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Abstract
Deep Gaussian processes (DGPs) can model com-
plex marginal densities as well as complex map-
pings. Non-Gaussian marginals are essential for
modelling real-world data, and can be generated
from the DGP by incorporating uncorrelated vari-
ables to the model. Previous work on DGP mod-
els has introduced noise additively and used vari-
ational inference with a combination of sparse
Gaussian processes and mean-field Gaussians for
the approximate posterior. Additive noise at-
tenuates the signal, and the Gaussian form of
variational distribution may lead to an inaccu-
rate posterior. We instead incorporate noisy vari-
ables as latent covariates, and propose a novel
importance-weighted objective, which leverages
analytic results and provides a mechanism to trade
off computation for improved accuracy. Our re-
sults demonstrate that the importance-weighted
objective works well in practice and consistently
outperforms classical variational inference, espe-
cially for deeper models.

1. Introduction
Gaussian processes are powerful and popular models with
widespread use, but the joint Gaussian assumption of the
latent function values can be limiting in many situations.
This can be for at least two reasons: firstly, not all prior
knowledge is possible to express solely in terms of mean
and covariance, and secondly Gaussian marginals are not
sufficient for many applications. The deep Gaussian process
(DGP) (Damianou and Lawrence, 2013) can potentially
overcome both these limitations.

We consider the very general problem of conditional den-
sity estimation. A Gaussian process model with a Gaussian
likelihood is a poor model unless the true data marginals
are Gaussian. Even if the marginals are Gaussian, a Gaus-
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Figure 1: Posterior density from a two-layer model, illus-
trating non-Gaussian marginals and non-smooth input de-
pendence.

sian process can still be a poor model if the mapping is not
well-captured by a known mean and covariance. For exam-
ple, changes of lengthscale at unknown locations cannot be
captured with a fixed covariance function (Neil, 1998).

As an example, consider a 1D density estimation task
formed from the letters ‘DGP’, where the inputs are the
horizontal coordinates and the outputs are the vertical co-
ordinates of points uniformly in the glyphs. The marginals
are multimodal and piece-wise constant, and also change
non-smoothly in some regions of the space (for example
changing discontinuously from a bi- to tri-modal density
mid-way through the ‘G’). Figure 1 shows the posterior of a
two-layer DGP with this data.

In this work, we develop the DGP model by revisiting the
original construction of Damianou and Lawrence (2013),
which includes variables that are a priori independent for
each data point. Independent variables are important for
modelling non-Gaussian marginals, as otherwise function
values with the same input will be perfectly correlated. Dif-
ferently from Damianou and Lawrence (2013), we introduce
the independent variables to the model as latent covariates
(that is, as additional inputs to the GP) (Wang and Neal,
2012) rather than additively as process noise. As we have a
clean separation between variables that are correlated and
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variables that are independent, we can apply appropriate
inference for each. For the correlated variables we use
a sparse variational GP to represent the posterior (Titsias,
2009; Matthews et al., 2016). For the uncorrelated variables
we use a mean-field approach. We first derive a straightfor-
ward combination of the stochastic variational approach of
Salimbeni and Deisenroth (2017) with a mean-field Gaus-
sian approximation for the latent variables. We then propose
a novel importance-weighted scheme that improves upon
the Gaussian approach and trades additional computation
for accuracy while retaining analytic results for the GP parts.

Our results show that the deep Gaussian process with latent
variables is an effective model for real data. We investigate
a large number of datasets and demonstrate that highly non-
Gaussian marginals occur in practice, and that they are
not well modelled by the noise-free approach of Salimbeni
and Deisenroth (2017). We also show that our importance-
weighted scheme is always an improvement over variational
inference, especially for the deeper models.

2. Model
Our DGP model is built from two components (or layers)
that can be freely combined to create a family of models.
The two types of layers have orthogonal uses: one is for
modelling epistemic uncertainty (also known as model or
reducible uncertainty, when the output depends determin-
istically on the input, but there is uncertainty due to lack
of observations) and the other is for modelling aleatoric
uncertainty (also known as irreducible uncertainty, when
the output is inherently random). Both layers are Gaussian
processes, but we use the term latent variable when the pro-
cess has the white noise covariance, and we use Gaussian
process when the covariance has no noise component. Each
layer takes an input and returns an output. The model is
constructed by applying the layers sequentially to the input
xn to get a density over an output yn.

2.1. Gaussian process (GP) layer

The Gaussian process layer defines a set of continuously
indexed random variables, which are a priori jointly Gaus-
sian, with mean and covariance that depend on the indices.
We write f for the full set of variables (or ‘function’) and
f(x) the particular variable with index x. The notation f ∼
GP(µ, k) states that for any finite set {xi}, the variables
{f(xi)} are jointly Gaussian, with E ((f(xi)) = µ(xi) and
cov (f(xi), f(xj)) = k(xi, xj), where µ is a mean func-
tion and k is a positive semi-definite covariance function. In
this work, we always use ‘noise free’ kernels, which satisfy
k(x, x) = limx′→x k(x, x′).

