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Abstract
Non-concave maximization has been the subject
of much recent study in the optimization and ma-
chine learning communities, specifically in deep
learning. Recent papers (Ge et al., 2015), (Lee
et al., 2017) and references therein indicate that
first order methods work well and avoid saddle
points. Results as in (Lee et al., 2017), however,
are limited to the unconstrained case or for cases
where the critical points are in the interior of the
feasibility set, which fail to capture some of the
most interesting applications. In this paper we
focus on constrained non-concave maximization.
We analyze a variant of a well-established algo-
rithm in machine learning called Multiplicative
Weights Update (MWU) for the maximization
problem maxx∈D P (x), where P is non-concave,
twice continuously differentiable and D is a prod-
uct of simplices. We show that MWU converges
almost always for small enough stepsizes to criti-
cal points that satisfy the second order KKT con-
ditions, by combining techniques from dynamical
systems as well as taking advantage of a recent
connection between Baum Eagon inequality and
MWU (Palaiopanos et al., 2017).

1. Introduction
The interplay between the structure of saddle points and
the performance of first order algorithms is a critical as-
pect of non-concave maximization. In the unconstrained
setting, there have been many recent results indicating that
gradient descent (GD) avoids strict saddle points with ran-
dom initialization (Lee et al., 2017), (see also (Daskalakis
& Panageas, 2018) for the analogue in min-max optimiza-
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tion). Moreover by adding noise, it is guaranteed that GD
converges to a local maximum in polynomial time (see (Ge
et al., 2015), (Jin et al., 2017) and references therein). By
adding a non-smooth function in the objective (e.g., the
indicator function of a convex set) it can be shown that
there are stochastic first order methods that converge to a
local minimum point in the constrained case (Allen-Zhu,
2017a) (Allen-Zhu, 2017b)(Allen-Zhu, 2018a)(Allen-Zhu,
2018b) under the assumption of oracle access to the stochas-
tic (sub)gradients. What is less understood is the problem
of convergence to second order stationary points in con-
strained optimization (under the weaker assumption that
we do not have access to the subgradient of the indicator
of the feasibility set; in other words when projection to the
feasibility set is not a trivial task). In the case of constrained
optimization, we also note that the techniques of (Lee et al.,
2017) are not applicable in a straightforward way.

Non-concave maximization problems with saddle
points/local optima on the boundary are very common. For
example in game theory, it is typical for a Nash equilibrium
not to have full support (and thus to lie on the boundary of
the simplex). In such cases, one natural approach is to use
projected gradient descent, but computing the projection
at every iteration might not be an easy task to accomplish.
Several distributed, concurrent optimization techniques
have been studied in such settings ((Kleinberg et al., 2009),
(Ackermann et al., 2009), (Daskalakis & Panageas, 2019)),
however they are known to work only for very specific
type of optimization problems, i.e., multilinear potential
functions. Moreover, having saddle points/local optima on
the boundary of a closed set that has (Lebesgue) measure
zero compared to the full domain (e.g., simplex with n
variables has measure zero in Rn) makes impossible to use
as a black box the result in (Lee et al., 2017) in which they
make use of well-known Center-stable manifold theorem
from the dynamical systems literature (see Theorem A.1 in
the supplementary material).

In this paper we focus on solving problems of the form

max
x∈D

P (x), (1)

where P is a non-concave, twice continuously differentiable
function and D is some compact set, which will be a prod-
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uct of simplices for our purposes, i.e., D = {(xij)|xij ≥
0,
∑M
j=1 xij = 1 for all 1 ≤ i ≤ N}, where N,M are nat-

ural numbers. As a result, vector x can be also interpreted
as a collection of N probability distributions (having N
players), where each distribution xi has support of size M
(strategies). For this particular problem (1), one natural algo-
rithm that is commonly used is the Baum-Eagon dynamics
(2) (see the seminal paper by Baum and Eagon (Baum &
Eagon, 1967)) with many applications to inference prob-
lems, Hidden Markov Models (HMM) in particular (see
also discussion in Section 4).

xt+1
ij = xtij

∂P
∂xij

∣∣
xt∑

s x
t
is

∂P
∂xis

∣∣
xt

, (2)

The denominator of the above fraction is for renormalization
purposes (superscript t indicates the iteration). It is clear
that as long as xt ∈ D then xt+1 ∈ D.

