
Supplementary material: A Block Coordinate Descent Proximal Method
for Simultaneous Filtering and Parameter Estimation

Ramin Raziperchikolaei 1 2 Harish S. Bhat 3 4

Abstract

This supplementary material contains the follow-
ing: 1) The equations and ground truth parame-
ters for the ODEs that we used in the experiments,
2) Extensions of our experiments with different
types and magnitudes of the noise, and 3) An ani-
mation that shows how our method works and how
the estimated and predicted states move closer to
each other at each iteration.

1. ODEs in our experiments
We have used four benchmark datasets in our experiments.
We only gave a brief explanation of each of them in the
paper. Here, we introduce them in detail.

Lotka–Volterra model. This model is used to study the
interaction between predator (variable x0) and prey (variable
x1) in biology (Lotka, 1932). The model contains two
nonlinear equations as follows:

dx0
dt

= θ0x0 − θ1x0x1
dx1
dt

= θ2x0x1 − θ3x1.

The state is two-dimensional and there are four unknown
parameters. We use the same settings as in Dondelinger
et al. (2013). We set the parameters to θ0 = 2, θ1 = 1,
θ2 = 4 and θ3 = 1. With initial condition x(1) = [5, 3],
we generate clean states in the time range of [0, 2] with a
spacing of ∆t = 0.1.

1Rakuten Institute of Technology, San Mateo, CA, USA
2Department of Computer Science, University of California,
Merced, USA 3Department of Mathematics, University of Utah,
USA 4Department of Applied Mathematics, University of Cali-
fornia, Merced, USA. Correspondence to: Ramin Raziperchiko-
laei <ramin.raziperchikola@rakuten.com>, Harish S. Bhat <hb-
hat@ucmerced.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

FitzHugh–Nagumo model. This model describes spike
generation in squid giant axons (FitzHugh, 1961; Nagumo
et al., 1962). It has two nonlinear equations:

dx0
dt

= θ2

(
x0 −

(x0)3

3
+ x1

)
dx1
dt

= − 1

θ2
(x0 − θ0 + θ1x1),

where x0 is the voltage across an axon and x1 is the outward
current. The states are two-dimensional and there are three
unknown parameters. We use the same settings as in Ramsay
et al. (2007). We set the parameters as θ0 = 0.5, θ1 = 0.2,
and θ3 = 3. With initial condition x(1) = [−1, 1], we
generate clean states in the time range of [0, 20] with a
spacing of ∆t = 0.05.

Rössler attractor. This three-dimensional nonlinear sys-
tem has a chaotic attractor (Rössler, 1976):

dx0
dt

= −x1 − x2
dx1
dt

= x0 + θ0x1

dx2
dt

= θ1 + x2(x0 − θ2).

The states are three-dimensional and there are three un-
known parameters. We use the same settings as in Ramsay
et al. (2007). We set the parameters as θ0 = 0.2, θ1 =
0.2, and θ3 = 3. With the initial condition x(1) =
[1.13,−1.74, 0.02], we generate clean states in the time
range of [0, 20], with ∆t = 0.05.

Lorenz-96 model. The goal of this model is to study
weather predictability (Lorenz and Emanuel, 1998). For,
k = 0, . . . , d− 1, the kth differential equation has the fol-
lowing form:

dxk
dt

= (xk+1 − xk−2)(xk−1)− xk + θ0,

The model has one parameter θ0 and d states, where d
can be set by the user. This gives us the opportunity to
test our method on larger ODEs. Note that to make this

Supplementary Material: BCD Proximal Method for Simultaneous Filtering and Parameter Estimation

ODE meaningful, we have x−1 = xd−1, x−2 = xd−2, and
xd = x0. As suggested by Lorenz and Emanuel (1998), we
set d = 40 and θ0 = 8. The clean states are generated in the
time range [0, 4] with a spacing of ∆i = 0.01. The initial
state is generated randomly from a Gaussian distribution
with mean 0 and variance 1.

2. Experimental results
Optimization of our objective function leads to better
estimation. In Fig. 2 of our main paper, we reported the
prediction error at each iteration of our algorithm for the
Rössler and the Lorenz-96 models. Here, in Fig. 1, we add
the FitzHugh–Nagumo model and show the results for noisy
observations with σ2 = 0.5 and σ2 = 1.