The GP prior is defined for all inputs, not just the ones
associated with data. When we notate the GP function in
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Figure 2: Graphical model for LV-GP-GP

a graphical model (see Figure 2), all the variables appear
together as f . We include an infinity symbol in the graphical
model to indicate that the GP node represents an infinite
collection of random variables, one for every possible input.

2.2. Latent-variable (LV) layer

The latent-variable layer introduces variables to the model
that are independent for each data point. As we wish to inter-
pret these variables as unobserved covariates we introduce
them through concatenation rather than through addition, as
in previous work (see, for example Dai et al., 2015; Bui
et al., 2016; Damianou and Lawrence, 2013). We use the
notation [xn, wn] to denote the concatenation of xn with
wn. Throughout this work each component of wn will be
distributed asN (0, 1). For input xn, the output of the latent
variable layer is [xn, wn].

2.3. Example model: LV-GP-GP

For the purpose of demonstrating the details of inference
in the next section, we focus on a particular model. The
model has an initial layer of latent variables followed by two
Gaussian process layers. We refer to this model as ‘LV-GP-
GP’. The graphical model indicating the a priori statistical
relationship between the variables is shown in Figure 2.
Writing y and w for {yn} and {wn}, the likelihood of this
model is p(y|f, g, w) =

∏
n p(yn|f, g, wn), with

p(yn|f, g, wn) = N (yn|f(g([xn, wn])), σ2) . (1)

The priors are

wn ∼ N (0, 1) , f ∼ GP(µ1, k1) , g ∼ GP(µ2, k2) .

The model is appropriate for continuously valued data, and
can model heavy and asymmetric tails, as well as multi-
modality, as we later demonstrate. We discuss choices for
the mean and covariance functions in section 2.6.

2.4. Model variants

The LV-GP-GP model can be extended by adding more
layers, and by adding more latent variables. For example,
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we could insert an additional GP layer,

p(y|f, g, h, w) =
∏
n

N
(
yn|h(f (g([xn, wn]))) , σ2

)
,

where h ∼ GP(µ3, k3). We refer to this model as LV-GP-
GP-GP. Alternatively we could place the latent variables
between the GPs, and have instead f([g(xn), wn]) for the
conditional mean. We refer to this model as GP-LV-GP.
Other models are analogously defined. For example, GP-GP
is as above but with no latent variable. We refer to models
without latent variables as ‘noise-free’.

Prior samples from models with one and two GP layers
are shown in Figure 3 to illustrate their properties. All the
GP layers have 1D outputs and use the RBF kernel with
unit lengthscale. Further illustrations with additional sam-
ples and additional models are shown in the supplementary
material, Figures 6-9. For the latent variable models, the
number of GPs above the latent variable layer determines
the complexity of the marginals, but the number of GPs in
total determines the complexity of the functional mapping.

2.5. Multiple outputs

All variables in our model (including the model inputs and
outputs) may be vector valued. The ‘multiple output GP’
is a GP with a covariance function defined between out-
puts kdd′(x, x′), where d indexes output dimension and x
indexes the input. In this notation, the independent out-
put approach of Damianou and Lawrence (2013) can be
written as kdd′(x, x′) = δdd′k(x, x′). For all our mod-
els, we consider a linear model of covariance between out-
puts: kdd′(x, x′) =

∑
e Pdeke(x, x

′)Ped′ (Alvarez et al.,
2012). For ke(x, x′) = k(x, x′) this is equivalent to as-
suming a Kronecker structured covariance between the
outputs stacked into a single vector (i.e. with covariance
(P>P ) ⊗ K), and is also equivalent to multiplying inde-
pendent GPs stacked into a vector by the matrix P . Note
that we are free to take e < d. When there are multiple
observed outputs we assume the likelihood factorizes over
the outputs, and in this work we assume independent GPs
in the final layer. A priori correlations between outputs are
straightforward to include using the linear model, following
Dai et al. (2017); Dutordoir et al. (2018).

2.6. Mean and covariance functions

The DGP model suffers from a pathology if used with zero
mean GPs at each layer (Duvenaud et al., 2014; Dunlop
et al., 2018). To remedy this problem, Duvenaud et al.
(2014) propose concatenating the inputs with the outputs at
each GP layer, whereas Salimbeni and Deisenroth (2017)
use a linear mean function to address this issue. We follow
the latter approach. The inference we present in the next
section is agnostic to covariance function, so we are free to

make any choice. In our experiments, we use an RBF kernel
for each layer, sharing the kernel over the different outputs.

3. Inference in the LV-GP-GP model
In this section, we present two approaches for approxi-
mate inference: the first with variational inference and
a second with importance-weighted variational inference.
Both schemes can optionally amortize the optimization of
the local variational parameters (often referred to as ‘auto-
encoding’), are scalable through data sub-sampling, and can
exploit natural gradients of the variational parameters for
the final layer. While the variational approach is a straight-
forward extension of the doubly-stochastic method by Sal-
imbeni and Deisenroth (2017), the importance-weighted
approach is more subtle and requires a careful choice of
variational distribution to retain the analytic results for the
final layer.