Despite its power, Baum-Eagon dynamics has its limitations.
First and foremost, the Baum-Eagon dynamics is not always
well-defined; the denominator term

∑
s x

t
is

∂P
∂xis

∣∣
xt must be

non-zero at all times and moreover the fraction in equations
(2) should always be non-negative. This provides a restric-
tion to the class of functions P to which the Baum-Eagon
dynamics can be applied. Moreover, it turns out that the
update rule of the Baum-Eagon dynamics is not always a
diffeomorphism.1 In fact, as we show even in simple set-
tings (see section 2.3) the Baum-Eagon dynamics may not
be even a homeomorphism or one-to-one. This counterex-
ample disproves a conjecture by Stebe(Stebe, 1972). Since
the map is not even a local diffeomorphism one cannot hope
to leverage the power of Center-stable manifold theorem to
argue convergence towards local maxima.

To counter this, in this paper we focus on multiplicative
weights update algorithm (MWU) (Arora et al., 2012) which
can be interpreted as an instance of Baum-Eagon dynamics
in the presence of learning rates. Introducing learning rates
gives us a lot of flexibility and will allow us to formally
prove strong convergence properties which would be im-
possible without this adaptation. Assume that xt is the t-th
iterate of MWU, the equations of which can be described as
follows:

xt+1
ij = xtij

1 + εi
∂P
∂xij

∣∣
xt

1 + εi
∑
s x

t
is

∂P
∂xis

∣∣
xt

, (3)

where εi the stepsize (learning rate) of the dynamics. Intu-
itively (in game theory terms), for strategy profile (vector)
x̃ := (x̃1, ...x̃N ), each player i that chooses strategy j has
utility to be ∂P

∂xij

∣∣
x=x̃

. We call a strategy profile y ∈ D a
fixed point if it is invariant under the update rule dynamics

1A function is called a diffeomorphism if it is differentiable
and a bijection and its inverse is differentiable as well.

(3). It is also clear that the set D is invariant under the dy-
namics in the sense that if xt ∈ D then xt+1 ∈ D for t ∈ N.
This last observation indicates that MWU has the projec-
tion step for free (compared to projected gradient descent).
We would also like to note that MWU can be computed
in a distributed manner and this makes the algorithm more
important for Machine Learning applications.

Statement of our results We will need the following two
definitions (well-known in optimization literature, as applied
to simplex constraints):

Definition 1.1 (Stationary point). x∗ is called a stationary
point as long as it satisfies the first order KKT conditions
for the problem (1). Formally, it holds

x∗ ∈ D
x∗ij > 0⇒ ∂P

∂xij
(x∗) =

∑
j′ x
∗
ij′

∂P
∂xij′

(x∗)

x∗ij = 0⇒ ∂P
∂xij

(x∗) ≤
∑
j′ x
∗
ij′

∂P
∂xij′

(x∗).
(4)

The stationary point is called strict if the last inequalities
hold strictly.

Definition 1.2 (Second order stationary point). x∗ is called
a second order stationary point as long as it is a stationary
point and moreover it holds that:

y>∇2P (x∗)y ≤ 0. (5)

for all y such that
∑M
j=1 yij = 0 (for all 1 ≤ i ≤ N ) and

yij = 0 whenever x∗ij = 0, i.e., it satisfies the second order
KKT conditions.

Our main result are stated below:

Theorem 1.3 (Avoid non-stationary). Assume that P is
twice continuously differentiable in a set containing D.
There exists small enough fixed stepsizes εi such that the
set of initial conditions x0 of which the MWU dynamics
(3) converges to fixed points that violate second order KKT
conditions is of (Lebesgue) measure zero.

The following corollary is immediate from Theorem 1.3
and the Baum-Eagon inequality for rational functions (see
Section 2).

Corollary 1.4. Assume µ is a measure that is absolutely
continuous with respect to the Lebesgue measure and P is
a rational function (fraction of polynomials) that is twice
continuously differentiable in a set containing D, with iso-
lated2 stationary points. It follows that with probability one
(randomness induced by µ), MWU dynamics converges to
second order stationary points.

2A stationary point is isolated if there exists a neighborhood
around it so that there is no other stationary point in that neighbor-
hood.
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Remark 1.5. It is obvious that when the learning rates εi =
0, MWU (3) is trivially the identity map. On the other
hand, whenever the dynamics is well defined in the limit
ε → ∞ (i.e. when P is sufficiently well behaved, e.g. a
polynomial with positive coefficients) this corresponds to
the well known class of Baum-Eagon maps (Stebe, 1972).

