
QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning

Supplementary
A. QTRAN Training Algorithm
The training algorithms for QTRAN-base and QTRAN-alt are provided in Algorithm 1.

Algorithm 1 QTRAN-base and QTRAN-alt

1: Initialize replay memory D
2: Initialize [Qi], Qjt, and Vjt with random parameters θ
3: Initialize target parameters θ− = θ
4: for episode = 1 to M do
5: Observe initial state s0 and observation o0 = [O(s0, i)]Ni=1 for each agent i
6: for t = 1 to T do
7: With probability ε select a random action uti
8: Otherwise uti = arg maxut

i
Qi(τ

t
i , u

t
i) for each agent i

9: Take action ut, and retrieve next observation and reward (ot+1, rt)
10: Store transition (τ t,ut, rt, τ t+1) in D
11: Sample a random minibatch of transitions (τ ,u, r, τ ′) from D
12: Set ydqn(r, τ ′;θ−) = r + γQjt(τ

′, ū′;θ−), ū′ = [arg maxui Qi(τ
′
i , ui;θ

−)]Ni=1,
13: If QTRAN-base, update θ by minimizing the loss:

L(τ ,u, r, τ ′;θ) = Ltd + λoptLopt + λnoptLnopt,

Ltd(τ ,u, r, τ ′;θ) =
(
Qjt(τ ,u)− ydqn(r, τ ′;θ−)

)2
,

Lopt(τ ,u, r, τ
′;θ) =

(
Q′jt(τ , ū)− Q̂jt(τ , ū) + Vjt(τ )

)2
,

Lnopt(τ ,u, r, τ
′;θ) =

(
min

[
Q′jt(τ ,u)− Q̂jt(τ ,u) + Vjt(τ ), 0

])2
.

14: If QTRAN-alt, update θ by minimizing the loss:

L(τ ,u, r, τ ′;θ) = Ltd + λoptLopt + λnopt-minLnopt-min,

Ltd(τ ,u, r, τ ′;θ) =
(
Qjt(τ ,u)− ydqn(r, τ ′;θ−)

)2
,

Lopt(τ ,u, r, τ
′;θ) =

(
Q′jt(τ , ū)− Q̂jt(τ , ū) + Vjt(τ )

)2
,

Lnopt-min(τ ,u, r, τ ′;θ) =
1

N

N∑
i=1

(
min
ui∈U

(
Q′jt(τ , ui,u−i)− Q̂jt(τ , ui,u−i) + Vjt(τ )

))2

.

15: Update target network parameters θ− = θ with period I
16: end for
17: end for

B. Proofs
In this section, we provide the proofs of theorems and propositions coming from theorems.

B.1. Proof of Theorem 1

Theorem 1. A factorizable joint action-value function Qjt(τ ,u) is factorized by [Qi(τi, ui)], if

∑N
i=1Qi(τi, ui)−Qjt(τ ,u) + Vjt(τ ) =

{
0 u = ū,

≥ 0 u 6= ū,

(4a)
(4b)



QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning

where

Vjt(τ ) = max
u

Qjt(τ ,u)−
N∑
i=1

Qi(τi, ūi).

Proof. Theorem 1 shows that if condition (4) holds, then Qi satisfies IGM. Thus, for some given Qi that satisfies (4), we
will show that arg maxuQjt(τ ,u) = ū. Recall that ūi = arg maxui

Qi(τi, ui) and ū = [ūi]
N
i=1,.

Qjt(τ , ū) =

N∑
i=1

Qi(τi, ūi) + Vjt(τ ) (From (4a))

≥
N∑
i=1

Qi(τi, ui) + Vjt(τ )

≥ Qjt(τ ,u) (From (4b)).

It means that the set of optimal local actions ūmaximizesQjt, showing thatQi satisfies IGM. This completes the proof.

