
A Proof of Theorem 4.2 Cont.

In the proof of Theorem 4.2 we showed that the following optimization problem

qt+1 = arg min
q∈∆(M,i(t))

D(q||q̃t+1)

can be reformulated as the following convex optimization problem (i = i(t)):

min
q,ε

D(q||q̃t+1)

s.t.
∑
x∈Xk

∑
a∈A

∑
x′∈Xk+1

q(x, a, x′) = 1 ∀k = 0, . . . , L− 1

∑
x′∈Xk+1

∑
a∈A

q(x, a, x′) =
∑

x′∈Xk−1

∑
a∈A

q(x′, a, x) ∀k = 1, . . . , L− 1 ∀x ∈ Xk

q(x, a, x′)− P̄i(x′|x, a)
∑

y∈Xk+1

q(x, a, y) ≤ ε(x, a, x′) ∀k = 0, . . . , L− 1 ∀(x, a, x′) ∈ Xk ×A×Xk+1

P̄i(x
′|x, a)

∑
y∈Xk+1

q(x, a, y)− q(x, a, x′) ≤ ε(x, a, x′) ∀k = 0, . . . , L− 1 ∀(x, a, x′) ∈ Xk ×A×Xk+1∑
x′∈Xk+1

ε(x, a, x′) ≤ εi(x, a)
∑

x′∈Xk+1

q(x, a, x′) ∀k = 0, . . . , L− 1 ∀(x, a) ∈ Xk ×A

q(x, a, x′) ≥ 0 ∀k = 0, . . . , L− 1 ∀(x, a, x′) ∈ Xk ×A×Xk+1

Now we will derive the solution to this problem using Lagrange multipliers. First we write the Lagrangian
with λ, β, µ, µ+, µ− as Lagrange multipliers. Notice that we omit the non-negativity constraints, which we
can justify since the solution will be non-negative anyway.

L(q, ε) = D(q||q̃t+1) +

L−1∑
k=0

λk

∑
x∈Xk

∑
a∈A

∑
x′∈Xk+1

q(x, a, x′)− 1


+

L−1∑
k=1

∑
x∈Xk

β(x)

∑
a∈A

∑
x′∈Xk+1

q(x, a, x′)−
∑
a∈A

∑
x′∈Xk−1

q(x′, a, x)


+

L−1∑
k=0

∑
x∈Xk

∑
a∈A

∑
x′∈Xk+1

µ+(x, a, x′)

q(x, a, x′)− P̄i(x′|x, a)
∑

y∈Xk+1

q(x, a, y)− ε(x, a, x′)


+

L−1∑
k=0

∑
x∈Xk

∑
a∈A

∑
x′∈Xk+1

µ−(x, a, x′)

P̄i(x′|x, a)
∑

y∈Xk+1

q(x, a, y)− q(x, a, x′)− ε(x, a, x′)


+

L−1∑
k=0

∑
x∈Xk

∑
a∈A

µ(x, a)

 ∑
x′∈Xk+1

ε(x, a, x′)− εi(x, a)
∑

x′∈Xk+1

q(x, a, x′)


Let (x, a, x′) ∈ X ×A×Xk(x)+1 and consider the derivative with respect to ε(x, a, x′).

∂L
∂ε(x, a, x′)

= −µ+(x, a, x′)− µ−(x, a, x′) + µ(x, a)

So setting the gradient to zero we obtain

µ(x, a) = µ+(x, a, x′) + µ−(x, a, x′)
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Thus, we can discard µ(x, a) to obtain an equivalent Lagrangian. Notice that this way we also get rid of the
ε(x, a, x′) variables.

L(q) = D(q||q̃t+1) +

L−1∑
k=0

λk

∑
x∈Xk

∑
a∈A

∑
x′∈Xk+1

q(x, a, x′)− 1


+

L−1∑
k=1

∑
x∈Xk

β(x)

∑
a∈A

∑
x′∈Xk+1

q(x, a, x′)−
∑
a∈A

∑
x′∈Xk−1

q(x′, a, x)


+

L−1∑
k=0

∑
x∈Xk

∑
a∈A

∑
x′∈Xk+1

µ+(x, a, x′)

(1− εi(x, a))q(x, a, x′)− P̄i(x′|x, a)
∑

y∈Xk+1

q(x, a, y)


+

L−1∑
k=0

∑
x∈Xk

∑
a∈A

∑
x′∈Xk+1

µ−(x, a, x′)

P̄i(x′|x, a)
∑

y∈Xk+1

q(x, a, y)− (1 + εi(x, a))q(x, a, x′)


Now we consider the derivative with respect to q(x, a, x′). We denote β(x0) = β(xL) = 0 to avoid addressing
the edge cases explicitly.