We conclude our results by showing that it is unlikely that
MWU dynamics converges fast to second (or even first)
order stationary points when MWU is applied to solve prob-
lem (1). The problem of finding first (resp. second) order
stationary points are inherently connected with the problem
of finding mixed (resp. pure) Nash equilibria in congestion
games. Currently, no polynomial time algorithms are known
for computing mixed Nash in congestion games (the prob-
lem lies between P and CLS3) (Daskalakis & Papadimitriou,
2011), whereas computing pure Nash Nash equilibria even
in linear congestion games, is known to be PLS-complete
(Fabrikant et al., 2004; Ackermann et al., 2008). The re-
ductions between the problems is based on the fact that
congestion games are potential games and hence (3) cap-
tures the behavior of self-interested learning agents playing
a congestion game.

Our techniques The first step of the proof given in Sec-
tion 3 is to prove that MWU converges to fixed points for
all rational functions and any possible set of learning rates
(as long as the dynamics is well defined). The proof of
this statement leverages recently discovered connections be-
tween MWU and the Baum-Eagon dynamics (Palaiopanos
et al., 2017). However, this does not even allow us to ex-
clude very suboptimal fixed points (i.e. saddle points or even
local minima) from having a positive region of attraction.

The other two steps of the proof work on weeding out the
”bad” stationary points and showing that the set of initial
conditions that converge to them is of measure zero. The
key tool for proving that type of statements is the Center-
stable manifold theorem (Lee et al., 2017). However, in
order to leverage the power of the theorem we first show in
Theorem 2.3 that for small enough learning rates MWU is
a diffeomorphism. The second and third step of the proof
respectively is to show that fixed points that do not satisfy
the first (resp. second) order stationary point conditions are
unstable under MWU.

Even for the first step of the proof (lemma 3.1), we have to
use ad-hoc techniques to deal with problems due to the con-
straints. Specifically, we start by projecting the domain D
to a subspace that is full dimensional (for example simplex
of size n is mapped to the Euclidean subspace of dimension
n− 1). Next, we show that non-first order stationary points

3CLS is a computational complexity class that captures con-
tinuous local search. It lies on the intersection of the mores well
studied classes of PLS and PPAD.

result to fixed points where the Jacobian of MWU has eigen-
value larger than 1. Proving a similar statement for the fixed
points that correspond to non-second order stationary fixed
points (lemma 3.2) is the most technical part of the proof as
we have to deal with the asymmetry of the resulting Jaco-
bian. Nevertheless we manage to do so by using Sylvester’s
law of inertia and exploiting newly discovered decomposi-
tions for this class of matrices. Putting everything together
results in our main theorem (Theorem 1.3).

Notation Throughout this article,D is the product ofN sim-
plices of size M each, D = {(xij)|xij ≥ 0,

∑M
j=1 xij =

1 for all 1 ≤ i ≤ N}, where we interpret i as the index
for the N agents and j the index of strategies M . We also
use boldfaces to denote vectors, i.e., x and [N ] denotes
{1, ..., N}.

2. Optimization with Baum-Eagon Algorithm
In this section, we state the important result of Baum and
Eagon providing a method to increase the value of a polyno-
mial with nonnegative coefficients and (later generalized for)
rational functions with nonzero denominators. The update
rule defined by (6) increases the value of the polynomial
P if the initial point is not a fixed point of Baum-Eagon
dynamics.

2.1. Baum-Eagon map

Let P be a polynomial with real positive coefficients and
variables xij , i = 1, ..., k, j = 1, ..., ni. Let n =

∑k
i=1 ni.

Let D be the product of simplexes. Define x′ := T (x) as
the vector in D with component ij given by

x′ij = T (x)ij :=
xij

∂P
∂xij∑ni

h=1 xih
∂P
∂xih

. (6)

Theorem 2.1 ((Baum & Eagon, 1967)). Let P ({xij}) be
a polynomial with non-negative coefficients homogeneous
of degree d in its variables {xij}. Let x = {xij} be any
point of the domain D = {xij ≥ 0,

∑ni

j=1 xij = 1, i =
1, 2, ..., k, j = 1, 2, ..., ni}. For x = {xij} ∈ D, let
T (x) = T ({xij}) be the point of D whose i, j coordinate
is

T (x)ij =
xij

∂P
∂xij∑ni

h=1 xih
∂P
∂xih

. (7)

Then P (T (x)) > P (x) unless T (x) = x.

2.2. Optimization for rational functions

According to (Gopalakrishnan et al., 1991), one can define a
Baum-Eagon dynamics for rational functionsR(x) = S1(x)

S2(x)

with positive denominator so that the update rule of the
Baum-Eagon dynamics increases the value of the rational
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function R for any given vector y unless y is a fixed point.
This can be done by starting with the Baum-Eagon map of
the following polynomial: Let y ∈ D be an arbitrary point.