B.2. Necessity in Theorem 1 Under Affine-transformation

As mentioned in Section 3.1, the conditions (4) in Theroem 1 are necessary under an affine transformation. The necessary
condition shows that for some given factorizable Qjt, there exists Qi that satisfies (4), which guides us to design the QTRAN
neural network. Note that the affine transformation φ is φ(Q) = A ·Q + B, where A = [aii] ∈ RN×N+ is a symmetric
diagonal matrix with aii > 0,∀i and B = [bi] ∈ RN . To abuse notation, let φ(Qi(τi, ui)) = aiiQi(τi, ui) + bi.
Proposition 1. IfQjt(τ ,u) is factorized by [Qi(τi, ui)], then there exists an affine transformation φ(Q) such thatQjt(τ ,u)
is factorized by [φ(Qi(τi, ui))] and the condition (4) holds by replacing [Qi(τi, ui)] with [φ(Qi(τi, ui))].

Proof. To prove, we will show that, for the factors [Qi] of Qjt, there exists an affine transformation of Qi that also satisfies
conditions (4).

By definition, if Qjt(τ ,u) is factorized by [Qi(τi, ui)], then the followings hold: (i) Qjt(τ , ū) − maxuQjt(τ ,u) = 0,
(ii) Qjt(τ ,u) − Qjt(τ , ū) < 0, and (iii)

∑N
i=1(Qi(τi, ui) − Qi(τi, ūi)) < 0 if u 6= ū. Now, we consider an affine

transformation, in which aii = α and bi = 0 ∀i, where α > 0, and φ(Qi) = αQi with this transformation. Since this is
a linearly scaled transformation, it satisfies the IGM condition, and thus (4a) holds. We also prove that φ(Qi) satisfies
condition (4a) by showing that there exists a constant α small enough such that

N∑
i=1

αQi(τi, ui)−Qjt(τ ,u) + Vjt(τ ,u) =

N∑
i=1

α(Qi(τi, ui)−Qi(τi, ūi))− (Qjt(τ ,u)−Qjt(τ , ū)) ≥ 0,

where Vjt(τ ) is redefined for linearly scaled αQi as maxuQjt(τ ,u)−
∑N
i=1 αQi(τi, ūi). This completes the proof.

B.3. Special Case: Theorem 1 in Fully Observable Environments

If the task is a fully observable case (observation function is bijective for all i), the state-value network is not required
and all Vjt(τ) values can be set to zero. We show that Theorem 1 holds equally for the case where Vjt(τ ) = 0 for a fully
observable case. This fully observable case is applied to our example of the simple matrix game. The similar necessity
under an affine-transformation holds in this case.

Theorem 1a. (Fully observable case) A factorizable joint action-value function Qjt(τ ,u) is factorized by [Qi(τi, ui)], if

N∑
i=1

Qi(τi, ui)−Qjt(τ ,u)=

{
0 u = ū, (9a)
≥ 0 u 6= ū, (9b)

Proof. We will show arg maxuQjt(τ ,u) = ū (i.e., IGM), if the (9) holds.

Qjt(τ , ū) =

N∑
i=1

Qi(τi, ūi) ≥
N∑
i=1

Qi(τi, ui) ≥ Qjt(τ ,u).



QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning

The first equality comes from (9a), and the last inequality comes from (9b). We note that arg maxuQjt(τ ,u) =
[arg maxui Qi(τi, ui)], so this completes the proof.

Proposition 1a. If Qjt(τ ,u) is factorized by [Qi(τi, ui)], then there exists an affine transformation φ(Q), such that
Qjt(τ ,u) is factorized by [φ(Qi(τi, ui))] and condition (9) holds by replacing [Qi(τi, ui)] with [φ(Qi(τi, ui))].

