-armed bandit (MAB)
setting. We use the following lower bound of best-arm identification in MAB from (Krishnamurthy et al., 2016):

Lemma D.1 (Lower bound for best arm identification in stochastic bandits from (Krishnamurthy et al., 2016)). For any
K � 2 and ✏ 2 (0,

p
1/8], and any best-arm identification algorithm, there exists a multi-armed bandit problem for which

the best arm i? is ✏ better than all others, but for which the estimate î of the best arm must have P(̂i 6= i?) � 1/3 unless the
number of samples collected T is at least K/(72✏2).

Given any MAB problem with K arms, without loss of generality, let us assume K = 2H � 1 for some H 2 N+. Any such
MAB problem can be reduced to the above constructed binary tree MDP with horizon H , and 2H � 1 leafs. Each arm in the
original MAB will be encoded by a unique sequence of actions {ah}H�1

h=1 with ah 2 {l, r}, and its corresponding leaf. We
assign each leaf the cost distribution of the corresponding arm. The optimal policy in the MDP, i.e., the sequence of actions
leading to the leaf that has the smallest expected cost, is one-to-one corresponding to the best arm, i.e., the arm that has the
smallest expected cost in the MAB. Hence, without any further information about the MDP, any RL algorithm that aims to
find the near-optimal policy must suffer the lower bound presented in Lemma D.1, as otherwise one can solve the original
MAB by first converting the MAB to the MDP and then running an RL algorithm. Hence, we prove the first part of the
proposition.

For the second part, let us denote the sequence of the observations from the expert policy as {x̃h}
H

h=1, i.e., the sequence of
states corresponding to the optimal sequence of actions where the last state x̃H has the smallest expected cost. We design an
IL algorithm as follows.

We initialize a sequence of actions a = ;. At every level h, staring at h = 1, we try any sequence of actions with prefix
a � l (a � a means we append action a to end of the sequence a), record the observed observation xl

h+1; we then reset and
try any sequence of actions with prefix a � r, and record the observed observation xl

h+1. If xl

h+1 = x̃h+1, then we append l
to a, i.e., a = a � l, otherwise, we append r, i.e., a = a � r. We continue the above procedure until h = H � 1, and we
output the final action sequence a.

Due to the deterministic transition, by induction, it is easy to verify that the outputted sequence of actions a is exactly equal
to the optimal sequence of actions executed by the expert policy. Note that in each level h, we only generate two trajectories
from the MDP. Hence the total number trajectories before finding the optimal sequence of actions is at most 2(H � 1).
Hence we prove the proposition.

E. Reduction to LP
Let us denote a set {yi}2Ni=1 such that {y1, . . . , yN} = {x1, . . . , xN}, and {yN+1 . . . , y2N} = {x0

1, . . . , x
0

N
}. Denote

di,j = D(yi, yj) for i 6= j, and ci = 1/N for i 2 [N ] and ci = �1/N for i 2 [N + 1, 2N ]. We formulate the following LP
with 2N variables and O(N2) many constraints:

max
↵1,...,↵2N

2NX

i=1

ci↵i, s.t., 8i 6= j,�Ldi,j  ↵i � ↵j  Ldi,j , 8i,�1  ↵i  1. (17)

Denote the solution of the above LP as ↵?

i
. We will have the following claim:

Claim E.1 (LP Oracle). Given F in (5), {xi}
N

i=1, and {x0

i
}
N

i=1, denote {↵?

i
}
2N
i=1 as the solution of the LP from (17), we

have: sup
f2F

⇣P
N

i=1 f(xi)/N �
P

N

i=1 f(x
0

i
)/N

⌘
=
P2N

i=1 ci↵
?

i
.

Proof of Claim E.1. Given the solutions {↵?

i
}
2N
i=1, we first are going to construct a function f̂ : X ! R, such that for any yi,

we have f̂(yi) = ↵?

i
, and f̂ 2 F . Denote L? = maxi 6=j |↵?

i
� ↵?

j
|/di,j . Note that L?

 L. The function f̂ is constructed
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as:

f̂(x) = max

✓
�1,min

✓
1, min

i2[2N ]
L?