3.1. Variational inference

Variational inference seeks an approximate posterior that is
close to the true posterior in terms of KL divergence. The
posterior is typically restricted to some tractable family of
distributions, and an optimization problem is formed by min-
imizing the KL divergence from an approximate posterior to
the true posterior. Equivalently, the same objective can be
obtained by applying Jensen’s inequality to an importance-
weighted expression for the marginal likelihood (Domke and
Sheldon, 2018). For an approximate posterior, we follow
Damianou and Lawrence (2013) and use a mean-field Gaus-
sian distribution for the latent variables q(w) =

∏
n q(wn)

with q(wn) = N (an, bn), and independent processes for
the functions. The posterior density1 then has the same struc-
ture as the prior: q(w, f, g) = q(w)q(f)q(g). We begin by
writing the (exact) marginal likelihood as

p(y) = E
f,g,w

[
p(y|f, g, w)

p(f)p(g)p(w)

q(f)q(g)q(w)

]
, (2)

where the expectations are taken with respect to the vari-
ational distributions. Applying Jensen’s inequality to the
logarithm of both sides of (2), we obtain

log p(y) ≥
∑
n

(An − KLwn)− KLf − KLg , (3)

where we have used the short-hand KLh for KL(q(h)||p(h)),
and An is given by

An = Ef,g,wn
log p(yn|f, g, wn) . (4)

By considering a variational distribution over the entire func-
tion for f and g we avoid the difficulty of representing the

1We abuse notation and write a process as if it has a density.
The derivation can be made rigorous as the densities only appear
as expectations of ratios. See Matthews et al. (2016) for details.
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(a) GP (b) GP-GP (c) LV-GP (d) LV-GP-GP

Figure 3: A single sample from the prior for 4 illustrative models. The GP and GP-GP model have no latent variables. Their
samples appear as deterministic functions. See the supplementary material for more examples.

indeterminately indexed inner-layer variables. We require
only that KLf and KLg are finite, which is possible if we con-
struct q(f) and q(g) as measures with respect to their priors.
We follow Hensman et al. (2013) and form these posteriors
by conditioning the prior on some finite set of ‘inducing’
points with a parameterized Gaussian distribution. We defer
the details to the supplementary material (Section B) as the
results are widely known (see, for example Matthews et al.,
2016; Cheng and Boots, 2016; Dutordoir et al., 2018). The
priors and variational posteriors over f and g are indepen-
dent (the coupling is only in the likelihood), so the results
from the single layer GP apply to each layer.

To evaluate An exactly is intractable except in the single-
layer case (and then only with a certain kernel; see Tit-
sias and Lawrence (2010) for details), so we rely on a
Monte Carlo estimate. To obtain unbiased samples we
first reparameterize the expectations over wn and g, where
wn = an + ε1

√
bn and g([xn, wn]) = µ2([xn, wn]) +

ε2
√
k2([xn, wn], [xn, wn]) where ε1, ε2 ∼ N (0, 1). We

then obtain an estimate of An by sampling from ε1, ε2,
which is the ‘reparameterization trick’ popularized by
Rezende et al. (2014); Kingma and Welling (2014). Af-
ter these two expectations have been approximated with a
Monte Carlo estimate we can take the expectation over f
analytically as the likelihood is Gaussian.

3.2. Importance-weighted variational inference

Jensen’s inequality is tighter if the quantity inside the expec-
tation is concentrated about its mean (Domke and Sheldon,
2018). To decrease the variance inside (2) while preserving
the value, we can replace the w term with a sample average
of K terms,

p(y) = E
f,g,w

1

K

K∑
k=1

p(y|f, g, w(k))
p(w(k))

q(w(k))

p(f)p(g)

q(f)q(g)
. (5)

The expression inside the expectation in (5) is known as the

importance sampled estimate (with respect tow), motivating
the term ‘importance-weighted variational inference’ when
we take the logarithm of both sides and form a lower bound
using Jensen’s inequality. Applying Jensen’s inequality to
(5), we have the lower bound

log p(y) ≥
N∑

n=1

Bn − KLf − KLg , (6)

where the data-fit term Bn is given by

Bn = E
f,g,wn

log
1

K

∑
k

p(yn|f, g, w(k)
n )

p(w
(k)
n )

q(w
(k)
n )

. (7)

This approach provides a strictly tighter bound (Burda et al.,
2016; Domke and Sheldon, 2018), but the expression forBn

is less convenient to estimate thanAn as we cannot apply the
analytic result for the f expectation due to the non-linearity
of the logarithm. We must therefore resort to sampling
for the expectation over f as well as g and wn, incurring
potentially high variance. This seems like an unacceptable
price to pay as we have not gained any additional flexibility
over f . In the next section, we show how we can retain
the analytic expectation for f while exploiting importance-
weighted sampling for w.

