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8. Proofs
8.1. Proof of Theorem 1

Theorem 1 [No Free Lunch] Let x ∈ X where X is a finite
set. Let p(x) be a uniform distribution on X . Let q be
any antithetic distribution q(x1, x2). Let F be the set of
functions X → R such that Varp(x1)p(x2)[µ̂f (x1:2)] 6= 0.
Then

max
f∈F

Varq(x1,x2)[µ̂f (x1:2)]]

Varp(x1)p(x2)[µ̂f (x1:2)]
≥ 1− 1

|X | − 1
(22)

For sampling without replacement for any f ∈ F

Varq(x1,x2)[µ̂f (x1:2)]]

Varp(x1)p(x2)[µ̂f (x1:2)]
= 1− 1

|X | − 1
(23)

Proof of Theorem 1. First we show that

Varq(x1,x2)[µ̂f (x1:2)]

=
1

4

(
Varq(x1,x2)[f(x1)] + Varq(x1,x2)[f(x2)]+

2Covq(x1,x2)(f(x1), f(x2))
)

=
1

2
Varp(x)[f(x)] +

1

2
Covq(x1,x2)(f(x1), f(x2))

In addition

Varp(x1)p(x2)[µ̂f (x1:2)] =
1

2
Varp(x)[f(x)]

So

Varq(x1,x2)[µ̂f (x1:2)]

Varp(x1)p(x2)[µ̂f (x1:2)]
= 1 +

Covq(x1,x2)(f(x1), f(x2))

Varp(x)[f(x)]

Denote |X | by k, and the elements of X by v1, v2, · · · , vk.
We only have to show

max
f∈F

Covq(x1,x2)(f(x1), f(x2))

Varp(x)[f(x)]
≥ − 1

k − 1
(24)

which is equivalent to Eq.(23).

Let X = {v1, · · · , vk} be the set of k values x can take.
Denote

Q =


q(v1, v1) q(v1, v2) · · · q(v1, vk)
q(v2, v1) q(v2, v2) · · · q(v2, vk)

· · ·
q(vk, v1) q(vk, v2) · · · q(vk, vk)


Because q(x1, x2) is an antithetic distribution for the uni-
form distribution p(x), it must satisfy

1TQ =
1

k
1 Q1 =

1

k
1

Denote

f = (f(v1), f(v2), · · · , f(vk))
T

Then because the marginal is uniform p(v1) = · · · =
p(vk) = 1/k

Covq(x1,x2)[f(x1), f(x2)]

=
∑

v1,v2∈X
f(v1)f(v2)(q(v1, v2)− p(v1)p(v2))

= fT (Q− 1

k2
11T )f

= fT
(
Q+QT

2
− 1

k2
11T

)
f

where the last step is because

fTQf = (fTQf)T = fTQT f = fT
Q+QT

2
f

Therefore for each non-symmetric Q, there is a symmetric
joint distribution Q+QT

2 that achieves the same covariance.
For the rest of this proof we assume that Q is symmetric
without loss of generality. We will use the notation

R
def
= Q− 1

k2
11T

R is a symmetric matrix

We also have

Varp(x1)p(x2)[f(x)] =
1

k

∑
x∈X

f(x)2 − 1

k2

∑
x1,x2

f(x1)f(x2)

=
1

k
fT f − 1

k2
fT11T f

= fT
(

1

k
I − 1

k2
11T

)
f

We will use the notation

R′
def
=

1

k
I − 1

k2
11T

To briefly summarize our notation we have

Covq(x1,x2)[f(x1), f(x2)] = fTRf

Varp(x)[f(x)] = fTR′f

Now we try to find for any R, some f such that
fTRf/fTR′f is large. In other words, we want to prove

max
f∈F

fTRf

fTR′f
≥ − 1

k − 1
(25)

which is equivalent to Eq.(24). As is the condition of the
theorem, we require f ∈ F to satisfy fTR′f 6= 0.