Proof. From Theorem 1a, if Qjt(τ ,u) is factorizable, then there exist [Qi] satisfying both IGM and (9). Now, we define
an additive transformation φ′i(Qi(τi, ui)) = Qi(τi, ui) + 1

N maxuQjt(τ ,u)−Qi(τi, ūi) for a given τi, which is uniquely
defined for fully observable cases. [φ′i(Qi(τi, ui))] also satisfy IGM, and the left-hand side of (9) can be rewritten as:

N∑
i=1

Qi(τi, ui)−Qjt(τ ,u)−
N∑
i=1

Qi(τi, ūi) + max
u

Qjt(τ ,u) =

N∑
i=1

φ′i(Qi(τi, ui))−Qjt(τ ,u)

So there exist individual action-value functions [φ′i(Q
′
i(τi, ui))] that satisfy both IGM and (9), where Vjt(τ ) is redefined as

0. This completes the proof of the necessity.

B.4. Proof of Theorem 2

Theorem 2. The statement presented in Theorem 1 and the necessary condition of Theorem 1 holds by replacing (4b) with
the following (7): if u 6= ū,

min
ui∈U

[
Q′jt(τ , ui,u−i)−Qjt(τ , ui,u−i) + Vjt(τ )

]
= 0, ∀i = 1, . . . , N, (7)

where u−i = (u1, . . . , ui−1, ui+1, . . . , uN ), i.e., the action vector except for i’s action.

Proof. (⇒) Recall that condition (7) is stronger than (4b), which is itself sufficient for Theorem 1. Therefore, by transitivity,
condition (7) is sufficient for Theorem 2. Following paragraphs focus on the other direction, i.e., how condition (7) is
necessary for Theorem 2.

(⇐) We prove that, if there exist individual action-value functions satisfying condition (4), then there exists an individual
action-value function Q′i that satisfies (7). In order to show the existence of such Q′i, we propose a way to construct Q′i.

We first consider the case with N = 2 and then generalize the result for any N . The condition (7) for N = 2 is denoted as:

min
ui∈U

[
Q1(τ1, u1) +Q2(τ2, u2)−Qjt(τ , u1, u2) + Vjt(τ )

]
= 0.

Since this way of constructing Q′i is symmetric for all i, we present its construction only for u1 without loss of generality.

For Q1 and Q2 satisfying (4), if β := minu1∈U

[
Q1(τ1, u1) + Q2(τ2, u2) − Qjt(τ , u1, u2) + Vjt(τ )

]
> 0 for given τ

and u2, then u2 6= ū2. This is because Q1(τ1, ū1) + Q2(τ2, ū2) − Qjt(τ , ū1, ū2) + Vjt(τ ) = 0 by condition (4a). Now,
we replace Q2(τ2, u2) with Q′2(τ2, u2) = Q2(τ2, u2)− β. Since Q2(τ2, ū2) > Q2(τ2, u2) > Q2(τ2, u2)− β, it does not
change the optimal action and other conditions. Then, (7) is satisfied for given τ and u2. By repeating this replacement
process, we can construct Q′i that satisfies condition (7).

More generally, when N 6= 2, if minui∈U

[
Q′jt(τ , ui,u−i) − Qjt(τ , ui,u−i) + Vjt(τ )

]
= β > 0 for given τ and u−i,

then there exists some j 6= i that satisfies uj 6= ūj . Therefore, by repeating the same process as when N = 2 through j,
we can construct Q′i for all i, and this confirms that individual action-value functions satisfying condition (7) exist. This
completes the proof.



QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning

B.4.1. PROCESS OF CONSTRUCTING Q′i IN THE MATRIX GAME USING THEOREM 2

We now present the process of how we have demonstrated through the example in Section 3.5. In the original matrix shown
in Tables 2a and 2d, the second row does not satisfy the condition (7), and β = 0.23 for u1 = B. Then, we replace Q1(B)
as shown in Table 2e. Table 2b shows that its third row does not satisfy the condition (7). Finally, we replace Q1(C) as
shown in Table 2f. Then, the resulting Table 2c satisfies the condition (7).

