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Abstract
Voronoi cell decompositions provide a classical
avenue to classification. Typical approaches how-
ever only utilize point-wise cell-membership in-
formation by means of nearest neighbor queries
and do not utilize further geometric information
about Voronoi cells since the computation of
Voronoi diagrams is prohibitively expensive in
high dimensions. We propose a Monte-Carlo in-
tegration based approach that instead computes a
weighted integral over the boundaries of Voronoi
cells, thus incorporating additional information
about the Voronoi cell structure. We demonstrate
the scalability of our approach in up to 3072 di-
mensional spaces and analyze convergence based
on the number of Monte Carlo samples and choice
of weight functions. Experiments comparing our
approach to Nearest Neighbors, SVM and Ran-
dom Forests indicate that while our approach
performs similarly to Random Forests for large
data sizes, the algorithm exhibits non-trivial data-
dependent performance characteristics for smaller
datasets and can be analyzed in terms of a ge-
ometric confidence measure, thus adding to the
repertoire of geometric approaches to classifica-
tion while having the benefit of not requiring any
model changes or retraining as new training sam-
ples or classes are added.

1. Introduction and Related Work
The problem of classifying a set of n points {x1, . . . , xn} in
d-dimensional Euclidean space, each labelled with one of k
classes has been tackled with a large variety of approaches
in recent decades. In many application fields, Deep Neural
networks are today leading the field in terms of classifica-
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tion rates, particularly in the area of image classification
(Krizhevsky et al., 2012). A draw-back of these approaches
to date is the difficulty of reasoning about the learned rep-
resentations in terms of convergence guarantees, stability
and the complex structure of learned embeddings leading to
challenging phenomena such as adverserial examples (Ku-
rakin et al., 2016). In contrast, a benefit of purely geometric
approaches such as nearest neighbors – while not always
having optimal performance – is their simplicity and asymp-
totic convergence under suitable assumptions (Döring et al.,
2017). A further advantage is the lack of dependence on ini-
tialization since no stochastic gradient descent or complex
variational inference procedure is required. This work con-
tributes to this category of optimization-free, non-Bayesian
and purely geometric approaches to classification with a
focus on simpliticy and mathematical interpretability.

Recent works such as (Sharif Razavian et al., 2014) have
demonstrated that classical methods such as SVM classifiers
can provide competitive results when combined with repre-
sentations determined by a neural network. Similarly, metric
learning techniques (Weinberger & Saul, 2009) may be used
to first determine an appropriate metric and/or embedding
before applying geometric methods such as a nearest neigh-
bor classifier. The Voronoi cell based approach proposed
here can hence also be viewed as a component in the toolbox
that may be combined with Bayesian or Neural Network
based methods. In the present paper, we focus on the def-
inition, algorithms, mathematical properties and an initial
stand-alone evaluation of our approach.

While nearest-neighbor classifiers (Biau & Devroye, 2015)
make a classification decision by testing which training data
Voronoi cell a test data point t ∈ Rd belongs to, this mem-
bership test can be performed efficiently with approximate
geometric lookup datastructures (Kushilevitz et al., 2000)
and does not require a computation of the full geometry
of the Voronoi cells themselves. Our approach is instead
focused on the Voronoi cell V (t) around the test data point
t and balances the influence of neighboring training data on
the classification decision by means of a weighted integral
over the Voronoi boundary. A related approach consists
of the Natural Neighbor regression method (Sibson, 1981),
where volumes of intersections of Voronoi cells before and



Voronoi Boundary Classification: A High-Dimensional Geometric Approach via Weighted Monte Carlo Integration

after insertion of a test-point are used as weights for inter-
polation. By considering a ranking of these weights this
method could be considered as a related classification ap-
proach, but since current implementations rely on numerical
integration and an explicit computation of the Voronoi cell
structure, these are not applicable for high-dimensional data
in their current form.