Qy(x) = Py(x) + Cy(x),

where Py(x) = S1(x) − R(y) · S2(x), Cy(x) =
Ny(

∑
ij xij + 1)d, where d is the degree of Py(x) and Ny

is a constant such that Py(x) +Cy(x) only has nonnegative
coefficients.

It is proved in (Gopalakrishnan et al., 1991) that
R(T (y)) > R(y) along the Baum-Eagon dynamics
(update rule T ) induced by polynomial Qy(x).

2.3. Bad example on Baum-Eagon dynamics

L. Baum has an unpublished result (Stebe, 1972) claiming
that the Baum-Eagon map T is a homeomorphism4 of D
onto itself if and only if the polynomial P can be expressed
as a sum that contains monomials of the form ci,jx

wi,j

i,j for
all i = 1, ..., k, j = 1, ..., ni where ci,j > 0 and wi,j is
an integer greater than zero (this means that P might also
contain other terms, i.e, products of different variables). But
this condition is incorrect and we give a counter example
below. We note that our example indicates that the Baum-
Eagon dynamics does not satisfy the nice property of being
a diffeomorphism.

For a special case, we focus on the map τ defined on a single
simplex (with n variables)

∆n−1 = {(x1, ..., xn)|
n∑
i=1

xi = 1},

and τ can be written as

x′i = τ(x)i :=
xi

∂P
∂xi∑
xi

∂P
∂xi

(8)

The map defined in equation (8) can be expressed as a
composition of τ1 and τ2 defined in the following way:

τ1 : (x1, ..., xn) 7→ (x1
∂P

∂x1
, ..., xn

∂P

∂xn
) (9)

τ2 : (x1
∂P

∂x1
, ..., xn

∂P

∂xn
) 7→ (10)

1∑n
i=1 xi

∂P
∂xi

(x1
∂P

∂x1
, ..., xn

∂P

∂xn
) (11)

Consider 1-dimensional simplex as an example (i.e, n = 2),
τ1 maps the simplex ∆1 to a curve and τ2 maps points on
the curve back to ∆1 by scaling. From Figure 1a, we notice

4A function is called a homeomorphism if it is continuous and
a bijection and its inverse is continuous as well. Thus if a function
is not a homeomorphism, then it is not a diffeomorphism.

(a) τ = τ2 ◦ τ1

(b) τ = τ2 ◦ τ1
.

Figure 1. Illustration

that a necessary condition for τ to be a homeomorphism
is that the curve τ1(∆1) (image of ∆1 under τ1, see thick,
black curve in Figure 1a, 1b) does not cross twice (or more
times) any line that passes through the origin and has slope
non-negative (see also Figure 1b). A necessary condition
for τ to be a homeomorphism is that τ must be one to one.
In 1-dimensional case, the ratio

k = x1
∂P

∂x1
/x2

∂P

∂x2

must be monotone with respect to x1. The following exam-
ple is a polynomial that satisfies Baum’s condition, however
it holds that function k is not monotone with respect to x1.

Example 2.2. Suppose P = x1 + x71x2 + x72, then

x1
∂P

∂x1
= x1 + 7x71x2

x2
∂P

∂x2
= x71x2 + 7x72

As it is shown in Figure 2, the ratio k = x1
∂P
∂x1

/x2
∂P
∂x2

is
not monotone with respect to x1. So the Baum-Eagon map
is not one to one implying that it is not a homeomorphism.
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Figure 2. Non-monotonicity of k(x1)

2.4. Baum-Eagon map of
∑
i,j xij + εP

Let P be a twice continuously differentiable function on
the product of simplexes D. The update rule of the Baum-
Eagon dynamics for the function Q :=

∑
i,j xij + εP (as

defined in (2)) is a diffeomorphism for ε sufficiently small
(we note that Baum-Eagon dynamics for Q coincides with
the MWU dynamics for P , see Equations (3)). This is what
next theorem captures.

Theorem 2.3. For any twice continuously differentiable
function P , there exists a positive number δ depending on
P , such that for any ε < δ, the Baum-Eagon map applied
to Q =

∑
ij xij + εP is a diffeomorphism.

Proof. Firstly, we prove that the Baum-Eagon map of Q is
a local diffeomorphism. For a fixed i, denote

T (x)ij =
xij + εxij

∂P
∂xij∑

j xij + ε
∑
j xij

∂P
∂xij

.