D(yi, x) + ↵?

i

◆◆

First of all, we show that for any yi, we have f̂(yi) = ↵?

i
. For any j 6= i, we have:

L?
D(yj , yi) + ↵?

j
� |↵?

j
� ↵?

i
|+ ↵?

j
� ↵?

i
,

where the first inequality uses the definition of L?. Also we know that �1  ↵?

i
 1. Hence we have that for yi,

max(�1,min(1,minj2[2N ] L
?
D(yj , yi) + ↵?

j
)) = ↵?

i
.

Now we need to prove that f̂ is L-Lipschitz continuous. Note that we just need to prove that mini L?
D(yi, x) + ↵?

i
is

L-Lipschitz continuous, since for any L-Lipschitz continuous function f(x), we have max(1, f(x)) and min(�1, f(x)) to
be L-Lipschitz continuous as well.

Consider any two points x and x0 such that x 6= x0. Denote î as argmini L?
D(yi, x) +↵?

i
and î0 = argmini L?

D(yi, x0) +
↵?

i
. We have:

f̂(x)� f̂(x0) = L?
D(y

î
, x) + ↵?

î
� (L?

D(y
î0 , x

0) + ↵?

î0
)

 L?
D(y

î0 , x) + ↵?

î0
� (L?

D(y
î0 , x

0) + ↵?

î0
)

 L?
D(x, x0),

where for the first inequality we used the definition of î, and the second inequality uses the triangle inequality. Similarly,
one can show that

f̂(x)� f̂(x0) � �L?
D(x, x0).

Combine the above two inequalities and the fact that L?
 L, we conclude that f̂ is L-Lipschitiz continuous.

Now we have constructed f̂ such that f̂(yi) = ↵?

i
for all i 2 [2N ] and f̂ 2 F . Now suppose that there exists a function

f 0
2 F , such that |

P
N

i=1 f
0(xi)/N �

P
N

i=1 f
0(x0

i
)/N | > |

P
N

i=1 f̂(xi)/N �
P

N

i=1 f̂
0(x0

i
)/N |, then we must have for

some i 2 [2N ], f 0(yi) 6= ↵?

i
. However, since f 0

2 F , we must have that {f 0(yi)}2Ni=1 satisfies all constrains in the LP in (17).
Hence the assumption that

P2N
i=1 cif

0(yi) >
P2N

i=1 ci↵
?

i
contradicts to the fact that {↵i}

2N
i=1 is the maximum solution of the

LP formulation in (17). Hence we prove the claim.

F. Proof of Corollary 5.1
Since in this setting, Fh for all h 2 [H] contains infinitely many functions, we need to discretize Fh before we can apply
the proof techniques from the proof of Theorem 3.3. We use covering number.

Denote N (X , ✏,D) as the ✏-cover of the metric space (X ,D). Namely, for any x 2 X , there exists a x0
2 N (X , ✏,D)

such that D(x0, x)  ✏. Consider any function class F = {f : X ! R, kfkL  L, kfk1  1} with L 2 R+. Below we
construct the ✏-cover over F .

For any f 2 F , denote f̄ 2 R|N (X ,✏,D)| with the i-th element f̄i being the function value f(xi) measured at the i-th element
xi from N (X , ✏,D). Hence F̄ , {f̄ : f 2 F} 2 R|N (X ,✏,D)|, and kf̄k1  C for any f̄ 2 F̄ . Denote N̄ (F̄ ,↵, k · k1) as
the ↵-cover of F̄ . Let us denote the set N , {f 2 F : f̄ 2 N̄ (F̃ ,↵, k · k1)}.

Claim F.1. With the above set up, for F’s (↵+ 2L✏)-cover, i.e., N (F ,↵+ 2L✏, kfk1), we have

|N (F ,↵+ 2L✏, k · k1)| 
��N̄ (F̄ ,↵, k · k1)

�� 
✓
1

↵

◆|N (X ,✏,D)|

.

Proof. By definition, we know that for any f̄ 2 F̄ , we have that there exists a f̄? 2 F̄ such that kf̄ � f̄?
k1  ↵. Now
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consider kf � f?
k1. Denote x? = argmaxx |f(x)� f?(x)| and x?0 is its closest point in N (X , ✏,D). We have:

sup
x

|f(x)� f?(x)| = |f(x?)� f?(x?)| 
��f(x?)� f(x?0)

��+
��f(x?0)� f?(x?)

��


��f(x?)� f(x?0)

��+
��f(x?0)� f?(x?0)

��+
��f?(x?0)� f?(x?)