The key contributions of this work are: 1) We introduce
and provide a convergence analysis of a conceptually sim-
ple Voronoi-based classifier based on a weighted integral
formulation over boundary faces of V (t). 2) We show how
to overcome the computational complexity challenge of
working with Voronoi cells in high dimensions by avoid-
ing explicit calculation of the Voronoi structure. This is
achieved by means of a Monte Carlo integral approximation
method and, to the best of our knowledge, is the first time
an integral over Voronoi cell geometry has been proposed
and used for classification in high dimensions. 3) We evalu-
ate our approach relative to Nearest Neighbors, SVM and
Random Forests on 3 datasets, including CIFAR-10 and
MNIST.

2. Methodology and Algorithm
We consider a test data point t ∈ Rd and a labeled training
dataset X = {x1, . . . , xn} ⊂ Rd where each data point
xi ∈ Rd lies in Euclidean space and each xi is associated to
a unique class ci ∈ {1, . . . , k}. We assume furthermore that
the points in X are in general position, which for data with
uniform noise happens with probability one and which can
alternatively be enforced by an arbitrarily small perturbation
of the input data. For any x ∈ Rd, we denote the Voronoi
cell at x with respect to {t, x1, . . . , xn} by V (x) = {y ∈
Rd : ‖y − x‖ ≤ ‖y − xj‖ for all i ∈ {1, . . . , n} and ‖y −
x‖ ≤ ‖y − t‖}.
We seek to determine a classification label for t and consider
the Voronoi cell V (t) as the basic geometric object upon
which a classification decision will be made. Here, we think
of each boundary face of V (t) as being colored by a unique
color corresponding to the class label of the neighboring xi
(see Fig.1). In intuitive terms, our basic motivation for the
proposed method is that an observer placed at t may decide
upon the classification label for t by ranking the relative in-
fluence of the observed colored faces of V (t) by weighting
the distances between t and points on the boundary and the
total area of the observed colored faces. I.e. the class of t is
determined by “how much of a given color is observed from
t, weighted by distance”. We introduce a weight function
w : Rd → R+ that decays with distance from t and our
proposed method utilizes a w-weighted integral over the
boundary faces of V (t) to achieve the above intuitive goal.
Crucially, we will show in the following that this formula-
tion can be implemented without requiring the computation

Figure 1. Planar classification problem with two classes of training
data (purple / orange) as well as test data point t in black. Our
approach ranks the influence of each neighboring class on t, by
approximating a weighted integral over the Voronoi cell boundary
of t for each color.

of the full Voronoi cell structure, which is of complexity
O(nd

d
2 e) (Aurenhammer, 1991) and thus infeasible in high

dimensions.

Definition 1. Consider a labeled training dataset
{(x1, c1), . . . , (xn, cn)}, where xi ∈ Rd and ci ∈
{1, . . . , k} for all i ∈ {1, . . . n}. For any integrable func-
tion w : Rd → R+, t ∈ Rd and i ∈ {1, . . . , k}, the
(weighted) Voronoi Boundary Rank of class i at t is denoted
by ri(t) and given by

ri(t) =
∑
j:cj=i

∫
V (t)∩V (xj)

w(x)dVol,

where dVol denotes the Volume form on V (t) ∩ V (xj)
induced by the Euclidean metric in Rd. The (weighted)
Voronoi Boundary Classifier is given by V BC(t) =
argmaxi∈{1,...,k}ri(t).

Observe that, in the above, each face V (t) ∩ V (xj) is d− 1
dimensional (or empty) and may be unbounded. As a result,
for w to be integrable over this domain, we consider w that
decay with distance to t. As we shall explore later, exponen-
tially decaying weight functions constitute a suitable choice,
for example. We now turn to the problem of evaluating the
integral ri(t). We approach this by first changing variables
and performing the integration over a unit sphere instead.