Since the roots of the characteristic polynomial of a matrix
vary continuously as a function of coefficients (see Theo-
rem VI.1.2 in (Bhatia, 1992)), let Jε be the Jacobian of the
function T (x), i.e., of the update rule of the Baum-Eagon
dynamics induced by function Q =

∑
ij xij + εP (note that

T coincides with the MWU dynamics for function P with
same stepsize ε (i.e., same learning rates)). The determinant
|Jε| is continuous with respect to ε. When ε→ 0, it holds
that |Jε| → 1 at each point p ∈ D where the Jacobian is
computed, thus for each point p ∈ D there exists εp, such
that for all ε < εp, we get that |Jε(p)| > 1/2.

Since the determinant is also continuous with respect to
points in D, for εp, there is a neighborhood of p, denoted as
U(p, εp), such that for all x ∈ U(p, εp), |Jεp(x)| > 1/2.
Thus we have obtained an open cover of D, which is⋃
p∈D U(p, εp). Since D is compact, there is a finite sub-

cover of
⋃
p∈D U(p, εp), denoted as

⋃n
i=1 U(pi, εpi). Then

the minimum of {εpi} gives the δ in the lemma.

To prove that the Baum-Eagon map T of Q is a global
diffeomorphism, one needs Theorem 2 in (Ho, 1975). Since
T is proper (preimage of compact set is compact) and D is
simply connected and path connected, we conclude that T
is a homeomorphism on D (we suggest the reader to see the
supplementary material for all the missing definitions).

Remark 2.4. The above theorem essentially can be general-
ized for different stepsizes (learning rates) ε for each player.
The idea is that we should apply the same techniques on the
function

∑N
i=1

1
εi

∑M
j=1 xij + P .

3. Convergence Analysis of MWU for
Arbitrary Functions

In this section we provide the proof of Theorem 1.3. As has
already been proven in previous section (Theorem 2.3), the
update rule of the MWU dynamics is a diffeomorphism for
appropriately small enough learning rates. Following the
general framework of (Lee et al., 2017), we will also make
use of the Center-stable manifold theorem (Theorem A.1).
The challenging part technically in this paper is to prove
that every stationary point x that is not a local maximum
has the property that the Jacobian of the MWU dynamics
computed at x has a repelling direction (eigenvector).

3.1. Equations of the Jacobian at a fixed point and
projection

We focus on multiplicative weights updates algorithm. As-
sume that xt is the t-th iterate of MWU. Recall that:

xt+1
ij = xtij

1 + εi
∂P
∂xij
|x=xt

1 + εi
∑
s x

t
is

∂P
∂xis
|x=xt

(12)

where εi the stepsize of the dynamics. Let T : D → D be
the update rule of the MWU dynamics (12). Fix indexes
i, i′ ∈ [N ] for players and j, s ∈ [M ] for strategies. Set
Si = 1 + εi

∑
j′ xij′

∂P
∂xij′

. The equations of the Jacobian
look as follows:

∂Tij
∂xij

=
1 + εi

∂P
∂xij

Si
+
xij
S2
i

(
εi
∂2P

∂x2ij
· Si − εi(1 + ε

∂P

∂xij
)

· ( ∂P
∂xij

+ xij
∂2P

∂x2ij
+
∑
s 6=j

xis
∂P

∂xis∂xij
)
)
,

∂Tij
∂xis

=
xis
S2
i

(
εi

∂2P

∂xij∂xis
· Si − εi(1 + εi

∂P

∂xij

· ( ∂P
∂xis

+ xis
∂2P

∂x2is
+
∑
j′ 6=s

xij′
∂2P

∂xij′∂xis
))
)
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for all i ∈ [N ], j, s ∈ [M ], j 6= s and

∂Tij
∂xi′s

=
xij
S2
i

(
εi

∂2P

∂xi′s∂xij
· Si − εi(1 + εi

∂P

∂xij
)

· (
∑
j′

xij′
∂2P

∂xij′∂xi′s
)
)

for i 6= i′ ∈ [N ], j, s ∈ [M ].

Let y to be a fixed point of MWU dynamics. We define the
projected MWU mapping to be the function Ty by removing
one variable j ∈ [M ] for each player i ∈ [N ] (i.e, xij) such
that yij > 0. We also define Dy to be the projection of
D in the same way. Now the mapping is Ty : S → S for
S ⊂ RNM−M is still a diffeomorphism where S is an open
set that contains Dy. We define the corresponding Jacobian
(called projected Jacobian) to be the submatrix by removing
rows and columns that correspond to variables xij that were
removed.