3.3. Analytic final layer

The expression in (7) does not exploit the conjugacy of the
Gaussian likelihood with the final layer. In this section, we
present a novel two-stage approach to obtain a bound that
has all the analytic properties of the variational bound (3),
but with improved accuracy. Our aim is to obtain a modified
version of (7) but with the f expectation taken over the log-
arithm of the likelihood, since this expectation is tractable.
We will show that we can find a bound that replaces the term
p(yn|f, g, wn) in (7) with expEf log p(yn|f, g, wn), which
we can compute analytically. It is worth noting that since
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the likelihood is Gaussian we could analytically integrate
out f to obtain p(y|g, w), though doing so precludes the use
of minibatches and incurs O(N3) complexity. It is not sur-
prising, then, that it is possible to ‘collapse’ the bound over
f approximately. Our approach is inspired by the partially
collapsed approaches in Hensman et al. (2012). We begin
by applying Jensen’s inequality to the f expectation in (2):

log p(y|g, w) ≥
∑
n

Ln(g, wn)− KLf ,

where the data term is given by

Ln(g, wn) = Ef log p(yn|f, g, wn) . (8)

The expression for Ln(g, wn) is available in closed form
as the conditional likelihood is Gaussian (see, for example,
Titsias, 2009) . Applying the exponential function to both
sides of (8) gives the bound

p(y|g, w) ≥ exp

[∑
n

Ln(g, wn)− KLf

]
. (9)

Returning again to (2), the exact marginal likelihood can be
expressed equivalently with f marginalized as

p(y) = E
g,w

p(y|g, w)
p(w)p(g)

q(w)q(g)
. (10)

We can now use the bound on p(y|g, w) from (9) and sub-
stitute into (10) to obtain

p(y) ≥ E
g,w

exp

[∑
n

Ln(g, wn)− KLf

]
p(w)p(g)

q(w)q(g)
.

Next we use Jensen’s inequality for the g expectation. After
some rearranging the bound is given by

log p(y) ≥
∑
n

Eg logEw
eLn(g,wn)p(wn)

q(wn)︸ ︷︷ ︸
Tn(g)

−KLf − KLg .

To bound Tn(g), we first reduce the variance of the quantity
inside the expectation using the sample average as before to
tighten the subsequent use of Jensen’s inequality. For any
K, Tn(g) is (exactly) equal to

Tn(g) = logEwn

1

K

∑
k

eLn(g,w
(k)
n )p(w

(k)
n )

q(w
(k)
n )

,

where w(k)
n are independent samples from q(wn). We now

make a final use of Jensen for the wn expectation, and the
final objective is then given by∑

n

E
g,wn

log
1

K

∑
k

eLn(g,w
(k)
n )p(w

(k)
n )

q(w
(k)
n )

− KLf − KLg .

(11)

This bound can be evaluated using Monte Carlo sampling
for g and wn, both with the reparameterization described in
Section 3.1.

The K terms inside the sum in (11) must be sampled with
a single draw from q(g), and not independently. This is
not an insurmountable problem, however, as we can draw
K samples using the full covariance and reparameterize
using the Cholesky factor at O(K3) cost. Note that the
decomposition over the N data points is a consequence of
our choice of proposal distributions and the factorization of
the likelihood, so we do not incur O(N3) complexity and
can sample each term in the sum over N independently.

3.4. The posterior over the latent variables

Variational inference simultaneously finds a lower bound
and an approximate posterior. The importance weighted
approach does also minimize the KL divergence posterior,
but the posterior is an implicit one over an augmented space.
Samples from this posterior are obtained by first sampling
wk

n ∼ q(wn) and then selecting one of the wk
n with probabil-

ities proportional to eLn(g,w
(k)
n )p(w(k)

n )

q(w
(k)
n )

. We refer to Domke
and Sheldon (2018) for details. In this work, we are not
concerned with the posterior over the latent variables them-
selves, but rather with prediction at test points where we
sample from the prior.

3.5. Further inference details

We can amortize the optimization of the an, bn parameters
by making them parameterized functions of (xn, yn). As the
bound is a sum over the data we can use data subsampling.
We can also use natural gradients for the variational param-
eters of the final layer, following Salimbeni et al. (2018);
Dutordoir et al. (2018). Our bound is modular in both the
GP and LV layers so that it extends straightforwardly to the
other model variants.

4. Results
We use a density estimation task to establish the utility of the
DGP models with and without latent variables. For the latent
variable models we also compare our importance-weighted
(IW) inference (11) against the variational inference (VI)
approach (3). Our central interest is how well the models
balance the complexity of the marginals with the complexity
of the mapping from inputs to outputs.

4.1. 1D example

To illustrate the inductive bias of our models we show a 1D
example with a conditional density that is non-Gaussian,
heteroscedastic and changes discontinuously in some re-
gions of the space. We form a dataset from the letters ‘DGP’
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(a) GP (b) GP-GP (c) LV-GP (d) LV-GP-GP

Figure 4: Posteriors for 1D synthetic data. The models without latent variables cannot capture the bimodality or het-
eroscedasticity. See Figure 1 for the LV-GP-GP-GP model.

by taking a fine grid of points inside the glyphs of a cropped
image and using the horizontal coordinates as the input and
the vertical coordinates as the output (73, 419 points in to-
tal). Posteriors are shown in Figure 4 for four models (the
same models as in Figure 3), with the data plotted in the first
figure. The GP model can obviously not model this data,
but neither can the GP-GP as the approximate posterior has
no way to separate out the points with the same input but
different outputs. The LV-GP model can fit the data to some
extent, and the LV-GP-GP model more closely captures the
shapes of the letters.