Computation of Voronoi Boundary Rank

Lemma 1 (Change of Variables and Monte Carlo). Let
P = V (t) ∩ V (xj). If P 6= ∅, P lies in some hyperplane
Π = {x ∈ Rd : 〈x, n〉 = c}, where n is of unit norm.
Denote by Sd−1 the d− 1 dimensional unit sphere centered
at the origin and denote by fj the map which maps m ∈
Sd−1 to to the intersection between the ray starting at t
in direction m with P if this intersection exists. Let Ij =
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V (t)∩V (xj)

w(x)dVol, then

Ij =

∫
f−1
j (V (t)∩V (xj))

w(fj(m))
‖fj(m)− t‖d−1
|〈m,n〉| dVolSd−1

(1)

where dVolSd−1 denotes the standard induced volume form
of the sphere in Euclidean space. Secondly, consider a se-
quence {mi}T1 of uniform samples on f−1j (V (t)∩V (xj)) ⊂
Sd−1. We have

Ij = Vj lim
T→∞

1

T

T∑
i=1

w(fj(mi))
‖fj(mi)− t‖d−1
|〈mi, n〉|

(2)

where Vj denotes the volume of the set f−1j (V (t) ∩ V (xj))
with respect to the standard induced metric on the unit
sphere in Euclidean space.

Proof. The first part above follows from the general in-
tegral change of variable formula and a consideration of
Sylvester’s determinant theorem to simplify the resulting
expression, while the second part follows from the standard
Monte Carlo integration convergence (Davis & Rabinowitz,
2007). See the supplementary material for additional de-
tails.

We note that the above sampling based approximation of
Ij still requires us to 1) perform uniform sampling on
f−1j (V (t) ∩ V (xj)) ⊂ Sd−1 and 2) to determine its vol-
ume Vj . We note that this can be achieved by means of
rejection sampling by noting the following lemma.

Lemma 2. Let t ∈ Rd and m ∈ Sd−1 and define

l∗m(x) =
‖x− t‖2

2 〈m,x− t〉
face(m) = arg min

i∈{1,...,n}
{l∗m(xi) | l∗m(xi) > 0} .

If there is no i ∈ {1, . . . , n} such that l∗m(xi) > 0, then the
ray R starting at t and in direction m is fully contained in
V (t) (and V (t) is unbounded in direction m starting at t).
Otherwise m lies in f−1j (V (t) ∩ V (xface(m))).

Proof. See the supplementary material for a proof.

Given Lemma 2, we can now uniformly sample T
samples ST = {m1, . . . ,mT } on Sd−1 and count the
number Tj(ST ) = #{m ∈ ST : face(m) = j} of
samples mapped to V (t) ∩ V (xj). This yields Vj =

Vol(Sn−1) limT→∞
Tj(ST )
T . We now have: Ij

Vol(Sn−1) =

limT→∞ 1
T

∑T
i=1 1face(mi)=jw(f(mi))

‖fj(mi)−t‖d−1

|〈mi,n〉|
where 1face(mi)=j denotes the indicator function that
is 1 if face(mi) = j and zero otherwise. Since

−2ε −ε 0 δ 2δ

−2δ

−δ

0

δ

2δ

Figure 2. A counter-example for a bounded weight function.

ri(t) =
∑
j:cj=i

Ij , this provides the basis for computing
the Voronoi Classification scheme we propose here.
Observe that we in particular did not require an explicit
computation of the boundary face geometry or volumes
of V (t). Additionally, a notable quality of the algorithm
is that the Monte Carlo integration rate of convergence is
O( 1√

T
) in arbitrary dimension (Doucet et al., 2001).

Weight functions We now come to a discussion of suit-
able weight functions w for our proposed method. Observe
that, since Voronoi Cells may be unbounded, we may en-
counter an integral over an unbounded domain in the def-
inition of the Voronoi rank. To ensure that all integrals
are finite we hence require that w decays with distance to
the test data point t. In the following experiments, we in
fact only consider w(x) = ŵ(‖x− t‖) for some integrable
function ŵ : R+ → R+ that is monotonically decreasing.