In all settings, our method decreases the error signifi-
cantly for both Euler and three-step Adams-Bashforth meth-
ods. The three-step method performs better than the Euler
method, specifically in the Lorenz-96 model.

Different types and amounts of noise in the observa-
tions. Our method does not assume anything about the
type of noise. In reality, the noise could be from any dis-
tribution. In Fig. 2, we investigate the effect of the type
of noise on the outcome of our algorithm. The red (blue)
curves correspond to the case when we add Gaussian (Lapla-
cian) noise to the observations. We set the mean to 0, change
the variance of the noise, and report the prediction and pa-
rameter errors. Note that for each noise variance, we repeat
the experiment 10 times and report the mean and standard
deviation of the error.

In general, increasing the noise variance increases the error.
We can see this in almost all plots. In both models, the error
does not change much by changing the variance from 0 to
0.5. We can also see that the method performs almost as
well for observations corrupted by Laplacian noise as in the
Gaussian noise case. Note that the Laplacian noise has a
heavier-than-Gaussian tail.

Comparison with other methods (robustness to initial-
ization). In Fig. 4 of the paper, we compared our method
with three other methods in different categories on the
Rössler model. Fig 3 shows the comparison on the
FitzHugh–Nagumo model. In both models, our method
is robust with respect to the initialization and outperforms
other methods significantly.

Comparison with the mean-field method (Gorbach
et al., 2017). In Fig. 5 of the paper, we compared our
method with the mean-field method of Gorbach et al. (2017)
on the Lotka–Volterra model, with noise variance σ2 = 1.
Fig. 4 compares the methods for σ2 = .5, 1, and 1.5. Our
method is more robust with respect to noise and performs

better.

Comparison with the extended Kalman filter (EKF).
As we mentioned in the main paper, we follow Sitz et al.
(2002) in applying the Kalman filter to our problem of esti-
mating the parameters and states. Here, we provide more
information regarding our implementation.

We first need to write an equation that recursively finds the
state x(ti+1) in terms of x(ti). As suggested by Sitz et al.
(2002), this can be achieved by discretizing the ODE using
the Euler discretization:

x(ti+1) = x(ti) + f(x(ti),θ)∆i. (1)

Let us define θ(ti) as the parameter estimated at time ti
by the Kalman filter. We define a joint state variable ξ(ti),
which merges the states x(ti) and the parameters θ(ti) as
follows:

ξ(ti) =

(
x(ti)

θ(ti)

)
, ξ(ti) ∈ Rd+p. (2)

The process model to predict the next state variable can be
written as:

ξ(ti+1) =

(
x(ti+1)

θ(ti+1)

)
=

(
x(ti) + f(x(ti),θ)∆i

θ(ti)

)
. (3)

We define the observation model as follows:

y(ti) = Hξ(ti), H =
(
I 0

)
d×(d+p)

, (4)

where H is a d× (d+p) matrix, I is a d×d identity matrix,
and 0 is a d× p matrix where all elements are 0.

In most cases, the function f(·) is nonlinear, which makes
the process model nonlinear. For this reason, we use the
extended Kalman filter (EKF), which linearizes the model.

We use an open-source Python code (Labbe, 2014) to im-
plement EKF. We set the state covariance (noise covari-
ance) to a diagonal matrix with elements equal to 1 000
(0.1). We set the process covariance using the function
Q discrete white noise() provided in (Labbe, 2014), where
the variance is set to 1. Note that these parameters must be
carefully tuned to obtain reasonable results; changing the
state or noise covariance yields significantly worse results.

In Fig. 5 of the main paper, we compared our method with
EKF on the Lotka–Volterra model. In that experiment, we
set the number of samples to T = 10 000 (time range [0, 2]).
Here, we show the results for both T = 20 (time range
[0, 2]) and T = 10 000 (time range [0, 1 000]).

As we can see in Fig. 5, the only setting in which EKF
performs comparably to our method is the case of T =
10 000 and σ2 = 0.1. In more realistic settings, our method
significantly outperforms EKF.