We see that the LV-GP has a tendency to smoother den-
sities than LV-GP-GP, and also a smoother response as a
function of the input. Between the ‘G’ and ‘P’ the LV-GP-
GP model extrapolates with high confidence, whereas the
LV-GP model maintains a bi-modal distribution connecting
the two letters. Posteriors from further models are in the
supplementary material.

4.2. UCI datasets

We use 41 publicly available datasets2 with 1D targets. The
datasets range in size from 23 points to 2, 049, 280. In each
case we reserve 10% of the data for evaluating a test log-
likelihood, repeating the experiment five times with differ-
ent splits. We use five samples for the importance-weighted
models, 128 inducing points, and five GP outputs for the
inner layers. Hyperparameters and initializations are the
same for all models and datasets and are fully detailed in
the supplementary material. Results for test log-likelihood
are reported in Table 1 for the GP models. Table 2 in the
supplementary material shows additional results for condi-
tional VAE models (Sohn et al., 2015), and results from deep
Gaussian process models using stochastic gradient Hamil-
tonian Monte Carlo (Havasi et al., 2018). To assess the
non-Gaussianity of the predictive distribution we compute

2The full datasets with the splits and pre-processing can
be found at github.com/hughsalimbeni/bayesian_
benchmarks.

the Shapiro–Wilk test statistic on the test point marginals.
The test statistics are shown in 3 in the supplementary mate-
rial. Full code to reproduce our results is available online 3.
We draw five conclusions from the results.

1) Latent variables improve performance. For a given
depth of Gaussian process mappings (for example GP-GP
compared to LV-GP-GP) the latent variable model generally
has equal or better performance, and often considerably
better. This is true both using IW and VI.

2) IW outperforms VI. The difference is more pronounced
on the deeper models, which is to be expected as the deeper
models are likely to have more complicated posteriors, so
the VI approximation is likely to be more severe. There
are also a few datasets (‘keggundirected’, ‘servo’ and ‘au-
tomgp’) where the VI latent variable model has very poor
performance, but the IW approach performs well. This
suggests that the IW approach might be less prone to local
optima compared with VI.

3) Some datasets require latent variables for any im-
provement over the single-layer model. For several
datasets (for example ‘forest’ and ‘power’) the inclusion
of latent variables makes a very pronounced difference,
whereas depth alone cannot improve over the single layer
model. These datasets are highlighted in blue∗. For all
these datasets the marginals for the latent variable models
are non-Gaussian (see Table 3 in the supplementary ma-
terial). Conversely, for some datasets (e.g., ‘kin40k’ and
‘sml’) we observe much greater benefit from the deep noise
free models than the single layer model with latent variables.
These datasets are highlighted in orange†.

4) Some datasets benefit from both depth and latent
variables. For the ‘bike’ and ‘keggdirected’ data, for exam-
ple, we see that both the LV-GP and GP-GP model improve
over the single layer model, suggesting that complex input
dependence and non-Gaussian marginals are beneficial for

3https://github.com/hughsalimbeni/DGPs_
with_IWVI

github.com/hughsalimbeni/bayesian_benchmarks
github.com/hughsalimbeni/bayesian_benchmarks
https://github.com/hughsalimbeni/DGPs_with_IWVI
https://github.com/hughsalimbeni/DGPs_with_IWVI
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Table 1: Average test log-likelihood results for five splits (standard error). Bold font indicates overlapping error bars with
the best performing method. Italic indicates a significantly non-Gaussian posterior, computed by the Shapiro–Wilk test (see
Table 3). Colours indicate datasets demonstrating prominent examples of complex marginals∗, mappings†, or both‡.