An obvious choice may be a weight function of the form
ŵ(z) = e−0.5σ

−2z2 which does indeed result in finite inte-
grals, but does - as we shall now explain - have the property
of favoring volume over distance in the relative contribution
of the boundary of V (t). To illustrate this, consider points in
R2, placed as shown on Figure 2: a test point t is placed at
the origin, one point of the first class at coordinates (−2ε, 0)
for some positive ε and 3 points of the second class at co-
ordinates (0, 2δ), (0,−2δ) and (2δ, 0) for some positive δ.
In this setting, it is easy to show that r1(t) ≤ ŵ(ε) · 2δ and
ŵ(δ
√

2)(4δ + 2ε) ≤ r2(t). If we decrease ε towards 0, the
point of the first class starts to move closer to the test point.
However, a simple analysis shows that if δ < 1√

2
ŵ−1(0.5),

then no matter how close the first point is moved towards
the origin, r2(t) > r1(t) and the classification chooses the
second (orange) class - in effect the larger volume of the
orange boundary component of V (t) always dominates the
classification.

This behavior may be considered unnatural if a balance be-
tween distance and volume contribution is desired, because
an arbitrarily close point may be considered class-defining
under the assumption that the data does not contain erro-
neous training labels.
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If instead we consider ŵ(z) = z−pe−0.5σ
−2z2 for p ≥ d,

this problem can be avoided and the integrals also converges
for σ = 0. Furthermore, for p = d, the factors of ‖fj(x)−t‖
cancel in the Monte Carlo integration formula of Lemma 2.

Some examples of the classification boundary, including
edge cases, produced by this weight function with different
σ parameters are displayed in the top row of Figure 3. When
σ is close to 0, the result becomes reminiscent of 1-Nearest
Neighbor classification. This behavior is further discussed
in Section 2. On the contrary, when σ is considerably large,
the role of the distances decreases relative to the role of
the boundary volumes. Another example that shows a com-
parison of the decision boundaries between SVM and our
algorithm for a particular family of data is presented in the
bottom row of Figure 3 where we illustrate that our classi-
fier remains largely unchanged even when we introduce an
imbalanced data split between classes. This is in contrast to
the performance of support vector machines and artificial
neural networks (Wang et al., 2016) on imbalanced data.

Optimized implementation We implemented our algo-
rithm with a few optimization considerations in mind.
Firstly, we utilized weight functions with a ‖fj(m) − t‖d
factor to benefit from the previously discussed simplifica-
tion and to avoid precision problems with computing large
powers of real values in high dimensions. Another set of
optimizations is based on the fact that most of the elements
of the Monte Carlo integration formula can be unfolded and
pre-calculated to reduce the computational complexity of
these elements to constant lookup O(1) during the main
execution of the algorithm. Algorithm 1 presents the com-
plete algorithm, optimized for a test dataset, rather than a
single test point t. This batch implementation allows for
efficient matrix operations as compared to a sequential im-
plementation and was implemented using C++ with the use
of the GPU library OpenCL for the most computationally
intensive sections.

In the algorithm, initially we compute all pairwise distances
between test and training data points. Then, during each
iteration of ray sampling, we also precompute all inner
products between data points and the sampled vector m.
After that, by looking at each pair of points, we can find
l∗m(·) in constant time and perform an update to the current
estimate of a corresponding area. By considering the nested
for-loop structure of Alg 1, we observe that the running time
is of order O(NMD+ TRD + TND+ TMD+ TMN),
where N denotes the number of training data points, M
denotes the number of test data points, D the dimension
of the space containing the data and RD the complexity of
generating a sample on the unit sphere in RD.