��

 L✏+ ↵+ L✏ = 2L✏+ ↵,

where the last inequality comes from the fact that f, f? are L-Lipschitz continuous, D(x?, x?0)  ✏, kf̄ � f̄?k1  ↵ and
x?0

2 N (X , ✏,D). Hence, we just identify a subset of F such that it forms a ↵+ 2L✏ cover for F under norm k · k1.

Note that N̄ is a ↵-cover with k · k1 for F̄ which is a subset of |N (X , ✏,D)|-dimension space. By standard discretization
along each dimension, we prove the claim.

From the above claim, setting up ↵ and ✏ properly, we have:

|N (F , ✏/K, k · k1)| 

✓
K

✏

◆|N (X ,✏/(3KL),D)|

.

Extending the analysis of Theorem 3.3 simply results extending the concentration result in Lemma A.1. Specifically via
Bernstein’s inequality and a union bound over ⇧⇥N (F , ✏/K, k ·k1), we have that for any ⇡ 2 ⇧, f̃ 2 N (F , ✏/K, k ·k1),
with probability at least 1� �,

�����

 
1

N

NX

i=1

K⇡(ai
h
|xi

h
)f̃(xi

h+1)�
1

N

NX

i=1

f̃(x̃i

h+1)

!
�

⇣
E(x,a,x0)⇠⌫h⇡P

? [f̃(x0)]� Ex⇠µ
?
h+1

[f̃(x)]
⌘�����

 4

r
2K |N (X , ✏/(3KL),D)| log(2|⇧|K/✏(�))

N
+

8K |N (X , ✏/(3KL),D)| log(2|⇧|K/(✏�))

N
.

Now using the fact that N (F , ✏/K, k · k1) is an ✏-cover under norm k · k1, we have that for any ⇡ 2 ⇧, f 2 F , with
probability at least 1� �,

�����

 
1

N

NX

i=1

K⇡(ai
h
|xi

h
)f(xi

h+1)�
1

N

NX

i=1

f(x̃i

h+1)

!
�

⇣
E(x,a,x0)⇠⌫h⇡P

? [f(x0)]� Ex⇠µ
?
h+1

[f(x)]
⌘�����

 4

r
2K |N (X , ✏/(3KL),D)| log(2|⇧|3C/✏(�))

N
+

8K |N (X , ✏/(3KL),D)| log(2|⇧|3C/(✏�))

N
+ 2✏.

The rest of the proof is the same as the proof of Theorem 3.3.

G. FAIL in Interactive Setting
Recall that with {⇡1, . . . ,⇡h�1} being fixed, we denote ⌫h as resulting observation distribution resulting at time step h. The
interactiveness comes from the ability we can query expert to generate next observation conditioned on states sampled from
⌫h—the states that would be visited by learner at time step h. Let us define d(⇡|⌫h,⇡?

h
) as:

dFh+1(⇡|⌫h,⇡
?

h
) , max

f2Fh+1

�
Ex⇠⌫hEa⇠⇡,x0⇠Px,a [f(x

0)]� Ex⇠⌫hEa⇠⇡?,x0⇠Px,a [f(x
0)]
�
.

Note that different from dFh+1(⇡|⌫h, µ
?

h+1), in dFh+1(⇡|⌫h,⇡
?

h
), the marginal distributions on x are the same for both ⇡

and ⇡?

h
and we directly access ⇡?

h
to generate epxert observations at h + 1 rather than thorough the expert observation

distribution µ?

h+1. In other words, we use IPM to compare the observation distribution at time step h+ 1 after applying ⇡
and the observation distribution at time step h+ 1 after applying ⇡?, conditioned on the distribution ⌫h generated by the
previously learned policies {⇡1, . . . ,⇡h�1}. In Algorithm 5, at every time step h, to find a policy ⇡h that approximately
minimizes dFh+1(⇡|⌫h,⇡

?

h
), we replace expectations in dFh+1(⇡|⌫h,⇡

?

h
) by proper samples (line ?? and line ??), and then

call Algorithm 1 (line ??).
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Algorithm 3 IFAIL(⇧, F , ✏, n, T)
1: Set ⇡ = ;

2: for h = 1 to H � 1 do
3: D = ;, D̃ = ;

4: for i = 1 to n do
5: Reset x(i)

