Supplementary Details for Zero-Shot Knowledge Distillation (ZSKD)

Gaurav Kumar Nayak^{*1} Konda Reddy Mopuri^{*2} Vaisakh Shaj^{*3} R. Venkatesh Babu¹ Anirban Chakraborty¹

Architecture Details Used in ZSKD

• Lenet-5 as teacher and Lenet-5-Half as student used for MNIST and Fashion-MNIST datasets

Lenet-5 Architecture	Lenet-5-Half Architecture	
(Teacher Model)	(Student Model)	
Laver 1: Convolution	Laver 1: Convolution	
Input: 32x32x1: Output: 28x28x6	Input: $32x32x1$: Output: $28x28x3$	
Kernel size: 5x5x1 (initialized	Kernel size: 5x5x1 (initialized	
through truncated normal with stan-	through truncated normal with stan-	
dard deviation of 0.1)	dard deviation of 0 1)	
No. Of Filters: 6. stride = 1	No. Of Filters: 3. stride = 1	
Padding = VALID	Padding = VALID	
Bias initialized with zeros.	Bias initialized with zeros.	
Activation: Relu	Activation: Relu	
Layer 2: Pooling	Layer 2: Pooling	
Max Pooling, Padding=VALID	Max Pooling, Padding=VALID	
Input: 28x28x6; Output: 14x14x6	Input: 28x28x3; Output: 14x14x3	
Layer 3: Convolution	Layer 3: Convolution	
Input: 14x14x6; Output: 10x10x16	Input: 14x14x3; Output: 10x10x8	
Kernel size: 5x5x6 (initialized	Kernel size: 5x5x3 (initialized	
through truncated normal with stan-	through truncated normal with stan-	
dard deviation of 0.1)	dard deviation of 0.1)	
No. Of Filters: 16, stride = 1	No. Of Filters: 8, stride = 1	
Padding = VALID	Padding = VALID	
Bias initialized with zeros.	Bias initialized with zeros.	
Activation: Relu	Activation: Relu	
Layer 4: Pooling	Layer 4: Pooling	
Max Pooling, Padding=VALID	Max Pooling, Padding=VALID	
Input: 10x10x16; Output: 5x5x16	Input: 10x10x8; Output: 5x5x8	
Flatten:	Flatten:	
Input: 5x5x16; Output=400	Input: 5x5x8; Output=200	
Layer 5: Fully Connected	Layer 5: Fully Connected	
Input: 400; Output:120	Input: 200; Output:120	
Weight shape: (400,120) (initialized	Weight shape: (200,120) (initialized	
through truncated normal with stan-	through truncated normal with stan-	
dard deviation of 0.1)	dard deviation of 0.1)	
Bias initialized with zeros.	Bias initialized with zeros.	
Activation: Relu	Activation: Relu	

Layer 6: Fully Connected
Input: 120; Output:84
Weight shape: (120,84) (initialized
through truncated normal with stan-
dard deviation of 0.1)
Bias initialized with zeros.
Activation: Relu
Layer 7: Fully Connected
Input: 84; Output:10
Weight shape: (84,10) (initialized
through truncated normal with stan-
dard deviation of 0.1)
Bias initialized with zeros.
Output: Logits
Layer 8: Softmax Layer

Table 1: Teacher and Student Models for MNIST and Fashion-MNIST.

• Alexnet as Teacher and Alexnet-Half as student model used for CIFAR 10 dataset

Alexnet Architecture	Alexnet-Half Architecture	
(Teacher Model)	(Student Model)	
Layer 1: Convolution	Layer 1: Convolution	
Input: 32x32x3; Output: 32x32x48	Input: 32x32x3; Output: 32x32x24	
Kernel size: 5x5x3 (initialized	Kernel size: 5x5x3 (initialized	
through random normal with standard	through random normal with standard	
deviation of 0.01)	deviation of 0.01)	
No. Of Filters: 48 , stride = 1	No. Of Filters: 24 , stride = 1	
Padding = SAME	Padding = SAME	
Bias initialized with zeros.	Bias initialized with zeros.	
Activation: Relu	Activation: Relu	
Layer 2: Local Response Normal-	Layer 2: Local Response Normal-	
ization	ization	
depth_radius =2, alpha =0.0001,	depth_radius =2, alpha =0.0001,	
beta=0.75, bias=1.0	beta=0.75, bias=1.0	
Layer 3: Pooling	Layer 3: Pooling	
Max Pooling, Padding=VALID	Max Pooling, Padding=VALID	
Kernel size=3, stride =2	Kernel size=3, stride =2	
Output: 15x15x48	Output: 15x15x24	
Layer 4: Batch Norm	Layer 4: Batch Norm	
Layer 5: Convolution	Layer 5: Convolution	
Input: 15x15x48; Output: 15x15x128	Input: 15x15x24; Output: 15x15x64	
Kernel size: 5x5x48 (initialized	Kernel size: 5x5x24 (initialized	
through random normal with standard	through random normal with standard	
deviation of 0.01)	deviation of 0.01)	
No. Of Filters: 128 , stride = 1	No. Of Filters: 64 , stride = 1	
Padding = SAME	Padding = SAME	
Bias initialized with 1.0	Bias initialized with 1.0	
Activation: Relu	Activation: Relu	
Layer 6: Local Response Normal-	Layer 6: Local Response Normal-	
ization	ization	
depth_radius =2, alpha =0.0001,	depth_radius =2, alpha =0.0001,	
beta=0.75, bias=1.0	beta=0.75, bias=1.0	