Approximate Nearest Neighbor Search for Large Data
Note that, while our algorithm consists mainly of vectorized

Algorithm 1 Classification Algorithm

1: Input:
2: Train, test data X ∈ RN×D, X̂ ∈ RM×D
3: Train labels Y ∈ {1, . . . , k}N
4: Number of iterations T ∈ N
5: Weight function w : R+ → R+

6: Output:
7: Predicted labels Ŷ ∈ {1, . . . , k}M
8: Compute matrix dst ∈ RN×M as
9: dstij ← ‖xi − x̂j‖2

10: Initialize matrix areas ∈ RM,k with zeros
11: for it = 1 to T do
12: Sample random m ∈ RD from Uni(SD−1)
13: Compute vector p ∈ RN as
14: pi ← 〈m,xi〉
15: Compute vector p̂ ∈ RM as
16: p̂i = 〈m, x̂i〉
17: for j = 1 to M do // t← x̂j
18: Initialize im = 0, lm = +∞
19: for i = 1 to N do
20: lcur ← dstij/(2 · (pi − p̂j)) // lcur ← l∗m(xi)
21: if 0 < lcur < lm then
22: im ← i, lm ← lcur
23: end if
24: end for
25: if im 6= 0 then
26: q ← (pim − p̂j)/sqrt(dstimj) // q ← 〈m,n〉
27: Add w(lm) · lmD−1/q to areasj,yim
28: end if
29: end for
30: end for
31: for j = 1 to M do
32: ŷj ← arg maxl areasj,l
33: end for

sequential operations and benefits from parallelizability, a
key bottleneck for large datasets is the computation of all
pairwise distances between train and test data points requir-
ing O(MN) storage and compute time. As an alternative,
we propose an approximate algorithm, which can make use
of a chosen approximate nearest-neighbor search algorithm
such as (Muja & Lowe, 2014).

The key difference of the alternative method lies in the way
of finding the face(m), which was introduced in Lemma 2.
For a given sampled direction m we consider the intersec-
tion of the ray emanating from a test point t in direction m
and use a binary search on the distance to the intersection
from t, with the initial bounds set to 0 andMAX , where the
latter is some chosen maximum value, such as the diameter
of the dataset or a value where the weight function’s value
is sufficiently close to zero to be considered insignificant for
the classification task.

Note that, if the intersection occurs at a distance ρ, then
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(e) SVM(γ = 0.1) (8 vs 4).
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(f) VBC(σ = 102) (8 ”outer” points vs 4 ”inner” points).

Figure 3. Top row: An example of a classification boundary on 6 training points. Bottom row: Comparison of SVM decision boundaries
to our algorithm. The intensity of the color represents the ratio of the largest Voronoi rank divided by the sum of all Voronoi ranks at a
given point (split into ten bins in 3a, 3b, 3c, two bins in 3f (left) and continuous in 3f (right)). Observe that as we double the outer training
data density with a slight displacement from 4 to 8 between figure (d) and (e), the SVM classifier boundary changes drastically. In figure
(f) we display the corresponding decision boundary for 8 points for VBC and the full level-set of the decision boundary for 4 points. The
decision boundary in our approach remains largely unchanged since the Voronoi cell geometry is not affected significantly.

points on the ray with distances from the interval [0, ρ] be-
long to test point’s cell, and points with distances from
(ρ,MAX) belong to other cells. Therefore, if t is our
test point and nearest(·) is the nearest neighbor function
that returns the closest datapoint to a given one, then
the binary search is performed over the function h(l) =
1[nearest(t + l · m) = t], searching for the argument at
which the function’s value changes from 1 to 0. After the
seach is complete, we can decide what cell is getting crossed
by the ray by running the neareset neighbor algorithm for
the intersection point one more time.