1 ⇠ ⇢ and from x(1)
i

execute ⇡ = {⇡1, . . . ,⇡h�1} to generate x(i)
h

6: Execute a ⇠ U(A) to generate x(i)
h+1 and add it to D

7: Reset again x̃(i)
1 ⇠ ⇢ and from x̃(i)

1 execute ⇡ = {⇡1, . . . ,⇡h�1} to generate x̃(i)
h

8: Ask expert to execute its policy at x̃(i)
h

for one step, observe x̃(i)
h+1, and add it to D̃

9: end for
10: Set ⇡h to be the return of Algorithm 1 with inputs

⇣
D̃,D,⇧,F , T

⌘

11: Append ⇡h to ⇡
12: end for

Proof. Recall the definition of d(⇡|⌫h,⇡?

h
),

dFh+1(⇡|⌫h,⇡
?

h
) = max

f2Fh+1

�
Ex⇠⌫hEa⇠⇡,x0⇠Px,a [f(x

0)]� Ex⇠⌫hEa⇠⇡?,x0⇠Px,a [f(x
0)]
�
,

with ⌫h being the distribution over Xh resulting from executing policies {⇡1, . . . ,⇡h�1}.

We will use Lemma A.1, Lemma A.2, and Lemma C.1 below.

The Performance Difference Lemma (Lemma C.1) tells us that:

J(⇡)� J(⇡?) =
HX

h=1

Ex⇠µ
⇡
h

⇥
Ea⇠⇡h,x

0⇠Px,a

⇥
V ?

h+1(x
0)
⇤
� Ea⇠⇡

?
h,x

0⇠Px,a

⇥
V ?

h+1(x
0)
⇤⇤



HX

h=1

��Ex⇠µ
⇡
h

⇥
Ea⇠⇡h,x

0⇠Px,a

⇥
V ?

h+1(x
0)
⇤
� Ea⇠⇡

?
h,x

0⇠Px,a

⇥
V ?

h+1(x
0)
⇤⇤��



HX

h=1

dFh+1(⇡h|µ
⇡
h
,⇡?

h
), (18)

where the last inequality comes from the realizable assumption that V ?

h
2 Fh.

At every time step h, mapping to Theorem 3.1 with ⌫h = µ⇡
h

, T = 4K2/✏2, n = K log(|⇧||F|/�)/✏2, we have that with
probability at least 1� �:

dFh+1(⇡h|µ
⇡
h
,⇡?

h
)  min

⇡2⇧h

dFh+1(⇡|µ
⇡
h
⇡?

h
),+✏.

Note that min⇡2⇧h dFh+1(⇡|µ
⇡
h
,⇡?

h
)  dFh+1(⇡

?

h
|µ⇡

h
,⇡?

h
) = 0, since ⇡?

h
2 ⇧h by the realizable assumption. Hence, we

have that:

dFh+1(⇡h|µ
⇡
h
,⇡?

h
)  ✏.

Hence, using (18), and a union bound over all time steps h 2 [H], we have that with probability at least 1� �,

J(⇡)� J(⇡?)  H✏,

with T = 4K2/✏2, and N = K log(H|⇧||F|/�)/✏2. Since in every round h, we need to draw N many trajectories, hence,
the total number of trajectories we need is at most HK log(H|⇧||F|/�)/✏2.
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H. Relaxation of Assumption 2.1
Our theoretical results presented so far rely on the realizable assumption (Assumption 2.1). While equipped with recent
advances in powerful non-linear function approximators (e.g., deep neural networks), readability can be ensured, in this
section, we relax the realizable assumption and show that our algorithms’ performance only degenerates mildly. We
relax Assumption 2.1 as follows:

Assumption H.1 (Approximate Realizability). We assume ⇧ and F is approximate realizable in a sense that for any
h 2 [H], we have min⇡2⇧h maxx,a k⇡(a|x)� ⇡?

h
(a|x)k  ✏⇧ and minf2Fh kf � V ?

h
k1  ✏F .

The above assumption does not require F and ⇧ to contain the exact V ?

h
and ⇡?

h
, but assumes F and ⇧ are rich enough

to contain functions that can approximate V ?

h
and ⇡?

h
uniformly well (i.e., ✏F and ✏⇧ are small). Without any further

modification of Algorithm 2 and Algorithm 5 for non-interactive and interactive setting, we have the following corollary.