∂L
∂q(x, a, x′)

= ln q(x, a, x′)− ln q̃t+1(x, a, x′) + λk + β(x)− β(x′)

+ (1− εi(x, a))µ+(x, a, x′)− (1 + εi(x, a))µ−(x, a, x′)

+
∑

y∈Xk(x)+1

P̄i(y|x, a)(µ−(x, a, y)− µ+(x, a, y))

We define the following value function v and error function e parameterized by µ and β, and an estimated
Bellman error.

vµ(x, a, x′) = µ−(x, a, x′)− µ+(x, a, x′)

eµ,β(x, a, x′) = (µ+(x, a, x′) + µ−(x, a, x′))εi(x, a) + β(x′)− β(x)

Bv,et (x, a, x′) = e(x, a, x′) + v(x, a, x′)− ηzt(x, a, x′)−
∑

y∈Xk(x)+1

P̄i(y|x, a)v(x, a, y)

So the derivative becomes

∂L
∂q(x, a, x′)

= ln
q(x, a, x′)

q̃t+1(x, a, x′)
+ λk − eµ,β(x, a, x′)− vµ(x, a, x′) +

∑
y∈Xk(x)+1

P̄i(y|x, a)vµ(x, a, y)

= ln q(x, a, x′)− ln q̃t+1(x, a, x′) + λk − ηzt(x, a, x′)−Bv
µ,eµ,β

t (x, a, x′)

Setting the gradient to zero and using the explicit form of q̃t+1(x, a, x′) we obtain

qt+1(x, a, x′) = q̃t+1(x, a, x′)e−λk+ηzt(x,a,x
′)+Bv

µ,eµ,β

t (x,a,x′)

= qt(x, a, x
′)e−ηzt(x,a,x

′)e−λk+ηzt(x,a,x
′)+Bv

µ,eµ,β

t (x,a,x′)

= qt(x, a, x
′)e−λk+Bv

µ,eµ,β

t (x,a,x′)
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We can use the first constraint to discover that λk is a normalizer for every k = 0, . . . , L− 1, i.e.

1 =
∑
x∈Xk

∑
a∈A

∑
x′∈Xk+1

qt+1(x, a, x′)

1 =
∑
x∈Xk

∑
a∈A

∑
x′∈Xk+1

qt(x, a, x
′)e−λk+Bv

µ,eµ,β

t (x,a,x′)

eλk =
∑
x∈Xk

∑
a∈A

∑
x′∈Xk+1

qt(x, a, x
′)eB

vµ,eµ,β

t (x,a,x′)

so defining Zkt (v, e) =
∑
x∈Xk

∑
a∈A

∑
x′∈Xk+1

qt(x, a, x
′)eB

v,e
t (x,a,x′) , we obtain

qt+1(x, a, x′) =
qt(x, a, x

′)eB
vµ,eµ,β (x,a,x′)

Z
k(x)
t (vµ, eµ,β)

Now to find β and µ we consider the dual problem. Substituting qt+1 back into L we obtain the following
dual problem.

max
β,µ≥0

min
q
L(q) = max

β,µ≥0
L(qt+1) = max

β,µ≥0
−
L−1∑
k=0

lnZkt (vµ, eµ,β)− 1 +
∑
x,a,x′

q̃t+1(x, a, x′)

So after ignoring constants we observe that

βt, µt = arg min
β,µ≥0

L−1∑
k=0

lnZkt (vµ, eµ,β)

B Proof of Theorem 5.2

First we reduce bounding R̂APP1:T to bounding the L1-distance between qPt,πt and qP,πt , where Pt = P qt and
πt = πqt .

R̂APP1:T =

T∑
t=1

C(E [`t(U)|P, πt])− C(E [`t(U)|Pt, πt])

=

T∑
t=1

fC(qP,πt ; `t)− fC(qPt,πt ; `t)

≤
T∑
t=1

〈
z̄t, q

P,πt − qPt,πt
〉

(1)

≤
T∑
t=1

‖z̄t‖∞
∥∥qP,πt − qPt,πt∥∥

1
(2)

≤ F
T∑
t=1

∥∥qP,πt − qPt,πt∥∥
1

(3)

where z̄t ∈ ∂fC(qP,πt ; `t) and (1) follows from the definition of the sub-gradient, (2) follows from Hölder’s
inequality, and (3) follows because fC is F -Lipschitz.
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Therefore, We are left with bounding
∑T
t=1

∥∥qP,πt − qPt,πt∥∥
1
. From now on, we follow arguments from the

regret analysis of UCRL-2, since we just need to bound the distance between occupancy measures that are in
the confidence sets, and the performance criterion is not involved anymore.