GP GP-GP GP-GP-GP LV-GP LV-GP-GP LV-GP-GP-GP
Dataset N D VI VI VI VI IWVI VI IWVI VI IWVI

challenger 23 4 -3.22 (0.07) -2.04 (0.02) -2.10 (0.03) -0.67 (0.01) -0.68 (0.00) -9.99 (3.60) -9.47 (2.19) -1.21 (0.01) -2.45 (0.04)
fertility 100 9 -2.51 (0.13) -1.43 (0.01) -1.40 (0.01) -1.41 (0.01) -1.40 (0.01) -1.42 (0.01) -1.69 (0.01) -1.32 (0.00) -1.31 (0.01)
concreteslump 103 7 1.91 (0.01) 1.55 (0.00) 1.45 (0.00) 1.93 (0.00) 1.94 (0.00) 1.53 (0.00) 1.75 (0.00) 1.43 (0.00) 1.62 (0.00)
autos 159 25 -0.36 (0.00) -0.14 (0.01) -0.14 (0.03) -0.36 (0.01) -0.35 (0.00) -0.06 (0.04) -0.34 (0.01) -0.25 (0.05) -0.33 (0.02)
servo 167 4 -0.17 (0.00) -0.19 (0.01) -0.17 (0.01) -0.07 (0.01) -0.08 (0.01) -0.19 (0.01) -0.07 (0.01) -0.25 (0.01) 0.03 (0.03)
breastcancer 194 33 -1.32 (0.00) -1.36 (0.00) -1.34 (0.00) -1.31 (0.00) -1.31 (0.00) -1.43 (0.01) -1.59 (0.10) -1.38 (0.00) -1.80 (0.19)
machine 209 7 -0.70 (0.01) -0.65 (0.02) -0.61 (0.01) -0.75 (0.02) -0.71 (0.02) -0.63 (0.01) -0.51 (0.01) -0.59 (0.01) -0.52 (0.03)
yacht 308 6 1.32 (0.02) 1.84 (0.01) 2.00 (0.06) 1.64 (0.00) 1.65 (0.00) 1.69 (0.09) 1.71 (0.01) 1.77 (0.07) 2.05 (0.02)
autompg 392 7 -0.44 (0.01) -0.57 (0.02) -0.48 (0.03) -0.32 (0.01) -0.33 (0.01) -0.38 (0.04) -0.24 (0.01) -0.65 (0.11) -0.28 (0.03)
boston 506 13 0.02 (0.00) 0.07 (0.00) 0.03 (0.01) -0.04 (0.00) -0.07 (0.00) 0.06 (0.00) 0.14 (0.00) -0.04 (0.01) 0.17 (0.00)
forest∗ 517 12 -1.38 (0.00) -1.37 (0.00) -1.37 (0.00) -0.99 (0.00) -1.00 (0.00) -0.91 (0.00) -1.02 (0.02) -0.92 (0.01) -0.91 (0.01)
stock 536 11 -0.22 (0.00) -0.29 (0.00) -0.26 (0.00) -0.22 (0.00) -0.22 (0.00) -0.29 (0.00) -0.19 (0.00) -0.23 (0.01) -0.36 (0.02)
pendulum 630 9 -0.14 (0.00) 0.22 (0.01) 0.12 (0.08) -0.14 (0.00) -0.14 (0.00) 0.22 (0.01) 0.33 (0.08) 0.25 (0.00) 0.20 (0.03)
energy 768 8 1.71 (0.00) 1.85 (0.00) 2.07 (0.01) 1.86 (0.01) 1.92 (0.01) 2.00 (0.04) 1.96 (0.01) 2.07 (0.01) 2.28 (0.01)
concrete 1030 8 -0.43 (0.00) -0.45 (0.00) -0.35 (0.02) -0.32 (0.00) -0.32 (0.00) -0.35 (0.00) -0.21 (0.00) -0.22 (0.01) -0.12 (0.00)
solar∗ 1066 10 -1.75 (0.08) -1.21 (0.02) -1.20 (0.03) 0.04 (0.07) 0.07 (0.01) 0.54 (0.01) 0.22 (0.01) 0.54 (0.01) 0.20 (0.02)
airfoil 1503 5 -0.79 (0.05) 0.08 (0.02) 0.14 (0.03) -0.44 (0.03) -0.36 (0.01) 0.07 (0.00) 0.30 (0.00) -0.02 (0.03) 0.34 (0.01)
winered 1599 11 -1.09 (0.00) -1.11 (0.00) -1.08 (0.00) -1.07 (0.00) -1.06 (0.00) -1.10 (0.00) -0.84 (0.01) -1.06 (0.03) -1.31 (0.40)
gas 2565 128 1.07 (0.00) 1.60 (0.05) 1.69 (0.05) 1.69 (0.08) 1.56 (0.06) 0.70 (0.10) 1.57 (0.16) 1.30 (0.14) 1.61 (0.12)
skillcraft 3338 19 -0.94 (0.00) -0.94 (0.00) -0.94 (0.00) -0.91 (0.00) -0.91 (0.00) -0.92 (0.00) -0.93 (0.00) -0.92 (0.00) -0.94 (0.00)