Adaptive Antithetic Sampling for Variance Reduction

For any such matrix R, 1 must be an eigenvector with
eigenvalue 0. This is because by our definition

R1 = Q1− 1

k2
11T1 =

1

k
1− 1

k
1 = 0

In addition, 1 is also an eigenvector of R′ with eigenvalue
0 because

R′1 =
1

k
1− 1

k
1 = 0

For any f that is not a scalar multiple of 1, fTR′f > 0.
This is because

rank(R′) ≥ rank(I)− rank(11T ) ≥ k − 1

so 1 (or its scalar multiple) must be the only eigenvector
with 0 as its eigenvalue. In addition fTR′f ≥ 0 because it
is a variance.

This also implies that f ∈ F , if and only if fTR′f 6= 0, if
and only if f is not a scalar multiple of 1.

We consider two situations

1) R has at least one positive eigenvalue. Let f be the cor-
responding eigenvector, we have

fTRf > 0 fTR′f > 0

and certainly f is not a scalar multiple of 1, which means
that Eq.(25) must be true.

2) R does not have any positive eigenvalues. Because Q is
a matrix with no negative entries, tr(Q) ≥ 0. In addition
tr( 1

k2 11T ) = 1
k , so

tr(R) = tr(Q)− tr(
1

k2
11T ) ≥ −1

k
(26)

We know that R must have a zero eigenvalue, and all other
eigenvalues are non-positive. We arrange them in non-
ascending order

0 ≥ λ2 ≥ λ3 ≥ · · · ≥ λk

It is easy to see that λ2 ≥ − 1
k(k−1) because otherwise

tr(R) =
∑
i

λi < −
1

k(k − 1)
(k − 1) < −1

k

which violates Eq.(26). Suppose the eigenvector corre-
sponding to λ2 is g. Because R is symmetric, we can al-
ways select g orthogonal to the other eigenvectors. In par-
ticular, gT1 = 0. The f we will choose is fbad = g − 1.
We know that fbad ∈ F as it is not a scalar multiple of 1.
For fbad, we have

fTbadRfbad = (g − 1)TR(g − 1)

= gTRg ≥ − 1

k(k − 1)
gT g

where the above inequalities come from the fact that R1 =
1TR = 0, and gT1 = 0.

Similarly we have

fTbadR
′fbad = (g − 1)TR′(g − 1)

=
1

k
(g − 1)T (g − 1)− 1

k2
(g − 1)T11T (g − 1)

=
1

k
(gT g + k)− 1

k2
k2 =

1

k
gT g

This means that for this choice of fbad = g − 1

fTbadRfbad

fTbadR
′fbad

≥ − 1

k − 1

which proves Eq.(25).

Finally we show that sampling without replacement
achieves equality. For sampling without replacement

Q =


0 1

k(k−1)
1

k(k−1)
1

k(k−1) 0 1
k(k−1)

· · ·
1

k(k−1)
1

k(k−1) 0


=

1

k(k − 1)
(11T − I)

Then

R = Q− 1

k2
11T =

1

k2(k − 1)
11T − 1

k(k − 1)
I

Note that the set of eigenvalues for 11T is

k, 0, · · · , 0

so the eigenvalues for R must be

0,− 1

k(k − 1)
, · · · ,− 1

k(k − 1)

Denote this eigen-decomposition as R = HTΛH . As be-
fore let R′ = 1

k I −
1
k2 11T . Because R′ is a scalar multiple

ofR,R′ must have the same eigenvectors asR, with eigen-
values

0,
1

k
, · · · , 1

k

Denote the eigen-decomposition asR′ = HTΛ′H . Choose
any f , we compute g = Hf . If g = (∗, 0, · · · , 0) (∗ de-
notes any real number) we will have fTR′f = gTΛ′g = 0
and our theorem excludes this degenerate situation. When
g 6= (∗, 0, · · · , 0), we have

Covq(x1,x2)(f(x1), f(x2))

Varp(x)[f(x)]
=

fTRf

fTR′f

=
gTΛg

gTΛ′g
= − 1

k − 1

This means that sampling without replacement achieves
our theoretical upper bound on minimax performance.
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8.2. Proof of Proposition 1