Layer 7: Pooling	Layer 7: Pooling
Max Pooling, Padding=VALID	Max Pooling, Padding=VALID
Kernel size=3, stride =2	Kernel size=3, stride =2
Output: 7x7x128	Output: 7x7x64
Layer 8: Batch Norm	Layer 8: Batch Norm
Layer 9: Convolution	Layer 9: Convolution
Input: 7x7x128; Output: 7x7x192	Input: 7x7x64; Output: 7x7x96
Kernel size: 3x3x128 (initialized	Kernel size: 3x3x64 (initialized
through random normal with standard	through random normal with standard
deviation of 0.01)	deviation of 0.01)
No. Of Filters: 192 , stride = 1	No. Of Filters: 96, stride = 1
Padding = SAME	Padding = SAME
Bias initialized with zeros.	Bias initialized with zeros.
Activation: Relu	Activation: Relu
Layer 10: Batch Norm	Layer 10: Batch Norm
Layer 11: Convolution	Layer 11: Convolution
Input: 7x7x192; Output: 7x7x192	Input: 7x7x96; Output: 7x7x96
Kernel size: 3x3x192 (initialized	Kernel size: 3x3x96 (initialized
through random normal with standard	through random normal with standard
deviation of 0.01)	deviation of 0.01)
No. Of Filters: 192 , stride = 1	No. Of Filters: 96, stride = 1
Padding = SAME	Padding = SAME
Bias initialized with 1.0.	Bias initialized with 1.0.
Activation: Relu	Activation: Relu
Layer 12: Batch Norm	Layer 12: Batch Norm
Layer 13: Convolution	Layer 13: Convolution
Input: 7x7x192; Output: 7x7x128	Input: 7x7x96; Output: 7x7x64
Kernel size: 3x3x192 (initialized	Kernel size: 3x3x96 (initialized
through random normal with standard	through random normal with standard
deviation of 0.01)	deviation of 0.01)
No. Of Filters: 128 , stride = 1	No. Of Filters: 64 , stride = 1
Padding = SAME	Padding = SAME
Bias initialized with 1.0.	Bias initialized with 1.0.
Activation: Relu	Activation: Relu
Layer 14: Pooling	Layer 14: Pooling
Max Pooling, Padding=VALID	Max Pooling, Padding=VALID
Kernel size=3, stride =2	Kernel size=3, stride =2
Output: 3x3x128	Output: 3x3x64
Layer 15: Batch Norm	Layer 15: Batch Norm
Flatten:	Flatten:
Input: 3x3x128; Output=1152	Input: 3x3x64; Output=576
Layer 16: Fully Connected	Layer 16: Fully Connected
Input: 1152; Output:512	Input: 576; Output:256
Weight shape: (1152,512) (initialized	Weight shape: (576,256) (initialized
through random normal with standard	through random normal with standard
deviation of 0.01)	deviation of 0.01)
Bias initialized with zeros.	Bias initialized with zeros.
Activation: Relu	Activation: Relu
Layer 17: Dropout	Layer 17: Dropout
Rate=0.5	Rate=0.5
Layer 18: Batch Norm	Layer 18: Batch Norm
-	· · ·

Layer 19: Fully Connected	Layer 19: Fully Connected
Input: 512; Output:256	Input: 256; Output:128
Weight shape: (512,256) (initialized	Weight shape: (256,128) (initialized
through random normal with standard	through random normal with standard
deviation of 0.01)	deviation of 0.01)
Bias initialized with zeros.	Bias initialized with zeros.
Activation: Relu	Activation: Relu
Layer 20: Dropout	Layer 20: Dropout
Rate=0.5	Rate=0.5
Layer 21: Batch Norm	Layer 21: Batch Norm
Layer 22: Fully Connected	Layer 22: Fully Connected
Input: 256; Output:10	Input: 128; Output:10
Weight shape: (256,10) (initialized	Weight shape: (128,10) (initialized
through random normal with standard	through random normal with standard
deviation of 0.01)	deviation of 0.01)
Bias initialized with zeros.	Bias initialized with zeros.
Output: Logits	Output: Logits
1 0	

Table 2: Teacher and Student Models for CIFAR 10.