sml† 4137 26 1.53 (0.00) 1.72 (0.01) 1.83 (0.01) 1.52 (0.00) 1.52 (0.00) 1.79 (0.00) 1.91 (0.00) 1.92 (0.01) 1.97 (0.05)
winewhite 4898 11 -1.14 (0.00) -1.14 (0.00) -1.14 (0.00) -1.13 (0.00) -1.13 (0.00) -1.13 (0.00) -1.10 (0.00) -1.13 (0.00) -1.09 (0.00)
parkinsons 5875 20 1.99 (0.00) 2.61 (0.01) 2.75 (0.02) 1.79 (0.02) 1.82 (0.02) 2.36 (0.02) 2.76 (0.02) 2.71 (0.07) 3.12 (0.05)
kin8nm† 8192 8 -0.29 (0.00) -0.01 (0.00) -0.00 (0.00) -0.29 (0.00) -0.29 (0.00) -0.02 (0.00) -0.00 (0.00) -0.00 (0.00) 0.03 (0.00)
pumadyn32nm 8192 32 0.08 (0.00) 0.11 (0.01) 0.11 (0.00) -1.44 (0.00) -1.44 (0.00) 0.10 (0.01) -0.62 (0.25) 0.11 (0.00) 0.11 (0.00)
power∗ 9568 4 -0.65 (0.04) -0.75 (0.03) -0.80 (0.02) -0.39 (0.04) -0.23 (0.02) -0.36 (0.04) -0.28 (0.05) -0.25 (0.06) -0.11 (0.06)
naval 11934 14 4.52 (0.02) 4.43 (0.03) 4.35 (0.03) 4.19 (0.01) 4.24 (0.01) 4.36 (0.01) 4.52 (0.02) 4.27 (0.02) 4.41 (0.02)
pol‡ 15000 26 0.48 (0.00) 1.51 (0.01) 1.45 (0.01) 0.37 (0.08) -0.50 (0.00) 2.34 (0.02) 2.63 (0.01) 1.47 (0.01) 2.72 (0.10)
elevators 16599 18 -0.44 (0.00) -0.41 (0.01) -0.40 (0.00) -0.37 (0.00) -0.36 (0.00) -0.29 (0.00) -0.27 (0.00) -0.28 (0.00) -0.27 (0.00)
bike‡ 17379 17 0.82 (0.01) 3.49 (0.01) 3.68 (0.01) 2.48 (0.01) 2.66 (0.01) 3.48 (0.00) 3.75 (0.01) 3.72 (0.01) 3.95 (0.01)
kin40k† 40000 8 0.02 (0.00) 0.84 (0.00) 1.17 (0.00) 0.04 (0.00) 0.05 (0.00) 0.87 (0.01) 0.93 (0.00) 1.15 (0.00) 1.27 (0.00)
protein 45730 9 -1.06 (0.00) -0.98 (0.00) -0.95 (0.00) -0.85 (0.00) -0.80 (0.00) -0.70 (0.00) -0.61 (0.00) -0.68 (0.00) -0.57 (0.00)
tamielectric 45781 3 -1.43 (0.00) -1.43 (0.00) -1.43 (0.00) -1.31 (0.00) -1.31 (0.00) -1.31 (0.00) -1.31 (0.00) -1.31 (0.00) -1.31 (0.00)
keggdirected‡ 48827 20 0.16 (0.01) 0.21 (0.01) 0.26 (0.02) 1.24 (0.06) 2.03 (0.01) 1.84 (0.05) 2.23 (0.01) 1.92 (0.02) 2.26 (0.01)
slice† 53500 385 0.86 (0.00) 1.80 (0.00) 1.86 (0.00) 0.85 (0.00) 0.90 (0.00) 1.80 (0.00) 1.88 (0.00) 1.86 (0.00) 2.02 (0.00)
keggundirected∗ 63608 27 0.06 (0.01) 0.06 (0.01) 0.07 (0.01) -75 (4) -4.21 (0.33) -64 (6) 2.37 (0.29) -116 (17) 2.98 (0.21)
3droad 434874 3 -0.79 (0.00) -0.61 (0.01) -0.58 (0.01) -0.71 (0.00) -0.65 (0.00) -0.69 (0.00) -0.55 (0.01) -0.61 (0.00) -0.48 (0.00)
song 515345 90 -1.19 (0.00) -1.18 (0.00) -1.18 (0.00) -1.15 (0.00) -1.14 (0.00) -1.13 (0.00) -1.10 (0.00) -1.12 (0.00) -1.07 (0.00)
buzz 583250 77 -0.24 (0.00) -0.15 (0.00) -0.15 (0.00) -0.22 (0.01) -0.23 (0.01) -0.09 (0.01) -0.04 (0.03) -0.09 (0.01) 0.04 (0.00)
nytaxi 1420068 8 -1.42 (0.01) -1.44 (0.01) -1.42 (0.01) -1.09 (0.03) -0.90 (0.04) -1.57 (0.04) -1.03 (0.04) -1.74 (0.05) -0.95 (0.07)
houseelectric‡ 2049280 11 1.37 (0.00) 1.41 (0.00) 1.47 (0.01) 1.65 (0.03) 1.82 (0.01) 1.66 (0.05) 2.01 (0.00) 1.77 (0.06) 2.03 (0.00)