u1

u2 A B C

A 0.00 18.14 18.14
B 14.11 0.23 0.23
C 13.93 0.05 0.05

(a) Q′
jt −Qjt

u1

u2 A B C

A 0.00 18.14 18.14
B 13.88 0.00 0.00
C 13.93 0.05 0.05

(b) Q′
jt −Qjt after one replacement

u1

u2 A B C

A 0.00 18.14 18.14
B 13.88 0.00 0.00
C 13.88 0.00 0.00

(c) Q′
jt −Qjt after two replacements

Q1

Q2 4.16(A) 2.29(B) 2.29(C)

3.84(A) 8.00 6.13 6.12
-2.06(B) 2.10 0.23 0.23
-2.25(C) 1.92 0.04 0.04

(d) Q1, Q2, Q
′
jt

Q1

Q2 4.16(A) 2.29(B) 2.29(C)

3.84(A) 8.00 6.13 6.12
-2.29(B) 1.87 0.00 0.00
-2.25(C) 1.92 0.04 0.04

(e) Q1, Q2, Q
′
jt after one replacement

Q1

Q2 4.16(A) 2.29(B) 2.29(C)

3.84(A) 8.00 6.13 6.12
-2.29(B) 1.87 0.00 0.00
-2.30(C) 1.87 -0.01 -0.01

(f) Q1, Q2, Q
′
jt after two replacements

Table 2. The process of replacing [Qi] satisfying the condition (9b) with [Qi] satisfying the condition (7)

C. Details of environments and implementation
C.1. Environment

Matrix game In order to see the impact of QTRAN-alt, we train the agents in a single state matrix game where two agents
each have 21 actions. Each agent i takes action ui, ranging over ∈ {0, ..., 20}. The reward value R for a joint action is given
as follows:

f1(u1, u2) = 5−
(

15− u1
3

)2

−
(

5− u2
3

)2

f2(u1, u2) = 10−
(

5− u1
1

)2

−
(

15− u2
1

)2

R(u1, u2) = max(f1(u1, u2), f2(u1, u2))

0 5 10 15 20
0

5

10

15

20

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Figure 5. x-axis and y-axis: agents 1 and 2’s actions, respectively. Colored values represent the reward for selected actions.

Figure 5 shows reward for selected action. Colored values represent the values. In the simple matrix game, the reward
function has a global maximum point at (u1, u2) = (5, 15) and a local maximum point at (u1, u2) = (15, 5).



QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning

Multi-domain Gaussian Squeeze We adopt and modify Gaussian Squeeze, where agent numbers (N = 10) and action
spaces (ui ∈ {0, 1, ..., 9}) are much larger than a simple matrix game. In MGS, each of the ten agents has its own amount
of unit-level resource si ∈ [0, 0.2] given by the environment a priori. This task covers a fully observable case where all
agents can see the entire state. We assume that there exist K domains, where the above resource allocation takes place. The
joint action u determines the overall resource usage x(u) =

∑
i si × ui. Reward is given as a function of resource usage

as follows: G(u) =
∑K
k=1 xe

−(x−µk)
2/σk

2

. We test with two different settings: (i) K = 1, µ1 = 8, σ1 = 1 as shown in
Figure 6a, and (ii) K = 2, µ1 = 8, σ1 = 0.5, µ2 = 5, σ2 = 1 as shown in Figure 6b. In the second setting, there are two
local maxima for resource x. The maximum on the left is relatively easy to find through exploration – as manifested in the
greater variance of the Gaussian distribution, but the maximum reward — as represented by the lower peak — is relatively
low. On the other hand, the maximum on the right is more difficult to find through exploration, but it offers higher reward.