Supplementary Material: BCD Proximal Method for Simultaneous Filtering and Parameter Estimation

Animation to show how our method works. We con-
sider the FitzHugh–Nagumo model, with settings as ex-
plained at the beginning of this section, except that we
consider the first 10 seconds instead of 20. We add Gaus-
sian noise with variance 0.5 to the clean states to create the
noisy observations. In Fig. 6, we show how our algorithm
works in the first 250 iterations. Acrobat Reader is required
to play the animation. In this animation, X denotes clean
states (green circles), X∗ denotes estimated states, and X̂
denotes predicted states. Note that initially, X∗ is the same
as the noisy observations. Fig. 6 shows the two dimensions
separately. At the top of each figure, we show the estimated
parameters at each iteration. Note that the true parameters
are θ0 = 0.5, θ1 = 0.2, and θ2 = 3. As explained be-
fore, the estimated and predicted states move closer to each
other at each iteration. This helps the estimated parameters
converge to the true parameters.

References
F. Dondelinger, D. Husmeier, S. Rogers, and M. Filippone.

ODE parameter inference using adaptive gradient match-
ing with Gaussian processes. In Artificial Intelligence
and Statistics, pages 216–228, 2013.

R. FitzHugh. Impulses and physiological states in theoret-
ical models of nerve membrane. Biophysical journal, 1
(6):445–466, 1961.

N. S. Gorbach, S. Bauer, and J. M. Buhmann. Scalable
variational inference for dynamical systems. In Advances
in Neural Information Processing Systems, pages 4809–
4818, 2017.

R. Labbe. Kalman and Bayesian filters in Python,
2014. URL https://github.com/rlabbe/
Kalman-and-Bayesian-Filters-in-Python.

E. N. Lorenz and K. A. Emanuel. Optimal sites for supple-
mentary weather observations: Simulation with a small
model. Journal of the Atmospheric Sciences, 55(3):399–
414, 1998.

A. J. Lotka. The growth of mixed populations: two species
competing for a common food supply. Journal of the
Washington Academy of Sciences, 22(16/17):461–469,
1932.

J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse
transmission line simulating nerve axon. Proceedings of
the IRE, 50(10):2061–2070, 1962.

J. O. Ramsay, G. Hooker, D. Campbell, and J. Cao. Param-
eter estimation for differential equations: a generalized
smoothing approach. Journal of the Royal Statistical So-
ciety: Series B (Statistical Methodology), 69(5):741–796,
2007.

O. E. Rössler. An equation for continuous chaos. Physics
Letters A, 57(5):397–398, 1976.

A. Sitz, U. Schwarz, J. Kurths, and H. U. Voss. Estimation
of parameters and unobserved components for nonlinear
systems from noisy time series. Phys. Rev. E, 66(1):
016210, 2002. doi: 10.1103/PhysRevE.66.016210.

https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

Supplementary Material: BCD Proximal Method for Simultaneous Filtering and Parameter Estimation

σ2 = 0.5 σ2=1

Fi
tz

H
ug

h–
N

ag
um

o
pr

ed
.e

rr
or

0 500 1500 2500
0

1

2

1e3
Euler
Adams–Bashforth

0 500 1500 2500
0

1

2

1e3
Euler
Adams–Bashforth

R
ös

sl
er

at
tr

ac
to

r
pr

ed
.e

rr
or

1000 5000 90000.0

0.5

1.0

1.5

1e3
Euler
Adams–Bashforth

1000 5000 90000.0

0.5

1.0

1.5

1e3
Euler
Adams–Bashforth

L
or

en
z-

96
pr

ed
.e

rr
or

0 20000 400000.0
0.2

0.7

1.2

1e5
Euler
Adams–Bashforth

0 20000 400000.0
0.2

0.7

1.2

1e5
Euler
Adams–Bashforth

iteration iteration
Figure 1. Similar to Fig. 2 of the main paper. We added FitzHugh–Nagumo and noisy observations with σ2 = 0.5. Our learning strategy
decreases the error in both cases and in all models.