Corollary H.2. Under Assumption H.1, for ✏ 2 (0, 1) and � 2 (0, 1), with T = ⇥(K/✏2), n = ⇥(K log(|⇧||F|H/�)/✏2),
with probability at least 1 � �, (1) for non-interactive setting, FAIL (Algorithm 2) outputs a policy ⇡ with J(⇡) �
J(⇡?)  O

�
H2(✏be + ✏) +H(✏F + ✏⇧)

�
, and (2) for interactive setting, IFAIL (Algorithm 5) outputs a policy ⇡ with

J(⇡) � J(⇡?)  O (H✏+H✏F +H✏⇧), by using at most Õ((HK/✏2) log(|⇧||F|/�)) many trajectories under both
settings.

The proof is deferred to Appendix H.1.

H.1. Proof of Corollary H.2

Proof of Corollary H.2. For any h, denote gh as

gh = argmin
g2F

kg � V ?

h
k1

Below we prove the first bullet in Corollary H.2, i.e., the results for non-interactive setting.

Non-Interactive Setting Using PDL (Lemma C.1), we have

J(⇡)� J(⇡?)



HX

h=1

��Ex⇠µ
⇡
h

⇥
Ea⇠⇡h,x

0⇠Px,a

⇥
V ?

h+1(x
0)
⇤
� Ea⇠⇡

?
h,x

0⇠Px,a

⇥
V ?

h+1(x
0)
⇤⇤��



HX

h=1

��Ex⇠µ
⇡
h

⇥
Ea⇠⇡h,x

0⇠Px,a

⇥
V ?

h+1(x
0)
⇤⇤

� Ex⇠µ
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�
.

Now repeat the same recursive analysis for dFh+1(⇡h|µ⇡
h
, µ?

h
) as we did in proof of Theorem 3.3 in Appendix C, we can

prove the first bullet in the corollary.

Now we prove the second bullet in Corollary H.2, i.e., the results for interactive setting.
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Interactive Setting Again, using Performance Difference Lemma (Lemma C.1), we have
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Now repeat the same steps from the proof of Theorem 5.2 after (18) in proof of Theorem 5.2, we can prove the second bullet
in the corollary.

I. Missing Details on ILFO with State Abstraction
We consider the bisimulation model from (6). The following proposition summarizes the conclusion in this section.

Proposition I.1. Assume Bisimulation holds (Eq. 6) and set Fh = {f : kfk1  1, f(x) = f(x0), 8x, x0 s.t. �(x) = �(x0)} , 8h 2

[H] to be piece-wise constant functions over the partitions induced from �. We have:

1. V ?

h
is a piece-wise constant function for all h 2 [H],

2. ✏be = 0,

3. sup
f2Fh

(
P

N

i=1 f(xi)/N �
P

N

i=1 f(x
0

i
)/N) can be solved by LP, for all h 2 [H],

4. given any {xi}
N

i=1, the Rademacher complexity of Fh is in the order of O(
p
|S|/N), i.e.,

(1/N)E�[supf2Fh

P
N

i=1 �if(xi)] = O(
p
|S|/N), with �i being a Rademacher number.

The above proposition states that by leveraging the abstraction, we can design discriminators to be piece-wise constant
functions over the partitions induced by �, such that inherent Bellman error is zero, and the discriminator class has bounded
statistical complexity. Below we prove the above proposition. The first two points in the above proposition were studied in
(Chen & Jiang, 2019). For completeness, we simply prove all four points below.

Piece-wise constant V ? First, we show that V ?

h
(x) is piece-wise constant over the partitions induced from �. Starting

from H , via (6), we know that V ?

H
(x) = c(x), which is piece-wise constant over the partitions induced from �. Then let us

assume that for h+ 1, we have V ?

h+1(x) = V ?

h+1(x
0) for any x, x0 s.t. �(x) = �(x0). At time step h, via Bellman equation,

we know:

V ?

h
(x) = Ea⇠⇡?(·|x)Ex0⇠Px,aV

?

h+1(x
0).
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Hence for any two x, x0 with �(x) = �(x0), we have:

V ?

h
(x)� V ?

h
(x0) = Ea⇠⇡?(·|x),x00⇠Px,a

V ?

h+1(x
00)� Ea⇠⇡?(·|x0),x00⇠Px0,a

V ?

h+1(x
00)

=
X

a

⇡?(a|x)

0

@
X

s2S

X

x002��1(s)

(P (x00
|x, a)� P (x00

|x0, a))V ?

h+1(x
00)

1

A

=
X

a

⇡?(a|x)

0

@
X

s2S

V ?

h+1(s)
X

x002��1(s)

(P (x00
|x, a)� P (x00

|x0, a))

1

A = 0,

where the second and the last equality use (6). In the third equality above, we abuse the notation V ?

h+1(s) for s 2 S to
denote the value of V ?

h+1(x) for any x such that �(x) = s.