0 2 4 6 8 10
Resource

0
1
2
3
4
5
6
7
8
9

S
co

re

(a) Gaussian Squeeze

0 2 4 6 8 10
Resource

0
1
2
3
4
5
6
7
8
9

S
co

re

(b) Multi-domain Gaussian Squeeze

Figure 6. Gaussian Squeeze and Multi-domain Gaussian Squeeze

Modified predator-prey Predator-prey involves a grid world, in which multiple predators attempt to capture randomly
moving prey. Agents have a 5× 5 view and select one of five actions ∈ {Left, Right, Up, Down, Stop} at each time step.
Prey move according to selecting a uniformly random action at each time step. We define the “catching” of a prey as when
the prey is within the cardinal direction of at least one predator. Each agent’s observation includes its own coordinates, agent
ID, and the coordinates of the prey relative to itself, if observed. The agents can separate roles even if the parameters of the
neural networks are shared by agent ID. We test with two different grid worlds: (i) a 5× 5 grid world with two predators
and one prey, and (ii) a 7× 7 grid world with four predators and two prey. We modify the general predator-prey, such that a
positive reward is given only if multiple predators catch a prey simultaneously, requiring a higher degree of cooperation. The
predators get a team reward of 1 if two or more catch a prey at the same time, but they are given negative reward −P , if only
one predator catches the prey as shown in Figure 7. We experimented with three varying P vales, where P = 0.5, 1.0, 1.5.
The terminating condition of this task is when a prey is caught with more than one predator. The prey that has been caught is
regenerated at random positions whenever the task terminates, and the game proceeds over fixed 100 steps.

AP

A

A P

A

A

P

: Agent (Predator)

: Prey

Reward = +1 Reward = -P

Figure 7. Predator-prey environment



QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning

C.2. Experiment details

Matrix game Table 3 shows the values of the hyperparameters for the training in the matrix game environment. Individual
action-value networks, which are common in all VDN, QMIX, and QTRAN, each consist of two hidden layers. In addition
to the individual Q-networks, QMIX incorporates a monotone network with one hidden layer, and the weights and biases
of this network are produced by separate hypernetworks. QTRAN has an additional joint action-value network with two
hidden layers. All hidden layer widths are 32, and all activation functions are ReLU. All neural networks are trained using
the Adam optimizer. We use ε-greedy action selection with ε = 1 independently for exploration.

Hyperparameter Value Description

training step 20000 Maximum time steps until the end of training
learning rate 0.0005 Learning rate used by Adam optimizer
replay buffer size 20000 Maximum number of samples to store in memory
minibatch size 32 Number of samples to use for each update
λopt, λnopt 1,1 Weight constants for loss functions Lopt, Lnopt and Lnopt−min

Table 3. Hyperparameters for matrix game training

Multi-domain Gaussian Squeeze Table 4 shows the values of the hyperparameters for the training in the MGS environ-
ment. Each individual action-value network consists of three hidden layers. In addition to the individual Q-networks, QMIX
incorporates a monotone network with one hidden layer, and the weights and biases of this network are produced by separate
hypernetworks. QTRAN has an additional joint action-value network with two hidden layers. All hidden layer widths are
64, and all activation functions are ReLU. All neural networks are trained using the Adam optimizer. We use ε-greedy action
selection with decreasing ε from 1 to 0.1 for exploration.

Hyperparameter Value Description

training step 1000000 Maximum time steps until the end of training
learning rate 0.0005 Learning rate used by Adam optimizer
replay buffer size 200000 Maximum number of samples to store in memory
final exploration step 500000 Number of steps over which ε is annealed to the final value
minibatch size 32 Number of samples to use for each update
λopt, λnopt 1,1 Weight constants for loss functions Lopt, Lnopt and Lnopt−min

Table 4. Hyperparameters for Multi-domain Gaussian Squeeze

Modified predator-prey Table 5 shows the values of the hyperparameters for the training in the modified predator-prey
environment. Each individual action-value network consists of three hidden layers. In addition to the individual Q-networks,
QMIX incorporates a monotone network with one hidden layer, and the weights and biases of this network are produced
by separate hypernetworks. QTRAN has additional joint action-value network with two hidden layers. All hidden layer
widths are 64, and all activation functions are ReLU. All neural networks are trained using the Adam optimizer. We use
ε-greedy action selection with decreasing ε from 1 to 0.1 for exploration. Since history is not very important in this task, our
experiments use feed-forward policies, but our method is also applicable with recurrent policies.