Supplementary Material: BCD Proximal Method for Simultaneous Filtering and Parameter Estimation

FitzHugh–Nagumo Rössler
pr

ed
.e

rr
or

0.1 0.3 0.5 0.7 1.0
0

5

10

15

Laplacian
Gaussian

pr
ed

.e
rr

or

0.1 0.3 0.5 0.7 1.0
0
5

10
15
20

Laplacian
Gaussian

θ 0
er

ro
r

0.1 0.3 0.5 0.7 1.0
0.22

0.27

0.32

Laplacian
Gaussian

θ 0
er

ro
r

0.1 0.3 0.5 0.7 1.0
0.00

0.01

Laplacian
Gaussian

θ 1
er

ro
r

0.1 0.3 0.5 0.7 1.0
0.0

0.1

0.2

0.3

Laplacian
Gaussian

θ 1
er

ro
r

0.1 0.3 0.5 0.7 1.0
0.00
0.01
0.02
0.03
0.04

Laplacian
Gaussian

θ 2
er

ro
r

0.1 0.3 0.5 0.7 1.0
0.00

0.05

0.10

0.15

Laplacian
Gaussian

θ 2
er

ro
r

0.1 0.3 0.5 0.7 1.0
0.00

0.05

0.10

0.15

Laplacian
Gaussian

noise variance noise variance
Figure 2. We change the amount and type of noise in the observations, and report the prediction and parameter errors on the FitzHugh–
Nagumo (first column) and Rössler (second column) models.

Supplementary Material: BCD Proximal Method for Simultaneous Filtering and Parameter Estimation

σ2
θ = 1 σ2

θ = 5 σ2
θ = 10 σ2

θ = 20

..
..

..
..

..
..

..
..

Fi
tz

H
ug

h–
N

ag
um

o
..

..
..

..
..

..
..

..
..

st
at

e
er

ro
r

ours iPDA lsq Bayes0

20

40

60

80

100

ours iPDA lsq Bayes0

20

40

60

80

100

ours iPDA lsq Bayes0

20

40

60

80

100

ours iPDA lsq Bayes0

20

40

60

80

100

θ 0
er

ro
r

ours iPDA lsq Bayes0

1

2

ours iPDA lsq Bayes0

1

2

ours iPDA lsq Bayes0

1

2

ours iPDA lsq Bayes0

1

2

θ 1
er

ro
r

ours iPDA lsq Bayes0

1

2

ours iPDA lsq Bayes0

1

2

ours iPDA lsq Bayes0

1

2

ours iPDA lsq Bayes0

1

2

θ 2
er

ro
r

ours iPDA lsq Bayes0

1

2

ours iPDA lsq Bayes0

1

2

ours iPDA lsq Bayes0

1

2

ours iPDA lsq Bayes0

1

2

Figure 3. Similar to Fig. 4 of the paper, but on the FitzHugh–Nagumo model. Our method significantly outperforms other methods.

Supplementary Material: BCD Proximal Method for Simultaneous Filtering and Parameter Estimation

σ2 = .5 σ2 = 1 σ2 = 1.5
pr

ed
.e

rr
or

ours
 avg err = 3.85

mean-field
 avg err = 3.15

0

20

40

ours
 avg err = 5.53

mean-field
 avg err = 8.32

0

20

40

ours
 avg err = 13.04

mean-field
 avg err = 13.61

0

20

40

θ 0
er

ro
r

ours
 avg err = 0.42

mean-field
 avg err = 0.43

0

1

2

3

ours
 avg err = 0.54

mean-field
 avg err = 7.41

0

1

2

3

ours
 avg err = 0.69

mean-field
 avg err = 0.82

0

1

2

3

θ 1
er

ro
r

ours
 avg err = 0.23

mean-field
 avg err = 0.23

0

1

2

3

ours
 avg err = 0.27

mean-field
 avg err = 3.69

0

1

2

3

ours
 avg err = 0.36

mean-field
 avg err = 0.39

0

1

2

3

θ 2
er

ro
r

ours
 avg err = 1.34

mean-field
 avg err = 1.15

0

1

2

3

ours
 avg err = 0.83

mean-field
 avg err = 1.70

0

1

2

3

ours
 avg err = 1.67

mean-field
 avg err = 2.38

0

1

2

3

θ 3
er

ro
r

ours
 avg err = 0.35

mean-field
 avg err = 0.29

0

1

2

3

ours
 avg err = 0.24

mean-field
 avg err = 0.43

0

1

2

3

ours
 avg err = 0.46

mean-field
 avg err = 0.65

0

1

2

3

Figure 4. Comparison with the mean-field method. Similar to the first row of Fig. 5 in the paper, but for a set of noise variances:
σ2 = .5, 1, and 1.5. Our method is more robust with respect to noise and performs better.