Median difference from GP baseline 0 0.06 0.09 0.04 0.05 0.12 0.26 0.18 0.32
Average ranks 2.72 (0.14) 4.01 (0.14) 4.84 (0.14) 4.19 (0.17) 4.60 (0.16) 4.84 (0.14) 6.69 (0.15) 5.62 (0.16) 7.49 (0.16)

modelling the data. Four examples of these datasets are
highlighted in green‡. For these datasets the marginals are
non-Gaussian for the latent variable models, and in each
case the LV-GP-GP-GP model is the best performing.

5) On average, the LV-GP-GP-GP model is best per-
forming. This indicates that the inductive bias of this model
is suitable over the broad range of datasets considered. We
also compare to Conditional VAE models (Sohn et al., 2015)
(see Table 2 in the supplementary material) and find that
these models overfit considerably for the smaller datasets
and even on the larger datasets do not outperform our deep
latent variable models. The marginals of the CVAE models
are more Gaussian than our models (see Table 3 in the sup-
plementary material), indicating that these models explain
the data through the input mapping and not the complexity
of the marginal densities. See Figures 10 and 11 in the

supplementary material for the plots of posterior marginals.

5. Related Work
If the GP layers are replaced by neural networks our mod-
els are equivalent to (conditional) variational autoencoders
(VAE) (Kingma and Welling, 2014; Rezende et al., 2014)
when used with VI 3.1, or importance weighted autoen-
coders (IWAEs) (Burda et al., 2016) when used with the
IW inference 3.3. Our model can be thought of as a VAE
(or IWAE) but with a deep GP for the ‘encoder’ mapping.
Compared to the conditional VAE, the deep GP approach
has several advantages: it incorporates model (epistemic)
uncertainty, is automatically regularized, and allows a fine-
grained control of the properties of the mapping. For ex-
ample, the lengthscale corresponding to the latent variable
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can be tuned to favour complex marginals (a small value) or
near Gaussian marginals (a large value). Note that our IW
inference is not a simple adaptation of Burda et al. (2016)
as we have to perform additional inference over the GPs.

The LV-GP model was proposed by Wang and Neal (2012),
and then developed in (Dutordoir et al., 2018) and used
for meta learning in Sæmundsson et al. (2018). A version
with discrete latent variables was presented in Bodin et al.
(2017). The LV-GP without any inputs is known as the
Gaussian process latent variable model (Lawrence, 2004),
which was used in a semi-supervised setting in Damianou
and Lawrence (2015), which is also equivalent to LV-GP.

The deep model of Damianou and Lawrence (2013) is
closely related to our model but incorporates the latent vari-
ables additively rather than through concatenation (that is,
f(g(xn) + wn) rather than f(g([xn, wn]))). In principle, it
would be possible to recover our model using the approach
of Damianou and Lawrence (2013) in a certain setting of
hyperparameters, but in all previous work the kernel hyper-
parameters were tied within each layer, so this limit was not
achievable. Bui et al. (2016) also used this model, with a
form of expectation propagation for approximate inference.

The variational inference we have presented (without im-
portance weighting) is not equivalent to that of Damianou
and Lawrence (2013). In Damianou and Lawrence (2013)
a mean-field variational posterior is used for the noisy cor-
ruptions, which may be a poor approximation as there are a
priori correlations between these outputs. This mean-field
assumption also forces independence between the inputs and
outputs of the layers, whereas we make no such assumption.

6. Discussion
On a broad range of 1D density estimation tasks we find that
our DGP with latent variables outperforms the single-layer
and noise-free models, sometimes considerably. Closer in-
vestigation reveals that non-Gaussian marginals are readily
found by our model, and that the importance-weighted ob-
jective improves performance in practice.

Conditional density estimation must balance the complexity
of the density with the complexity of the input dependency.
The inductive bias of our LV-GP-GP-GP model appears to
be suitable for a broad range of datasets we have considered.
An advantage of our approach is that the deep models all con-
tain the shallower models as special cases. A layer can be
‘turned off’ with a single scalar hyperparameter (the kernel
variance) set to zero. This is a consequence of the ResNet-
inspired (He et al., 2016) use of mean functions. This may
explain why we observe empirically that in practice adding
depth rarely hurts performance. The latent variables can
similarly be ‘turned off’ if the appropriate lengthscale is
large. This may explain why the latent variables models are

rarely outperformed by the noise-free models, even when
the marginals are Gaussian.

There are very few hyperparameters in our model to opti-
mize (the kernel parameters and the likelihood variance).
This allows us to use the same model across a wide range
of data. In the small and medium data regimes we have
considered, an unregularized mapping (for example, a neu-
ral network as in the conditional VAE model (Sohn et al.,
2015)) is likely to overfit, as indeed we have observed (see
Table 2 in the supplementary material).

Limitations

As depth increases it becomes increasingly difficult to rea-
son about the DGP priors. Our approach is unlikely to
recover interpretable features, such as periodicity, and the
approaches of Lloyd et al. (2014); Sun et al. (2018) may be
more appropriate if an interpretable model is required. The
latent variables are also difficult to interpret as their effect
is coupled with the GP mappings.

We have only considered 1D latent variables and 1D outputs,
and while the extension to higher dimensions is straightfor-
ward for training, difficulties may arise in evaluating pos-
terior expectations as our model does not provide a closed-
form predictive density and Monte Carlo sampling may
have unacceptably high variance. The task of estimating
test likelihoods with high-dimensional latent variables is
challenging, and techniques described in Wu et al. (2016)
may be necessary in higher dimensions.

The inference we have presented is limited by cubic scal-
ing in both K and the number of inducing points. The
importance-weighting approach may also suffer from prob-
lems of vanishing signal for parameters of q(wn), as dis-
cussed in Rainforth et al. (2018). The doubly reparameter-
ized gradient estimator from Tucker et al. (2019) could be
used to alleviate this problem.

7. Conclusion
We have presented a novel inference scheme for the deep
Gaussian process with latent variables, combining impor-
tance weighting with partially collapsed variational infer-
ence. We have also developed a variant of the deep Gaussian
process model where uncorrelated variables are introduced
as latent covariates rather than process noise. We have
shown empirically that latent variables models deep mod-
els outperform the noise-free deep GP on a range of data,
and also that our importance-weighted inference delivers an
advantage over variational inference in practice.
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