The nearest neighbor algorithm in this case may be replaced
with an approximate search version, which would allow us
to replace the mentioned part from the algorithm’s complex-
ity with an asymptotically smaller function. The complexity
now becomes

O(prep(N,D)+TM log
diam(X)

ε0
(nn(N,D)+D)) (3)

where prep(N,D) is the time needed to construct a data
structure for a nearest-neighbor search, nn(N,D) is the
complexity of the search over N D-dimensional points

(which might be considered asD logN for some algorithms
(Arya et al., 1998)) and ε0 is the desired precision for the
binary search.

Convergence to 1-Nearest-Neighbor classifier As was
observed empirically in Fig. 3, certain weight functions
appear to return classification results comparable to a 1-
nearest neighbor classifier. Here, we present a theorem
making this observation precise:
Theorem 1. Consider a labeled dataset D =
{(x1, c1), . . . , (xn, cn)} of data points xi ∈ Rd and
corresponding class labels ci ∈ {1, 2, . . . , k} and a
test point t ∈ Rd, where t 6= xi for all i ∈ {1, . . . , n}.
Assume that t only has a single nearest neighbor among
{x1, . . . , xn}. Consider a sequence of weight functions
{wn}∞n=1, wn : R+ → R+ which are each monotonically
decreasing and where

lim
n→∞

∫ +∞

z2

wn(z)

wn(z1)
zd−2 dz = 0 for all 0 < z1 < z2

(4)
Then, for sufficiently large n, the class V BC(t|D,wn) as-
signed by the Voronoi Boundary Classifier of t is equal
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to the class 1NN(t|D) assigned by the nearest neighbor
classifier for t.

Proof. Please consult the supplementary material.

Our standard weight function ŵ(z) = e−0.5z2σ−2

zp in particu-
lar can be considered in the light of the above result. Con-
sider two sequences: wn(z) = ŵ(z|σ = n−1, p = p0 ≥ 1)
and wn(z) = ŵ(z|σ = σ0, p = n) for n ∈ N. It is easy
to see that both sequences follow the theorem and hence
converge to nearest neighbor classification when used as
weight functions for Voronoi Boundary Classification.

3. Experimental Evaluation
The following weight function was used in all experiments:
wσ(z) = ‖z‖−de−0.5σ−2‖z‖2 , where d is the dimensionality
of the data. The parameter σ varies for different datasets.
We noted that in higher-dimensional spaces the classification
performance appeared to improve with a larger σ.

Monte Carlo Convergence Firstly, we investigate the
convergence of our proposed Monte Carlo Integration pro-
cedure. For these experiments, we used generated: 2D, 20D
and 1000D normally distributed pointclouds of 100 points
each and also considered the MNIST dataset which is 784
dimensional. We assigned all data points to a single class
label 1 and study the convergence of the Voronoi Boundary
Rank r1 for a selection of random test points. All tests in this
subsection use σ = 103 as the weight parameter. Each sub-
plot on Figure 4 demonstrates 25 curves of values of r1(t)
as we increase the number of Monte Carlo samples. We
observe after only 105 iterations the approximated integrals
start to stabilize. It should be noted that in this experiment
the points are considered to belong all to 1 class, while in
a classification task those calculated areas for each cell are
split among several classes neighboring the test Voronoi
cell. Note that, for MNIST, approximately 104 iterations
were enough for areas to stabilize, while for the synthetic
datasets, 105 iterations were necessary for 20D and 1000D
cases.

Figure 5 furthermore focuses in on the Voronoi Boundary
Rank convergence for two of these datasets, with low- and
high-dimensional data, but for one randomly picked test data
point and shows the standard deviations for 100 repeated
random initializations of the algorithm. As expected from
the theoretical Monte Carlo integration foundations, the
variance curve can be approximated with a function cn−0.5,
where n is the number of iterations and this fitting is also
displayed in the figure.

Classification Performance We now study the perfor-
mance of our algorithm on the following datasets:

1. Anuran Calls – Frog sounds (MFCCs), 22 attributes,
10 species. 7195 data points split into 3598 training,
3597 test points (Dheeru & Karra Taniskidou, 2017).