We introduce some new notations that will simplify some equations. we denote the probability to visit a
state-action pair (x, a) (or a state x) under occupancy measure q as q(x, a) (or q(x)), i.e.,

q(x, a) =
∑

x′∈Xk(x)+1

q(x, a, x′)

q(x) =
∑
a∈A

q(x, a)

In addition, for every (x, a) ∈ X ×A and every t = 1, . . . , T , denote ξt(x, a) = ‖Pt(·|x, a)− P (·|x, a)‖1.

Now we show how to use these notations to bound the aforementioned L1-distance.
Lemma B.1. Let {πt}Tt=1 be policies and let {Pt}Tt=1 be transition functions. Then,

T∑
t=1

∥∥qPt,πt − qP,πt∥∥
1
≤

T∑
t=1

∑
x∈X

∑
a∈A
|qPt,πt(x, a)− qP,πt(x, a)|+

T∑
t=1

∑
x∈X

∑
a∈A

qP,πt(x, a)ξt(x, a) (4)

Proof. For every (x, a) ∈ X ×A it holds that∑
x′∈Xk(x)+1

|qPt,πt(x, a, x′)− qP,πt(x, a, x′)| =
∑

x′∈Xk(x)+1

|qPt,πt(x, a)Pt(x
′|x, a)− qP,πt(x, a)P (x′|x, a)|

≤
∑

x′∈Xk(x)+1

|qPt,πt(x, a)Pt(x
′|x, a)− qP,πt(x, a)Pt(x

′|x, a)|

+ |qP,πt(x, a)Pt(x
′|x, a)− qP,πt(x, a)P (x′|x, a)|

=
∑

x′∈Xk(x)+1

|qPt,πt(x, a)− qP,πt(x, a)|Pt(x′|x, a)

+ |Pt(x′|x, a)− P (x′|x, a)|qP,πt(x, a)

= |qPt,πt(x, a)− qP,πt(x, a)|+ qP,πt(x, a)ξt(x, a)

Summing this for all t = 1, . . . , T and all (x, a) ∈ X ×A gives the result.

Thus, we need to bound each of the terms on the right hand side of (4). First, we show how to bound the
first term on the right hand side of (4) using the second term.
Lemma B.2. Let {πt}Tt=1 be policies and let {Pt}Tt=1 be transition functions. Then, for every k = 1, . . . , L−1
and every t = 1, . . . , T , it holds that

∑
xk∈Xk

∑
ak∈A

|qPt,πt(xk, ak)− qP,πt(xk, ak)| ≤
k−1∑
s=0

∑
xs∈Xs

∑
as∈A

qP,πt(xs, as)ξt(xs, as)
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Proof. We prove the statement by induction on k. For k = 1 we have∑
x1∈X1

∑
a1∈A

|qPt,πt(x1, a1)− qP,πt(x1, a1)| =

=
∑
a0∈A

∑
x1∈X1

∑
a1∈A

|πt(a0|x0)Pt(x1|x0, a0)πt(a1|x1)− πt(a0|x0)P (x1|x0, a0)πt(a1|x1)|

=
∑
a0∈A

πt(a0|x0)
∑
x1∈X1

|Pt(x1|x0, a0)− P (x1|x0, a0)|
∑
a1∈A

πt(a1|x1)

≤
∑
a0∈A

πt(a0|x0)ξt(x0, a0)

=
∑
a0∈A

qP,πt(x0, a0)ξt(x0, a0)

Now assume that the statement holds for some k − 1. We have∑
xk∈Xk

∑
ak∈A

|qPt,πt(xk, ak)− qP,πt(xk, ak)| =

=
∑
xk−1

∑
ak−1

∑
xk

∑
ak

|qPt,πt(xk−1, ak−1)Pt(xk|xk−1, ak−1)− qP,πt(xk−1, ak−1)P (xk|xk−1, ak−1)|πt(ak|xk)

=
∑
xk−1

∑
ak−1

∑
xk

|qPt,πt(xk−1, ak−1)Pt(xk|xk−1, ak−1)− qP,πt(xk−1, ak−1)P (xk|xk−1, ak−1)|

≤
∑
xk−1

∑
ak−1

∑
xk

|qPt,πt(xk−1, ak−1)Pt(xk|xk−1, ak−1)− qP,πt(xk−1, ak−1)Pt(xk|xk−1, ak−1)|

+ |qP,πt(xk−1, ak−1)Pt(xk|xk−1, ak−1)− qP,πt(xk−1, ak−1)P (xk|xk−1, ak−1)|

≤
∑
xk−1

∑
ak−1

|qPt,πt(xk−1, ak−1)− qP,πt(xk−1, ak−1)|+
∑
xk−1

∑
ak−1

qP,πt(xk−1, ak−1)ξt(xk−1, ak−1)