Inherent Bellman Error With Fh = {f : kfk1  1, f(x) = f(x0), 8x, x0 s.t. �(x) = �(x0)} , 8h 2 [H], we can show
✏be = 0 as follows. For any x, x0

2 X with �(x) = �(x0), f 2 Fh+1, we have:

Ea⇠⇡?(·|x)Ex00⇠Px,af(x
00)� Ea⇠⇡?(·|x0)Ex00⇠Px0,af(x

00)

=
X

a

⇡?(a|x)

0

@
X

s2S

f(s)
X

x002��1(s)

(P (x00
|x, a)� P (x00

|x0, a))

1

A = 0,

where again we abuse the notation f(s) to denote that value f(x) for any x such that �(x) = s. Namely, �hf is also a
piece-wise constant over the partitions induced from �. Since kfk1  1, it is also easy to see that k�hfk1  1. Hence we
have �hf 2 Fh.

Reduction to LP Regarding evaluating sup
f2Fh

⇣P
N

i=1 f(xi)/N �
P

N

i=1 f(x
0

i
)/N

⌘
, we can again reduce it an LP.

Denote ↵ 2 [�1, 1]|S|, where the i-th entry in ↵ corresponds to the i-th element in S. We denote ↵s as the entry in ↵ that
corresponds to the state s in S . Take {xi}

N

i=1, and compute cs =
P

N

i=1 1(�(xi) = s) for every s 2 S (i.e., cs is the number
of points mapped to s). Take {x0

i
}
N

i=1 and compute c0
s
=
P

N

i=1 1(�(x0

i
) = s). We solve the following LP:

max
↵2R|S|

X

s2S

(cs↵s/N � c0
s
↵s/N) ,

s.t.,↵s 2 [�1, 1], 8s 2 S.

Denote the solution of the above LP as ↵?. Then f?(x) = ↵?

�(x).

Complexity of Discriminators Fh Regarding the complexity of Fh, note that Fh essentially corresponds to a |S|-dim box:
[�1, 1]|S|. Again, consider a dataset {xi}

N

i=1 and the counts {cs}s2S . For any f , and Rademacher numbers � 2 {�1, 1}N ,
we have

NX

i=1

�if(xi) =
X

s2S

fs
X

i2��1(s)

�i 

X

s2S

������
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������
.

Note that (E�

���
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���)2  E�(
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P
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i=1 �i| 
p
N . Hence,

E�
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�if(xi) 
X

s2S

E�|

X

i2��1(s)

�i| 

X

s2S

p
cs 

X

s2S

p
N/|S| =

p
N |S|.

Now, we can show that the Rademacher complexity of Fh is bounded as follows:

1

N
E�

"
sup
f2Fh

NX

i=1

�if(xi)

#


p
N |S|/N =

r
|S|

N
.
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Algorithm 4 Min-Max Game (D?,D,⇧,F , T, ✓0)
1: for n = 0 to T do
2: fn = argmaxf2F u(⇡✓n , f) (LP Oracle)
3: un = u(⇡✓n , fn)
4: ✓n+1 = ✓n �r✓u(⇡✓n , fn) (Policy Gradient)
5: end for
6: Output: ⇡n

?

with n? = argminn2[T ] u
n

J. Additional Experiments
When we design the utility in (3), we sample actions from U(A) and then perform importance weighting. This ensures that
in analysis the variance will be bounded by K. In practice, we can use any reference policy to generate actions, and then
perform importance weighting accordingly. Assume that we have a dataset D = {xi

h
, ai

h
, pi

h
, xi

h+1}
N

i=1 and the expert’s
dataset D? = {x̃i

h+1}
N

0

i=1, where pi
h

is the probability of action ai
h

being chosen at xi

h
. We can form the utility as follows:

u(⇡, f) ,
NX

i=1

(⇡(ai
h
|xi

h
)/pi

h
)f(xi

h+1)/N �

N
0X

i=1

f(x̃i

h+1)/N
0. (19)