Note: During Distillation, at train time Logits are divided by temperature of 20 and at test time the Logits are divided by temperature of 1.

Details of Hyperparameters Used in ZSKD

NOTE:- All the experiments are performed using TensorFlow framework.

1. MNIST Training

Teacher Model: Lenet-5 Student Model: Lenet-5-Half

- **Teacher Training with original data:** We take epochs as 200, batch size of 512, learning rate equal to 0.001 and Adam optimizer.
- Student Training with original data using cross entropy loss: Same hyperparameters as above.
- Student Training with original data using knowledge distillation: We take $\lambda = 0.3$ which is the weight given to cross entropy loss and the distillation loss is given the weight as 1.0. The learning rate is taken as 0.01, temperature as 20 and rest of the hyperparameters are same.

• Data Impressions (DI) Generation:

- (a) 1% (600 DI): Batch size of 10, number of iterations to be 1500 and learning rate as 0.1
- (b) 5% (3000 DI): Batch size as 10, number of iterations to be 1500 and learning rate as 0.1
- (c) 10% (6000 DI): Batch size as 100, number of iterations to be 1500 and learning rate as 1.0
- (d) 20% (12000 DI): Batch size as 100, number of iterations to be 1500 and learning rate as 2.0
- (e) 40% (24000 DI): Batch size as 100, number of iterations to be 1500 and learning rate as 3.0

Student Training using DI (end to end): We take learning rate of 0.01, batch size as 512, max epochs to be 2000 and Adam optimizer.

We further finetune the model pretrained on 40% DI using mixture of DI and augmented DI samples with learning rate of 0.001

• Class Impressions (CI) Generation:

NOTE: We randomly sample a value (say x) from confidence range of 0.55 and 0.70. The training is done on the random noisy image till the confidence of noisy image > = confidence of x

- (a) 1% (600 DI): We take learning rate as 2.0 and student trained with learning rate of 0.01
- (b) 5% (3000 DI): We take learning rate as 0.01 and student trained with learning rate of 0.01
- (c) 10% (6000 DI): We take learning rate as 0.1 and student trained with learning rate of 0.01
- (d) **20%** (12000 DI): We take learning rate as 0.01 and student trained with learning rate of 0.01
- (e) 40% (24000 DI): We take learning rate as 0.1 and student trained with learning rate of 0.001

2. Fashion - MNIST Training

Teacher Model: Lenet-5 Student Model: Lenet-5-Half

- **Teacher Training with original data:** We take epochs as 200, batch size of 512, learning rate equal to 0.001 and Adam optimizer.
- Student Training with original data using cross entropy loss: Same hyperparameters as above.
- Student Training with original data using knowledge distillation: We take $\lambda = 0.3$ which is the weight given to cross entropy loss and the distillation loss is given the weight as 1.0. The learning rate is taken as 0.01, temperature as 20 and rest of the hyperparameters are same.
- Data Impressions (DI) Generation:
- (a) 1% (600 DI): Batch size of 10, number of iterations to be 1500 and learning rate as 3.0
- (b) 5% (3000 DI): Batch size as 10, number of iterations to be 1500 and learning rate as 3.0
- (c) 10% (6000 DI): Batch size as 100, number of iterations to be 1500 and learning rate as 1.0
- (d) 20% (12000 DI): Batch size as 100, number of iterations to be 1500 and learning rate as 1.0
- (e) 40% (24000 DI): Batch size as 10, number of iterations to be 1500 and learning rate as 1.0
- (f) 80% (48000 DI): Batch size as 100, number of iterations to be 1500 and learning rate as 3.0

Student Training using DI (end to end): We take batch size as 512, max epochs to be 2000 and Adam optimizer. Learning rate are taken as follows:

- Learning rate as 0.01 in case of (a), (d), (e) and (f).
- Learning rate as 0.001 in case of b).
- Learning rate as 0.0001 in case of c).