Finally, we use the induction hypothesis to obtain∑
xk∈Xk

∑
ak∈A

|qPt,πt(xk, ak)− qP,πt(xk, ak)| ≤

≤
k−2∑
s=0

∑
xs∈Xs

∑
as∈A

qP,πt(xs, as)ξt(xs, as) +
∑

xk−1∈Xk−1

∑
ak−1∈A

qP,πt(xk−1, ak−1)ξt(xk−1, ak−1)

=

k−1∑
s=0

∑
xs∈Xs

∑
as∈A

qP,πt(xs, as)ξt(xs, as)

The following lemma will show how to bound the second term on the right hand side of (4), and therefore
obtain the bound on R̂APP1:T . The proof follows the proof of Lemma 5 in Neu et al. (2012).
Lemma B.3. Let {πt}Tt=1 be policies and let {Pt}Tt=1 be transition functions such that qPt,πt ∈ ∆(M, i(t))
for every t. Then, with probability at least 1− 2δ,

T∑
t=1

L−1∑
k=0

k−1∑
s=0

∑
xs∈Xs

∑
as∈A

qP,πt(xs, as)ξt(xs, as) ≤ 2L|X|
√

2T ln
L

δ
+ 3L|X|

√
2T |A| ln T |X||A|

δ
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Proof. We start by some arguments from the regret analysis of UCRL-2 (Auer et al., 2008). Let ni(x, a) be
the number of times state-action pair (x, a) has been visited in epoch Ei. Therefore, we have

Ni(x, a) =

i−1∑
j=1

nj(x, a)

We denote by m the number of epochs, and by Auer et al. (2008), we have

m∑
i=1

ni(x, a)√
Ni(x, a)

≤ 3
√
Nm(x, a)

Now by Jensen’s inequality, ∑
x∈X

∑
a∈A

m∑
i=1

ni(x, a)√
Ni(x, a)

≤ 3
√
|X||A|T

Fix arbitrary 1 ≤ t ≤ T and 0 ≤ k ≤ L− 1. We have

k−1∑
s=0

∑
xs∈Xs

∑
as∈A

qP,πt(xs, as)ξt(xs, as) ≤ (5)

≤
k−1∑
s=0

ξt(x
(t)
s , a(t)

s ) +

k−1∑
s=0

∑
xs∈Xs

∑
as∈A

(
qP,πt(xs, as)− I{x(t)

s = xs, a
(t)
s = as}

)
ξt(xs, as)

Now, by Lemma 4.1, we have with probability at least 1− δ simultaneously for all s that

T∑
t=1

ξt(x
(t)
s , a(t)

s ) ≤
T∑
t=1

√√√√ 2|Xs+1| ln T |X||A|
δ

max{1, Ni(t)(x
(t)
s , a

(t)
s )}

≤
∑
xs∈Xs

∑
as∈A

m∑
i=1

ni(xs, as)

√
2|Xs+1| ln T |X||A|

δ

max{1, Ni(xs, as)}

≤ 3

√
2T |Xs||Xs+1||A| ln

T |X||A|
δ

For the second term on the right hand side of (5), notice that
(
qP,πt(xs)− I{x(t)

s = xs}
)

form a martingale

difference sequence with respect to {Ut}Tt=1 and thus by Hoeffding-Azuma inequality and ξt(x, a) ≤ 2, we
have

T∑
t=1

∑
as∈A

(
qP,πt(xs, as)−I{x(t)

s = xs, a
(t)
s = as}

)
ξt(xs, as) ≤

≤ 2

T∑
t=1

(∑
as∈A

qP,πt(xs, as)−
∑
as∈A

I{x(t)
s = xs, a

(t)
s = as}

)

= 2

T∑
t=1

(
qP,πt(xs)− I{x(t)

s = xs}
)

≤ 2

√
2T ln

L

δ
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with probability at least 1− δ/L. Putting everything together, the union bound implies that we have, with
probability at least 1− 2δ simultaneously for all k = 1, . . . , L− 1,

T∑
t=1

k−1∑
s=0

∑
xs∈Xs

∑
as∈A

qP,πt(xs, as)ξt(xs, as) ≤
k−1∑
s=0

3

√
2T |Xs||Xs+1||A| ln

T |X||A|
δ

+

k−1∑
s=0

2|Xs|
√

2T ln
L

δ

≤ 3L

k−1∑
s=0

1

L

√
2T |Xs||Xs+1||A| ln

T |X||A|
δ

+

k−1∑
s=0

2|Xs|
√

2T ln
L

δ

≤ 3L

√
2T |A|

(
|X|
L

)2

ln
T |X||A|

δ
+ 2|X|

√
2T ln

L

δ

= 3|X|
√

2T |A| ln T |X||A|
δ

+ 2|X|
√

2T ln
L

δ

where in the last step we used Jensen’s inequality for the concave function f(x, y) =
√
xy and the fact that∑k−1

s=0 |Xs| ≤ |X|.

Summing up for all k = 0, . . . , L− 1 finishes the proof.
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