As long as the probability of choosing any action at any state is lower bounded, then the variance of the above estimator is
upper bounded. This formulation also immediately extends FAIL to continuous action space setting. For a parameterized
policy ⇡✓, given any f , we can compute r✓u(⇡✓, f) easily. If ah ⇠ ⇡✓(·|x) (i.e., on-policy samples), then for any fixed f ,
the policy gradient r✓u(⇡✓, f) can be estimated using the REINFORCE trick:

r✓u(⇡✓, f)|✓=✓0 = (1/N)
NX

i=1

r✓(ln⇡✓(a
i

h
|xi

h
)|✓=✓0)f(x

i

h+1). (20)

With the form of r✓u(⇡✓, f), we can perform the min-max optimization in Alg. 1 by iteratively finding the maximizer
fn = argmaxf u(⇡✓n , f) using LP oracle, and then perform gradient descent update ✓n+1 = ✓n � ⌘nr✓u(⇡✓n , fn).
See Algorithm 4 below. Note that in Algorithm 4 the dataset D = {xi

h
, ai

h
, pi

h
, xi

h+1} contains pi
h

which is the probability
of ai

h
being chosen at xi

h
. We can integrate Algorithm 4 into the forward training framework.

Algorithm 5 FAIL⇤ ({⇧h}h, {Fh}h, ✏, n, n0, T )
1: Set ⇡ = ;

2: for h = 1 to H � 1 do
3: Initialize ⇡h

4: Extract expert’s data at h+ 1: D̃h+1 = {x̃i

h+1}
n
0

i=1

5: D1 = ;, . . .Dh = ;

6: for i = 1 to n do
7: Execute {⇡1, . . . ,⇡h�1} to generate ⌧ i = {xi

1, a
i

1, p
i

1, x
i

2, . . . , x
i

h�1, a
i

h�1, p
i

h�1, x
i

h
} with pi

t
= ⇡t(ait|x

i

t
)

8: For any t 2 [h� 1], add (xi

t
, ai

t
, pi

t
, xi

t+1) to Dt

9: Execute ai
h
⇠ U(A) to generate xi

h+1 and add (xi

h
, ai

h
, pi

h
, xi

h+1) to Dh with pi
h

being the probability correspond-
ing to the uniform distribution over A

10: end for
11: For all t 2 [h], update ⇡t to be the return of Algorithm 4 with inputs

⇣
D̃t+1,Dt,⇧h,Fh+1, T,⇡t

⌘

12: end for

In Algorithm 2, at every time step h, we execute the current sequence of policies ⇡ = {⇡1, . . . ,⇡h�1} to collect samples
at time step h, i.e., xh. We then throw away all generated samples {x1, . . . , xh�1} except xh. While this simplifies the
analysis, in practice, we could leverage these samples {x1, . . . , xh�1} as well, especially now we can form the utility with
on-policy samples and compute the corresponding policy gradient ((20)). This leads us to Alg. 5. Namely, in Algorithm 5,
when training ⇡h, we also incrementally update ⇡1, . . . ,⇡h�1 using their on-policy samples (Line 11 Algorithm 5).
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(a) Swimmer (1m) (b) Hopper (1m) (c) Reacher (1m)

(d) Swimmer (25) (e) Hopper (25) (f) Reacher (25)

Figure 3. Performance of expert, FAIL⇤ (Algorithm 5), FAIL(Algorithm 2), and GAIL (without actions) on three control tasks. For the
top line, we fix the number of training samples while varying the number of expert demonstrations (6, 12, 25). For the bottom line, we fix
the number of expert demonstrations, while varying the number of training samples. All results are averaged over 10 random seeds.

We test Algorithm 5 on the same set of environments (Figure 3) under 10 random rand seeds, with all default parameters.
We observe that FAIL⇤ can be more sample efficient especially in small data setting (e.g., 0.25 million training samples).
Implementation of Algorithm 5 and scripts for reproducing results can be found in https://github.com/wensun/
Imitation-Learning-from-Observation/tree/fail_star.

https://github.com/wensun/Imitation-Learning-from-Observation/tree/fail_star
https://github.com/wensun/Imitation-Learning-from-Observation/tree/fail_star