Hyperparameter Value Description

training step 10000000 Maximum time steps until the end of training
discount factor 0.99 Importance of future rewards
learning rate 0.0005 Learning rate used by Adam optimizer
target update period 10000 Target network update period to track learned network
replay buffer size 1000000 Maximum number of samples to store in memory
final exploration step 3000000 Number of steps over which ε is annealed to the final value
minibatch size 32 Number of samples to use for each update
λopt, λnopt 1,1 Weight constants for loss functions Lopt, Lnopt and Lnopt−min

Table 5. Hyperparameters for predator-prey training



QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning

D. Additional results for matrix games
Table 6 shows the comparison between the final performance levels of VDN, QMIX, and QTRAN-base for 310 3 × 3
random matrix games, where each value of the payoff matrix is given as a random parameter from 0 to 1. Experimental
settings are the same as in the previous matrix game. Since matrix games always satisfy IGM conditions, QTRAN-base
always trains the optimal action for all 310 cases. On the other hand, VDN and QMIX were shown to be unable to learn an
optimal policy for more than half of non-monotonic matrix games.

We briefly analyze the nature of the structural constraints assumed by VDN and QMIX, namely, additivity and monotonicity
of the joint action-value functions. There have been only 19 cases in which the results of VDN and QMIX differ from each
other. Interestingly, for a total of five cases, the performance of VDN is better than QMIX. QMIX was shown to outperform
VDN in more cases (14) than the converse case (5). This supports the idea that the additivity assumption imposed by VDN
on the joint action-value functions is indeed stronger than the monotonicity assumption imposed by QMIX.

QTRAN=VDN=QMIX QTRAN>VDN=QMIX VDN>QMIX QMIX>VDN
114 177 5 14

Table 6. Final performance comparison with 310 random matrices

Figures 8-9 show the joint action-value function of VDN and QMIX, and Figures 10-11 show the transformed joint
action-value function of QTRAN-base and QTRAN-alt for a matrix game where two agents each have 20 actions. In the
result, VDN and QMIX can not recover joint action-value, and these algorithms learn sub-optimal policy u1, u2 = (15, 5).
In the other hand, the result shows that QTRAN-base and QTRAN-alt successfully learn the optimal action, but QTRAN-alt
has the ability to more accurately distinguish action from non-optimal action as shown in Figure 11.

0 5 10 15 20
0

5

10

15

20

(a) 1000 step

0 5 10 15 20
0

5

10

15

20

(b) 2000 step

0 5 10 15 20
0

5

10

15

20

(c) 3000 step

0 5 10 15 20
0

5

10

15

20

(d) 4000 step

0 5 10 15 20
0

5

10

15

20

(e) 5000 step

0 5 10 15 20
0

5

10

15

20

(f) 6000 step

0 5 10 15 20
0

5

10

15

20

(g) 7000 step

0 5 10 15 20
0

5

10

15

20

(h) 8000 step

Figure 8. x-axis and y-axis: agents 1 and 2’s actions. Colored values represent the values of Qjt for VDN

0 5 10 15 20
0

5

10

15

20

(a) 1000 step

0 5 10 15 20
0

5

10

15

20

(b) 2000 step

0 5 10 15 20
0

5

10

15

20

(c) 3000 step

0 5 10 15 20
0

5

10

15

20

(d) 4000 step

0 5 10 15 20
0

5

10

15

20

(e) 5000 step

0 5 10 15 20
0

5

10

15

20

(f) 6000 step

0 5 10 15 20
0

5

10

15

20

(g) 7000 step

0 5 10 15 20
0

5

10

15

20

(h) 8000 step

Figure 9. x-axis and y-axis: agents 1 and 2’s actions. Colored values represent the values of Qjt for QMIX