2. MNIST – a classic dataset with 28 × 28 × 1 = 784
dimensional dataset of images with handwritten dig-
its. 60000 training data points, 10000 test data points
(Deng, 2012).

3. CIFAR-10 – a dataset with 32× 32× 3 = 3072 dimen-
sional image data which corresponds to 10 different
classes; 50000 training data points, 10000 test data
points (Krizhevsky et al., 2014).

Figure 6 first reports results of the convergence of the classi-
fication accuracy depending on the number of Monte Carlo
samples. As can be seen, after 104 iterations the changes to
the accuracy value become negligible and thus all classifica-
tion tests were conducted with 104 Monte Carlo samples.

Our algorithm (VBC with 10000 samples) was then tested
against 1NN, (KNN with K ∈ {2, . . . , 10} results are not
presented since examining only one neighbor was always
the most optimal for these datasets), SVM (Chang & Lin,
2011) with an RBF kernel and default parameters from
scikit-learn 0.20.0 and RandomForest (Breiman,
2001) with 1500 estimators. The comparison is presented
in Table 1, where results are averaged over 25 runs.

Table 1. Test results

FROGS MNIST CIFAR-10

VBC(10k) .986±.0002 .969±.0003 .494±.0011

1NN .982 .969 .354
SVM .903 .944 .440
RF(1500) .974±.0004 .972±.0004 .495±.0016

We observe that Voronoi Boundary Classification obtains
satisfactory results, comparable to the best performance of
the classical algorithms. In the case of the CIFAR dataset,
where the nearest neighbor algorithm obtains low accuracy,
our algorithm, despite its superficial resemblance to 1NN,
has a significantly better accuracy than 1NN and is in line
with the performance of random forests.

The running time of our algorithm was measured on the
MNIST dataset, on an Intel Core i7-7700HQ processor and
GeForce GTX 1060 graphics card. Performing the classi-
fication with 10000 Monte Carlo samples took 4 minutes
53 seconds for all 10000 test images, of which 15 seconds
were spent on initialization of the algorithm and about 0.277
seconds for each ray casting iteration on average.

While these initial tests show the feasibility of VBC-
classification on medium-sized datasets, we defer an in
depth performance evaluation to future work since optimiza-
tions such as the mentioned approximate nearest neighbor
search implementation and large scale implementation will
require further work.
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Figure 4. Area convergence results for normally distributed data and MNIST with σ = 103.
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Figure 5. Area convergence for a single cell with weight function parameter σ = 103. The left plot in each subfigure represents the
average Voronoi Boundary Rank, its standard deviation over 100 executions in grey. The dark gray curve represents a single run and
the blue curve depicts the mean Voronoi Boundary Rank. The second and fourth figure each show the standard deviation and its MSE
approximation with c/

√
x.
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Figure 6. Accuracy plots on the given datasets. We display mean accuracy (blue) and standard deviation (light gray) error bounds over
100 iterations of our algorithm and an example run (dark gray) of our approach.

Performance dependence on training data size In Fig.
7, we study how the accuracy of the algorithms changes with
the size of the training dataset. As all algorithms quickly
improve in accuracy as the training dataset size increases, we
display the difference in performance to the mean accuracy
over all 4 studied algorithms. The results were obtained
by sampling 25 random subsets of the data. The displayed
graphs represent mean performance over those 25 subsets
for each training data size setting. Note that we do not
display the results for SVM which were significantly worse
than the displayed values.

The intuition is that our algorithm should benefit, compared

to say 1NN, when it becomes possible to approximate the
Voronoi cell geometry.