Proposition 1 Let qθ(x1:m) be a Gaussian-reparameterized
antithetic of order m for p(x). Then for any k:

1. For any Σθ ∈ Σunbiased, the estimator (10) is unbi-
ased

Eqθ(x1:m)[µ̂f (x1:m)] = Ep(x)[f(x)]

2. If Σθ = I , the Gaussian-reparameterized antithetic is
equivalent to i.i.d sampling.

3. Given a Cholesky decomposition Σθ = LθL
T
θ , we can

sample from qθ(x1:m) by drawing m i.i.d. samples
δ = (δ1, · · · , δm)T from N (0, Id), and x1:m = Lθδ.

Proof of Proposition 1. Part 1: Because Σθ ∈ Σunbiased,
each component εi of (ε1, · · · , εm) ∼ N (0,Σθ) is
marginally εi ∼ N (0, Id). By assumption, this means that
g(εi) ∼ p(x). Combined with Eq. (3 ) thsi finishes the
proof.

Part 2: By construction, if Σθ = I then (ε1, · · · , εm) ∼
N (0,Σθ) are i.i.d. Thus g(εi) are also i.i.d.

Part 3: Given a Cholesky decomposition Σθ =
LθL

T
θ , we can sample (ε1, · · · , εm) via (ε1, · · · , εm) =

Lθ(z1, · · · , zm) where (z1, · · · , zm)
i.i.d.∼ N (0, Id).

8.3. Proof of Theorem 2

Theorem 2 For any ε > 0, the map ψ defined in Eq.(13) is
a surjection from Mm×m into Σunbiased.

Proof of Theorem 2. We first check that ψ is well defined.

For any θ ∈ Mm×m, denote Σ̃ = εI + θθT ∈ Mm×m.
When ε > 0, this must be positive definite as a matrix
in Rmd×md. Because Σ̃ is positive definite as a matrix
Rmd×md, each element of diag(Σ̃) as a matrix M must
be a positive definite element of M, and must have an in-
verse. This means that diag(Σ̃)−1/2 is also well defined.
Therefore ψ(θ) is well defined.

It is obvious that ψ(θ) has identity diagonal. It is also pos-
itive semi-definite, so ψ(θ) ∈ Σunbiased.

Now we prove that the map is a surjection. Choose any
Σ ∈ Σunbiased, let

ζ(Σ) = diag(Σ)−1/2Σdiag(Σ)−T/2

then it is easy to see that ζ(Σ) = Σ. In addition, for any
diagonal matrix D ∈ Mm×m whose diagonal elements are
all positive definite elements of M, we have ζ(DΣDT ) =
Σ. We choose D = αI , where α ∈ R>0; I is the iden-
tity matrix of Mm×m. We choose a sufficiently large α

such that α2Σ−εI is positive definite element of Rmd×md.
By the cholesky decomposition in Rmd×md, there exists
θ ∈ Rmd×md such that θθT = α2Σ−εI . We have, by con-
struction, found a θ that satisfy ψ(θ) = Σ. This is because
εI + θθT = α2Σ = αΣα, so ζ(εI + θθT ) = Σ.

9. Results of IWAE

MNIST Omniglot
noise dimension 5 10 5 10

i.i.d sampling 113.79 98.92 142.50 130.65
negative sampling 113.71 98.89 142.35 130.37

Our method 113.61 98.71 142.15 130.23

Table 1: Negative Log Likelihood of our methods com-
pared with negative sampling and i.i.d sampling on MNIST
and Omniglot dataset. Our method can achieve a tighter
bound on all settings.
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10. Results of GANs
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Figure 3: Variance reduction for GAN training. Left: Variance of gradient estimation for different batch sizes. Middle:
Inception score after 50 epochs of training for different mini-batch batch sizes m. Right: Inception score by wall-clock
time. For small batch size m, adaptive antithetic improves marginally compared to baselines; because of its overhead,
the overall wall-clock time is worse; for larger batch size m, adaptive antithetic performs significantly better, the overall
wall-clock time is also better.