0 5 10 15 20
0

5

10

15

20

(a) 1000 step

0 5 10 15 20
0

5

10

15

20

(b) 2000 step

0 5 10 15 20
0

5

10

15

20

(c) 3000 step

0 5 10 15 20
0

5

10

15

20

(d) 4000 step

0 5 10 15 20
0

5

10

15

20

(e) 5000 step

0 5 10 15 20
0

5

10

15

20

(f) 6000 step

0 5 10 15 20
0

5

10

15

20

(g) 7000 step

0 5 10 15 20
0

5

10

15

20

(h) 8000 step

Figure 10. x-axis and y-axis: agents 1 and 2’s actions. Colored values represent the values of Q′
jt for QTRAN-base

0 5 10 15 20
0

5

10

15

20

(a) 1000 step

0 5 10 15 20
0

5

10

15

20

(b) 2000 step

0 5 10 15 20
0

5

10

15

20

(c) 3000 step

0 5 10 15 20
0

5

10

15

20

(d) 4000 step

0 5 10 15 20
0

5

10

15

20

(e) 5000 step

0 5 10 15 20
0

5

10

15

20

(f) 6000 step

0 5 10 15 20
0

5

10

15

20

(g) 7000 step

0 5 10 15 20
0

5

10

15

20

(h) 8000 step

Figure 11. x-axis and y-axis: agents 1 and 2’s actions. Colored values represent the values of Q′
jt for QTRAN-alt



QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning

QTRAN-alt
QTRAN-base
Dec-HDRQN
QMIX
VDN

Sc
or

e

−15

0

15

30

Training step
0 1.5×106 3.0×106

(a) N = 2, P = 0.5

QTRAN-alt
QTRAN-base
Dec-HDRQN
QMIX
VDN

Sc
or

e

−15

0

15

30

Training step
0 1.5×106 3.0×106

(b) N = 2, P = 1.0

QTRAN-alt
QTRAN-base
Dec-HDRQN
QMIX
VDN

Sc
or

e

−15

0

15

30

Training step
0 1.5×106 3.0×106

(c) N = 2, P = 1.5

QTRAN-alt
QTRAN-base
Dec-HDRQN
QMIX
VDN

Sc
or

e

−60

−30

0

30

Training step
0 3×106 6×106

(d) N = 4, P = 0.5

QTRAN-alt
QTRAN-base
Dec-HDRQN
QMIX
VDN

Sc
or

e

−60

−30

0

30

Training step
0 5×106 107

(e) N = 4, P = 1.0

QTRAN-alt
QTRAN-base
Dec-HDRQN
QMIX
VDN

Sc
or

e

−60

−30

0

30

Training step
0 5×106 107

(f) N = 4, P = 1.5

Figure 12. Average reward per episode on the MPP tasks with 95% confidence intervals for VDN, QMIX, Dec-HDRQN and QTRAN

E. Comparison with other value-based methods for modified predator-prey
Additionally, we have conducted experiments with Dec-HDRQN (Omidshafiei et al., 2017). Dec-HDRQN can indeed solve
problems similar to ours by changing the learning rate according to TD-error without factorization. However, Dec-HDRQN
does not take advantage of centralized training. We implemented Dec-HDRQN (α = 0.001, β = 0.0002) with modified
predator-prey experiments and Figure 12 shows the performance of algorithms for six settings with different N and P
values.

First, when the complexity of the task is relatively low, Dec-HDRQN shows better performance than VDN and QMIX as
shown in the Figure 12b. However, QTRAN performs better than Dec-HDRQN in the case. When the penalty and the
number of agents are larger, Dec-HDRQN underperforms VDN and QMIX. Figure 12c shows Dec-HDRQN scores an
average of nearly 0 in the case of N = 2, P = 1.5. There is a limit of Dec-HDRQN since the method is heuristic and does
not perform centralized training. Finally, Dec-HDRQN showed slower convergence speed overall.