3.2. Stability and proof of Theorem 1.3

We prove the following important lemma that characterizes
(partially) the unstable fixed points (meaning the spectral
radius of the Jacobian computed at the fixed point is greater
than one) of the MWU dynamics and relates them to the
stationary points.
Lemma 3.1 (Non first order stationary points are unstable).
Let y be a fixed point of MWU dynamics that violates the
first order KKT conditions (is not a first order stationary
point). It holds that the projected Jacobian computed at
y (formally now is the projected point y ∈ Dy) has an
eigenvalue with absolute value greater than one.

Proof. Since y is not a stationary point, there exist i, j
and so that yij = 0 but ∂P

∂xij

∣∣
x=y

>
∑
j′ yij′

∂P
∂xij′

∣∣
x=y

.
The projected Jacobian computed at y has the property
that for variable xij , the corresponding row has entries
zeros, apart from the corresponding diagonal entry that

is
1+εi

∂P
∂xij

1+εi
∑

j′ xij′
∂P

∂x
ij′

> 1 (from the definition of station-

ary point). Since the projected Jacobian has as eigenvalue
1+εi

∂P
∂xij

1+εi
∑

j′ xij′
∂P

∂x
ij′

the claim follows.

The following technical lemma gives a full characterization
among the unstable fixed points of MWU dynamics and the
second order stationary points (local maxima). This lemma
is more challenging than the stability analysis in (Lee et al.,
2017) due to the fact that we have constraints on simplex.
Lemma 3.2 (Non second order stationary points are unsta-
ble). Let x∗ be a fixed point of MWU dynamics that is a
stationary point (satisfies first order KKT conditions) and
violates the second order KKT conditions (is not a second
order stationary point). It holds that the projected Jaco-
bian computed at x∗ (formally now is the projected point

x∗ ∈ Dx∗) has an eigenvalue with absolute value greater
than one.

Proof. Because of Lemma 3.1 we may assume that x∗ in
the interior of D (all coordinates are positive). Set Si =
1 + εi

∑M
j′=1 x

∗
ij′

∂P
∂xij′

∣∣
x=x∗

for i ∈ [N ]. Set

Dxs =

ε1x
∗
11

S1
0

. . . 0
0 ε1x

∗
1M

S1

. . .
εNx

∗
N1

SN
0

0 . . .
0 εNx

∗
NM

SN


and

Dxx =



x∗11 · · · x∗1M
...

... 0
x∗11 · · · x∗1M

. . .
x∗N1 · · · x∗NM

0 ...
...

x∗N1 · · · x∗NM


where Dxs is a diagonal matrix with positive diagonal en-
tries and Dxx has rank N . The Jacobian (not projected)
of MWU dynamics computed at x∗ can be expressed in
a compact form (see Section 3.1 for the equations of the
Jacobian) as

I +Dxs(I −Dxx)∇2P (x∗) = I +Dxs∇2P (x∗)
−DxsDxx∇2P (x∗),

(13)
where I denotes the identity matrix (in particular of size
NM in the aforementioned expression). Observe that if x∗

violates the second order KKT conditions it means that the
symmetric matrix∇2P (x∗) has an eigenvector z orthogonal
to all ones vector (for each player) with positive eigenvalue
λ. Moreover by law of inertia of Sylvester, the same holds
for the matrix

D1/2
xs ∇2P (x∗)D1/2

xs .

Moreover D1/2
xs ∇2P (x∗)D

1/2
xs has the same eigenvalues

with matrix

D1/2
xs D

1/2
xs ∇2P (x∗)D1/2

xs D
−1/2
xs = Dxs∇2P (x∗),

therefore matrix Dxs∇2P (x∗) has a positive eigenvalue
with an eigenvector z′. To finish the proof, observe that
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since z is orthogonal to all ones vector (the vector with all
entries equal to 1), it holds that the null space of DxsDxx

and DxsDxx∇2P (x∗) span the whole space, hence z′

should lie in the null space of (DxsDxx∇2P (x∗))>. There-
fore z′ is an eigenvector of Dxs(I − Dxx)∇2P (x∗) with
positive eigenvalue, hence z′ is an eigenvector of I +
Dxs(I −Dxx)∇2P (x∗) (i.e., of the Jacobian) with eigen-
value greater than one. It is easy to see that this is also
an eigenvalue of the projected Jacobian and the claim fol-
lows.

We can now prove our second main Theorem 1.3.

Proof of Theorem 1.3. As long as we establish the idea of
projecting the Jacobian, then the proof follows the lines of
work of (Mehta et al., 2015), (Lee et al., 2017) and is rather
generic. We shall show that the set of initial conditions
so that MWU dynamics converges to unstable fixed points
(meaning that the spectral radius of the Jacobian computed
at the fixed point is greater than one) is of measure zero
and then by Lemma 3.1, the proof follows. Let y be an
unstable fixed point of the MWU (as a dynamical system)
with update rule a function Ty : S → S. For such unstable
fixed point y, there is an associated open neighborhood
By ⊂ S promised by the Stable Manifold Theorem A.1.