Supplementary Material: BCD Proximal Method for Simultaneous Filtering and Parameter Estimation

. T = 20 . T = 10 000
σ2 = .1 σ2 = 1.5 σ2 = .1 σ2 = 1.5

av
g.

es
t.

er
ro

r

ours
 avg err = 0.03

Kalman
 avg err = 0.15

0.0

0.5

1.0

1.5

ours
 avg err = 0.47

Kalman
 avg err = 3.56

0.0

0.5

1.0

1.5

ours
 avg err = 0.00

Kalman
 avg err = 0.09

0.0

0.5

1.0

1.5

ours
 avg err = 0.06

Kalman
 avg err = 1.30

0.0

0.5

1.0

1.5

θ 0
er

ro
r

ours
 avg err = 0.18

Kalman
 avg err = 0.27

0

1

2

3

ours
 avg err = 0.64

Kalman
 avg err = 3.50

0

1

2

3

ours
 avg err = 0.09

Kalman
 avg err = 0.06

0

1

2

3

ours
 avg err = 0.11

Kalman
 avg err = 0.93

0

1

2

3

θ 1
er

ro
r

ours
 avg err = 0.09

Kalman
 avg err = 0.24

0

1

2

3

ours
 avg err = 0.24

Kalman
 avg err = 1.61

0

1

2

3

ours
 avg err = 0.04

Kalman
 avg err = 0.09

0

1

2

3

ours
 avg err = 0.02

Kalman
 avg err = 0.61

0

1

2

3

θ 2
er

ro
r

ours
 avg err = 0.46

Kalman
 avg err = 0.93

0

1

2

3

ours
 avg err = 1.93

Kalman
 avg err = 11.55

0

1

2

3

ours
 avg err = 0.16

Kalman
 avg err = 0.07

0

1

2

3

ours
 avg err = 0.19

Kalman
 avg err = 0.63

0

1

2

3

θ 3
er

ro
r

ours
 avg err = 0.12

Kalman
 avg err = 0.20

0

1

2

3

ours
 avg err = 0.54

Kalman
 avg err = 3.54

0

1

2

3

ours
 avg err = 0.04

Kalman
 avg err = 0.06

0

1

2

3

ours
 avg err = 0.05

Kalman
 avg err = 0.38

0

1

2

3

Figure 5. Comparison with EKF. Similar to the second and third rows of Fig. 5 of the paper, but includes both T = 20 and T = 10 000
observations.

Supplementary Material: BCD Proximal Method for Simultaneous Filtering and Parameter Estimation
di

m
en

si
on

1
di

m
en

si
on

2

Figure 6. FitzHugh–Nagumo model, where the true parameters are θ0 = 0.5, θ1 = 0.2, and θ2 = 3. Noisy observations are achieved
by adding Gaussian noise to the clean states. In this figure, X denotes clean states (green circles), X∗ denotes estimated states, and X̂
denotes predicted states. Note that at initialization, X∗ is the same as the noisy observations. The estimated parameters at each iteration
of our algorithm are shown at the top of the figure.