We note that the Voronoi boundary classification algorithm
performs well on both small and large datasets. On the con-
trary, most of the other algorithms do not have this feature
or require additional tuning, that is dependent on the size of
the data (as in the case with neural networks). We note that,
particularly for CIFAR, and VBC performance for larger σ
parameter, VBC performance is similar for Random Forests
which performed well for large data size, while for small σ
VBC performed similar to 1NN for large training datasets
in line with Theorem 1.
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Figure 7. For each training data set size, we compute the relative difference between the algorithms’ accuracy and mean accuracy over all
4 studied algorithms for that training data set size. Results are furthermore averaged over 25 random training datasets for each training
data size setting.
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Figure 8. Correlation between accuracy and confidence value.

Confidence measurement We now consider a measure
of confidence in our classifier provided by the formula (S1−
S2)/(S1 + S2), where S1 is the largest Voronoi Boundary
Rank for a given point, and S2 is the second largest Voronoi
Boundary Rank.

The value of this ratio lies in [0, 1], with 1 corresponding
to the fact that only one class was encountered during in-
tegration, while 0 indicates that the algorithm has to pick
randomly between at least two classes, due to correspond-
ing integrals being equal. Figure 8 shows how the accuracy
of our algorithm correlates with the described confidence
levels on the MNIST dataset. Note that we observe that the
algorithm has accuracy close to 100% for confidence values
above 0.8, as well as a low accuracy of approximately 50%
for confidence values close to 0.

We believe that confidence measures such as the proposed

one may be useful in scenarios when the task of classifica-
tion is extended by having an option of not assigning a class
label in case of high uncertainty.

4. Conclusions and Future Work
We have proposed a geometric classification algorithm based
on a weighted integral over Voronoi cell boundaries and
demonstrated the performance of the algorithm on a set of
example datasts.

We believe that the simplicity of the geometric formula-
tion of this algorithm will allow for extensive analysis in
terms of error-bounds, behavior depending on training data
distribution assumptions etc. In future work, we hope to
evaluate the performance of our approach on larger datasets
and would like to generalize the ray-casting Monte Carlo
integration based approach of the proposed algorithm to a
larger family of geometric classification algorithms. Finally,
we intend to test our approach also as a hybrid method in
conjunction with Bayesian and Deep Neural Network based
approaches.

5. Supplementary Material and Source Code
The authors will maintain updated versions of supplemen-
tary information for this paper at their respective web-
sites https://people.kth.se/˜vpol and https:
//people.kth.se/˜fpokorny. Source code will be
available at https://github.com/vlpolyansky/
voronoi-boundary-classifier

6. Acknowledgements
This work has been supported by the Knut and Alice Wal-
lenberg Foundation.

https://people.kth.se/~vpol
https://people.kth.se/~fpokorny
https://people.kth.se/~fpokorny
https://github.com/vlpolyansky/voronoi-boundary-classifier
https://github.com/vlpolyansky/voronoi-boundary-classifier


Voronoi Boundary Classification: A High-Dimensional Geometric Approach via Weighted Monte Carlo Integration

References
Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R.,

and Wu, A. Y. An optimal algorithm for approximate
nearest neighbor searching fixed dimensions. Journal of
the ACM (JACM), 45(6):891–923, 1998.

Aurenhammer, F. Voronoi diagramsa survey of a fundamen-
tal geometric data structure. ACM Computing Surveys
(CSUR), 23(3):345–405, 1991.

Biau, G. and Devroye, L. Lectures on the nearest neighbor
method. Springer, 2015.

Breiman, L. Random forests. Machine learning, 45(1):
5–32, 2001.

Chang, C.-C. and Lin, C.-J. Libsvm: a library for support
vector machines. ACM transactions on intelligent systems
and technology (TIST), 2(3):27, 2011.

Davis, P. J. and Rabinowitz, P. Methods of numerical inte-
gration. Courier Corporation, 2007.

Deng, L. The mnist database of handwritten digit images
for machine learning research [best of the web]. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Dheeru, D. and Karra Taniskidou, E. UCI machine learning
repository, 2017. URL http://archive.ics.uci.
edu/ml.
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