Define Wy = {x0 ∈ Dy : limt→∞ xt = y}. Fix a point
x0 ∈ Wy. Since xk → y, then for some non-negative
integer K and all t ≥ K, T ty(x0) ∈ By (T ty denotes compo-
sition of Ty t times). We mentioned above that Ty is a diffeo-
morphism in S. By Theorem A.1, Qy := ∩∞k=0T

−k
y (By)

is a subset of the local center-stable manifold which has
co-dimension at least one, and Qy is thus measure zero.

Finally, TKy (x0) ∈ Qy implies that x0 ∈ T−Ky (Qy). Since
K is unknown we union over all non-negative integers, to
obtain x0 ∈ ∪∞j=0T

−j
y (Qy). Since x0 was arbitrary, we

have shown that Wy ⊂ ∪∞j=0T
−j
y (Qy). Using Lemma 1

of page 5 in (Lee et al., 2017) and that countable union of
measure zero sets is measure zero, Wy has measure zero.
The claim follows since by mappingWy to the setW (which
is defined by padding the removed variables), then W is the
set of initial conditions that MWU dynamics converges to y
and is of measure zero in D.

3.3. On the speed of convergence

In this section we argue about the limitations of any algo-
rithm that aims at solving maximization problem subject to
simplex constraints (even for polynomial objectives), i.e.,
problem (1). We conclude that it is unlikely that MWU
dynamics (or any other algorithm) converges in polynomial
time to a local maximum (for problem (1)). In fact, as we
will show providing a polynomial time algorithm for finding
even first order stationary points for an arbitrary polyno-

mial function is at least as hard as computing Nash equi-
libria for general congestion games, a problem for which
no polynomial time algorithm is known and whose time
complexity lies in CLS (Daskalakis & Papadimitriou, 2011).
Computing second order stationary points even for general
bilinear functions, specifically even for function of the form
f(x) =

∑
i,i′,i6=i′

∑
j,j′ aii′jj′xijxi′j′ +

∑
i

∑
j bijxij is

strongly connected with the problem finding pure Nash equi-
libria even in linear congestion games that is known to be
PLS-complete (Fabrikant et al., 2004; Ackermann et al.,
2008).

Specifically, it suffices to focus on a special class of con-
gestion games which are called threshold games. These
are congestion games in which the set of resources R is
divided into two disjoint subsets Rin and Rout. The set
Rout contains a resource ri for every player i ∈ N . This
resource has a fixed delay Ti called the threshold of player
i. Each player i has exactly two strategies: a strategy
Souti = {ri} with ri ∈ Routi , and a strategy Sini ⊆ Rin.
Agent i prefers strategy Sini to strategy Souti if the total
cost of playing Sini is smaller than the threshold cost Ti.
Quadratic threshold games are a subclass of threshold games
in which the set Rin contains exactly one resource rii′ for
every unordered pair of players {i, i′} ⊂ N . For every
player i ∈ N of a quadratic threshold game, his strategy set
Sin = {rii′ |i′ ∈ N, ji′ 6= i}. Without loss of generality let
any resource rii′ have a linear delay function of the form
cii′(k) = aii′k with aii′ > 0. Furthermore, all thresholds
can be assumed to be positive. (Ackermann et al., 2008)
proves that computing a Nash equilibrium of a quadratic
threshold game with nondecreasing delay functions is PLS-
complete.

Theorem 3.3. Finding a first-order stationary point for a
general polynomial function f is at least as hard as com-
puting a Nash equilibrium for general congestion games.
Let f(x) =

∑
i,i′,i6=i′

∑
j,j′ aii′jj′xijxi′j′+

∑
i

∑
j bijxij ,

where for all i,
∑
xij = 1. Finding a second-order station-

ary point of f(x) is at least as hard as computing a pure
Nash equilibrium in a generic quadratic threshold game.