	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.250:
	1.249:
	1.248:
	1.247:
	1.246:
	1.245:
	1.244:
	1.243:
	1.242:
	1.241:
	1.240:
	1.239:
	1.238:
	1.237:
	1.236:
	1.235:
	1.234:
	1.233:
	1.232:
	1.231:
	1.230:
	1.229:
	1.228:
	1.227:
	1.226:
	1.225:
	1.224:
	1.223:
	1.222:
	1.221:
	1.220:
	1.219:
	1.218:
	1.217:
	1.216:
	1.215:
	1.214:
	1.213:
	1.212:
	1.211:
	1.210:
	1.209:
	1.208:
	1.207:
	1.206:
	1.205:
	1.204:
	1.203:
	1.202:
	1.201:
	1.200:
	1.199:
	1.198:
	1.197:
	1.196:
	1.195:
	1.194:
	1.193:
	1.192:
	1.191:
	1.190:
	1.189:
	1.188:
	1.187:
	1.186:
	1.185:
	1.184:
	1.183:
	1.182:
	1.181:
	1.180:
	1.179:
	1.178:
	1.177:
	1.176:
	1.175:
	1.174:
	1.173:
	1.172:
	1.171:
	1.170:
	1.169:
	1.168:
	1.167:
	1.166:
	1.165:
	1.164:
	1.163:
	1.162:
	1.161:
	1.160:
	1.159:
	1.158:
	1.157:
	1.156:
	1.155:
	1.154:
	1.153:
	1.152:
	1.151:
	1.150:
	1.149:
	1.148:
	1.147:
	1.146:
	1.145:
	1.144:
	1.143:
	1.142:
	1.141:
	1.140:
	1.139:
	1.138:
	1.137:
	1.136:
	1.135:
	1.134:
	1.133:
	1.132:
	1.131:
	1.130:
	1.129:
	1.128:
	1.127:
	1.126:
	1.125:
	1.124:
	1.123:
	1.122:
	1.121:
	1.120:
	1.119:
	1.118:
	1.117:
	1.116:
	1.115:
	1.114:
	1.113:
	1.112:
	1.111:
	1.110:
	1.109:
	1.108:
	1.107:
	1.106:
	1.105:
	1.104:
	1.103:
	1.102:
	1.101:
	1.100:
	1.99:
	1.98:
	1.97:
	1.96:
	1.95:
	1.94:
	1.93:
	1.92:
	1.91:
	1.90:
	1.89:
	1.88:
	1.87:
	1.86:
	1.85:
	1.84:
	1.83:
	1.82:
	1.81:
	1.80:
	1.79:
	1.78:
	1.77:
	1.76:
	1.75:
	1.74:
	1.73:
	1.72:
	1.71:
	1.70:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.250:
	0.249:
	0.248:
	0.247:
	0.246:
	0.245:
	0.244:
	0.243:
	0.242:
	0.241:
	0.240:
	0.239:
	0.238:
	0.237:
	0.236:
	0.235:
	0.234:
	0.233:
	0.232:
	0.231:
	0.230:
	0.229:
	0.228:
	0.227:
	0.226:
	0.225:
	0.224:
	0.223:
	0.222:
	0.221:
	0.220:
	0.219:
	0.218:
	0.217:
	0.216:
	0.215:
	0.214:
	0.213:
	0.212:
	0.211:
	0.210:
	0.209:
	0.208:
	0.207:
	0.206:
	0.205:
	0.204:
	0.203:
	0.202:
	0.201:
	0.200:
	0.199:
	0.198:
	0.197:
	0.196:
	0.195:
	0.194:
	0.193:
	0.192:
	0.191:
	0.190:
	0.189:
	0.188:
	0.187:
	0.186:
	0.185:
	0.184:
	0.183:
	0.182:
	0.181:
	0.180:
	0.179:
	0.178:
	0.177:
	0.176:
	0.175:
	0.174:
	0.173:
	0.172:
	0.171:
	0.170:
	0.169:
	0.168:
	0.167:
	0.166:
	0.165:
	0.164:
	0.163:
	0.162:
	0.161:
	0.160:
	0.159:
	0.158:
	0.157:
	0.156:
	0.155:
	0.154:
	0.153:
	0.152:
	0.151:
	0.150:
	0.149:
	0.148:
	0.147:
	0.146:
	0.145:
	0.144:
	0.143:
	0.142:
	0.141:
	0.140:
	0.139:
	0.138:
	0.137:
	0.136:
	0.135:
	0.134:
	0.133:
	0.132:
	0.131:
	0.130:
	0.129:
	0.128:
	0.127:
	0.126:
	0.125:
	0.124:
	0.123:
	0.122:
	0.121:
	0.120:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