We further finetune the model pretrained on 80% DI using mixture of DI and augmented DI samples with learning rate of 0.001

• Class Impressions (CI) Generation:

NOTE: We randomly sample a value (say x) from confidence range of 0.55 and 0.70. The training is done on the random noisy image till the confidence of noisy image > = confidence of x

- (a) 1% (600 DI): We take learning rate as 0.01 and student trained with learning rate of 0.001
- (b) 5% (3000 DI): We take learning rate as 0.1 and student trained with learning rate of 0.001
- (c) 10% (6000 DI): We take learning rate as 2.0 and student trained with learning rate of 0.001
- (d) 20% (12000 DI): We take learning rate as 1.0 and student trained with learning rate of 0.001
- (e) 40% (24000 DI): We take learning rate as 0.01 and student trained with learning rate of 0.01
- (f) 80% (48000 DI): We take learning rate as 0.5 and student trained with learning rate of 0.001

3. CIFAR 10 Training

Teacher Model: Alexnet Student Model: Alexnet-Half

- **Teacher Training with original data:** We take epochs as 1000, batch size of 512, learning rate equal to 0.001 and Adam optimizer.
- Student Training with original data using cross entropy loss: Same hyperparameters as above.
- Student Training with original data using knowledge distillation: We take $\lambda = 0.3$ which is the weight given to cross entropy loss and the distillation loss is given the weight as 1.0. The learning rate is taken as 0.001, temperature as 20 and rest of the hyperparameters are same.
- Data Impressions (DI) Generation:
- (a) 1% (500 DI): Batch size of 5, number of iterations to be 1500 and learning rate as 0.01
- (b) 5% (2500 DI): Batch size as 25, number of iterations to be 1500 and learning rate as 0.01
- (c) 10% (5000 DI): Batch size as 50, number of iterations to be 1500 and learning rate as 0.01
- (d) 20% (10000 DI): Batch size as 100, number of iterations to be 1500 and learning rate as 0.01
- (e) 40% (20000 DI): Batch size as 100, number of iterations to be 1500 and learning rate as 0.01
- (f) 80% (40000 DI): Batch size as 100, number of iterations to be 1500 and learning rate as 0.01

Student Training using DI (end to end): We take learning rate of 0.001, batch size as 512, max epochs to be 2000 and Adam optimizer.

We further finetune the model pretrained on 80% DI using mixture of DI and augmented DI samples with learning rate of 0.001 having batch size as 5000.

• Class Impressions (CI) Generation:

NOTE: We randomly sample a value (say x) from confidence range of 0.55 and 0.70. The training is done on the random noisy image till the confidence of noisy image > = confidence of x

- (a) 1% (500 DI): We take learning rate as 0.1 and student trained with learning rate of 0.001
- (b) 5% (2500 DI): We take learning rate as 0.1 and student trained with learning rate of 0.01
- (c) 10% (5000 DI): We take learning rate as 0.1 and student trained with learning rate of 0.01
- (d) 20% (10000 DI): We take learning rate as 2.0 and student trained with learning rate of 0.001
- (e) 40% (20000 DI): We take learning rate as 1.0 and student trained with learning rate of 0.001
- (f) 80% (40000 DI): We take learning rate as 0.1 and student trained with learning rate of 0.01

4. Details on Augmentation

The following operations are done on the DI's to create variety of augmented samples :-

- (i) Scaling of 90%, 75% and 60% of original DI's
- (ii) Translation is done on left, right, top and bottom directions by 20%
- (iii) Rotation: Starts at -90° and ends at $+90^{\circ}$ to produce 10 rotated DI's such that the degree of next rotation is 20° more than the previous angle of rotation
- (iv) Flipping: Operations done are flip left right, flip up down and transpose
- (v) Scaling and Translation: The scaled Di's are translated on left, right, top and bottom directions by 20%
- (vi) Translation and Rotation: The translated Di's are rotated
- (vii) Scaling and Rotation: The scaled DI's are rotated

Below three operations are further exclusively done on the DI's extracted from Alexnet teacher model. These DI's have RGB components whereas the DI's obtained from Lenet teacher are gray scaled.

- Salt and Pepper Noise
- Gaussian Noise
- Adding Gaussian Noise to Salt and Pepper Noised DI

Ablations: With and without Augmentation

Teacher Model trained on Data set	ZSKD Performance on Student Network	
	Without Augmentation	With Augmentation
MNIST	96.98	98. 77
Fashion MNIST	69.37	79.62
CIFAR 10	56.80	69.56

Table 3. Performance (in %) of the proposed ZSKD framework.

Dataset	Uniform Prior	Class Similarity Prior
MNIST	95.16	96.98
Fashion MNIST	56.24	69.37
Cifar 10	49.23	56.80

Uniform Prior v/s Class Similarity Prior

Table 4. Performance of proposed ZSKD (in %) using uniform and class similarity priors (without augmentation)