Proof. Firstly, any first order stationary point of the ex-
pected value of the potential is a Nash equilibrium, since
the gradient of the potential corresponds to the vector of
deviating payoffs for all agents and all strategies. Thus.
first order stationarity implies that only strategies that
give maximal payoff are played with positive probabil-
ity, i.e. the strategy is a Nash equilibrium. The expected
value of the potential function of a quadratic threshold
congestion games is a bilinear function. This is trivially
true since each resource can only be used by at most
two agents. Specifically the expected value of the po-
tential function of the game when each agent i is using
mixed strategy (xiSin

i
, xiSout

i
) is equal to

∑
i∈N xiSin

i
Ti +
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i∈N xiSout

i

∑
i′ 6=i aii′ +

∑
i,i′,i6=i′ xiSout

i
xi′Sout

i′
aii′ . By

the genericity assumption we can assume that the number of
fixed points of MWU are finite and isolated, e.g. (Kleinberg
et al., 2009). If this Nash equilibrium is pure then we are
done. Suppose not, in which case there exist some agents
that play mixed strategies with support equal to 2. Since the
potential is a bilinear function it can be computed without
error using its gradient and Hessian via Taylor expansion.
Second order stationarity now implies that for any coordi-
nated set of deviations of two of the randomizing agents the
potential can still not improve. Consider the continuum of
strategy profiles (ζi, x−i) where i was a randomizing agent
that now deviates and plays strategy Sini with arbitrary prob-
ability ζi ∈ [0, 1]. Since the original strategy profile x is
a NE, agent i is still indifferent between his two actions.
As we have argued any profile that exactly two randomiz-
ing agents deviate does not affect the value of the expected
potential for so the value of the potential does not change.
So, even if agent i′ was to deviate to strategy ζ ′i ∈ [0, 1],
the value of the potential at (ζi, ζ

′
i, x−i,i′) cannot be higher

that its value at (ζi, x−i) and x. So, none of the random-
izing agents at any strategy profile (ζi, x−i) can profit by
deviating. Each point on the line segment (ζi, x−i) with
ζi ∈ [0, 1] is a stationary point of MWU, and we reach a con-
tradiction to our genericity assumption. Thus, the second
order stationary point of the potential is a pure Nash.

4. Applications

Figure 3. Landscape of non-concave function cos(8x)sin(6y).

One application of Baum-Eagon algorithm is parameter es-
timation via maximum likelihood. Suppose that X1, ..., Xn

are samples from a population with probability density func-
tion f(x|θ1, ..., θk), the likelihood function is defined by

L(θ|x) = L(θ1, ..., θk|x1, ..., xn) =

n∏
i=1

f(xi|θ1, ..., θk).

Maximum likelihood estimator has many applications in
machine learning and statistics (e.g., regression) and when

is consistent, the problem of estimation boils down to maxi-
mizing the likelihood function. This can be achieved via the
E-M algorithm based on the Baum-Eagon inequality. For
example, the estimation of the parameters of hidden Markov
models (motivated by real world problems, see (Gopalakr-
ishnan et al., 1991) for an example on speech recognition) re-
sult in the maximization of rational functions over a domain
of probability values. The rational functions are conditional
likelihood functions of parameters θ = (θ1, ..., θk). The
Baum-Eagon dynamics is used to estimate the parameters
of hidden Markov models. Our main result indicates that
MWU dynamics should be used for the optimization part as
MWU has some nice properties (well-defined, update rule
is a diffeomorphism, avoids non-stationary points) in which
Baum-Eagon dynamics might not have.

Below we provide a pictorial illustration of MWU dynamics
applied to a non-concave function (not rational). The func-
tion we consider is P (x, y) = cos(8x)sin(6y) and we want
to optimize it over R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
(see Figure 3 for the landscape). The aforementioned in-
stance is captured by our model for N = M = 2, in which
we have essentially projected the space by using one vari-
able for each player (for player one, the second variable is
1− x and for player two is 1− y). The equations of MWU
dynamics boil down to the following:

xt+1 = xt(1+ε(−8 sin(8x) sin(6y)))
1+εx·(−8 sin(8x) sin(6y))+ε(1−x)·(8 sin(8x) sin(6y))

yt+1 = yt(1+ε(6 cos(8x) cos(6y)))
1+εy·(6 cos(8x) cos(6y))+ε(1−y)·(−6 cos(8x) cos(6y))

(14)

We demonstrate in Figure 4 the “vector field” of MWU
dynamics (because it is a discrete time system it is not
precisely vector field, at point (x, y) we plot a vector with
direction T (x, y) − (x, y), where T is the update rule of
dynamics (14)). The three dots indicate the local maxima of
P and the rest of the points do not satisfy the second order
KKT conditions. We see that MWU dynamics avoids those
points that do not satisfy the second order KKT conditions
(avoids those that are not local maxima).

Figure 4. Vector field of MWU dynamics in the case of non-
concave function cos(8x)sin(6y). Only local maxima (red dots)
have positive regions of attraction.
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