Appendices:
Parameter Efficient Training of Deep Convolutional

Neural Networks by Dynamic Sparse Reparameterization

Hesham Mostafa' Xin Wang !>

A. A full description of the dynamic
parameter reallocation algorithm

Algorithm 1 in the main text informally describes our pa-
rameter reallocation scheme. In this appendix, we present a
more rigorous description of the algorithm.

Let all reparameterized weight tensors in the original net-
work be denoted by {W,}, where [ = 1,--- , L indexes
layers. Let N; be the number of parameters in W;, and
N =3, N, the total parameter count.

Sparse reparameterize W; = g (¢;; 1), where function g
places components of parameter ¢; into positions in W in-
dexedby ¥y € Wy, ({1,--+ , Ni}) * 8.t Wiy, , = ¢4, Vi
indexing components. Let M; < N; be the dimensionality
of ¢; and 1, i.e. the number of non-zero weights in W.
Define s; = 1 — %’ as the sparsity of W;. Global sparsity

is then defined as s = 1 — 4L where M = 3, M.
During the whole course of training, we kept global sparsity

constant, specified by hyperparameter s € (0, 1). Reparam-
eterization was initialized by uniformly sampling positions

in each weight tensor at the global sparsity s, i.e. wl(o) ~
0

u [\IIM;O) ({1, , Ni})| , 1, where M = |(1—5)Ni].

Associated parameters ¢l(0) were randomly initialized.

Dynamic reparameterization was done periodically by re-
peating the following steps during training:

1. Train the model
{ (¢l(t), ’lﬁl( t)) }) for P batch iterations;

2. Reallocate free parameters within and across weight ten-
sors following Algorithm 1 to arrive at new reparameteri-

(currently reparameterized by

!Artificial Intelligence Products Group, Intel Corporation, San
Diego, CA, USA. *Currently with Cerebras Systems, Los Altos,
CA, USA, work done while at Intel Corporation. Correspondence
to: Xin Wang <xin@cerebras.net>.

Proceedings of the 35" International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

*By ¥,(Q) £ {o(¥): ¥ e 29, ‘\I/’ =p,0 €8S,} we de-
note the set of all cardinality p ordered subsets of finite set Q).

zation { ((ﬁl(tﬂ), wl(tﬂ)) }

The adaptive reallocation is in essence a two-step proce-
dure: a global pruning followed by a tensor-wise growth.
Specifically our algorithm has the following key features:

1. Pruning was based on magnitude of weights, by compar-
ing all parameters to a global threshold H, making the
algorithm much more scalable than methods relying on
layer-specific pruning.

2. We made H adaptive, subject to a simple setpoint control

dynamics that ensured roughly N, weights to be pruned
globally per iteration. This is computationally cheaper
than pruning exactly IV, smallest weights, which requires
sorting all weights in the network.

3. Growth was by uniformly sampling zero weights and
tensor-specific, thereby achieving a reallocation of pa-
rameters across layers. The heuristic guiding growth
is

®

R

Gz(t) = { l ) ZKz(t)-‘v (D
2R T

where Kl(t) and Rl(t) = Ml(t) — Kl(t) are the pruned
and surviving parameter counts, respectively. This rule
allocated more free parameters to weight tensors with
more surviving entries, while keeping the global sparsity
the same by balancing numbers of parameters pruned
and grown T,

The entire procedure can be fully specified by hyperparame-
ters (s, P, Ny, 6, HO)).

B. Details of implementation

We implemented all models and reparameterization mech-
anisms using pytorch. Experiments were run on

Note that an exact match is not guanranteed due to rounding
errors in Eq. 1 and the possibility that Ml(t) - Kl(t) + Gl(t) > Ny,
i.e. free parameters in a weight tensor exceeding its dense size after
reallocation. We added an extra step to redistribute parameters
randomly to other tensors in these cases, thereby assuring an exact
global sparsity.



Appendices: Dynamic sparse reparameterization

Algorithm 1: Reallocate free parameters within and across weight tensors

Input: {( l(t), l(t))}, M®  gH®

. (t+1) , (t+1)
Qutput: {( ) Y, )}’M(t+1)’H(t+1)
Need: K,§
1 forle{l,---,L}do
(t) s () (t)
IL,"” « z.’¢l7i|<H
) pt) (t) (t) (t)
(Kz By ) = <‘Hl |, My = |1 |)
it S, K" < (1 - 6)K then
HED 271
elseif >, Kl(t) > (14 0)K then
HED & 1
else
H+D) L g®)
fori € {1,---,L} do

t R t
1 G e {leRz(t) > K} )-‘

12~ [Co (L N {ul)]
13 Ml(t+1) . Ml(t) _ Kl(t) +Gl(t)

[\S]

w

O W 0 ~J o U Wb

1

[N

(t+1) ) (t+1) (t) (t) 7t
(", )+([%W,O],[wugnlﬁ,m/)l D

> From step ¢

>Tostept+1

> Target number of parameters to be pruned and its fractional tolerance

> For each reparameterized weight tensor

> Indices of subthreshold components of qbl(t) to be pruned
> Numbers of pruned and surviving weights

> Too few parameters pruned
> Increase pruning threshold

> Too many parameters pruned

> Decrease pruning threshold

> A proper number of parameters pruned
> Maintain pruning threshold

> For each reparameterized weight tensor

> Redistribute parameters for growth

> Sample zero positions to grow new weights
> New parameter count

> New reparameterization

GPUs, and all sparse tensors were represented as dense
tensors filtered by a binary mask . Source code to
reproduce all experiments is available in the anony-
mous repository: https://github.com/IntelAI/
dynamic-reparameterization.

Training Hyperparameter settings for training are listed
in the first block of Table 1. Standard mild data augmen-
tation was used in all experiments for CIFAR10 (random
translation, cropping and horizontal flipping) and for Ima-
genet (random cropping and horizontal flipping). The last
linear layer of WRN-28-2 was always kept dense as it has a
negligible number of parameters. The number of training
epochs for the thin dense and static sparse baselines are
double the number of training epochs shown in Table 1.

Sparse compression baseline We compared our method
against iterative pruning methods (Han et al., 2015; Zhu &
Gupta, 2017). We start from a full dense model trained with
hyperparameters provided in the first block of Table 1 and
then gradually prune the network to a target sparsity in T'
steps. As in (Zhu & Gupta, 2017), the pruning schedule we

*This is a mere implementational choice for ease of experimen-
tation given available hardware and software, which did not save
memory because of sparsity. With computing substrate optimized
for sparse linear algebra, our method is duly expected to realize
the promised memory efficiency.

used was

i\ 3
s(t):s—i—(l—s)(l—T) ) (2)

where t = 0,1,---,T indexes pruning steps, and s the
target sparsity reached at the end of training. Thus, this
baseline (labeled as compressed sparse in the paper) was ef-
fectively trained for more iterations (original training phase
plus compression phase) than our dynamic sparse method.
Hyperparameter settings for sparse compression are listed
in the second block of Table 1.

Dynamic reparameterization (ours) Hyperparameter
settings for dynamic sparse reparameterization (Algorithm
1) are listed in the third block of Table 1.

Sparse Evolutionary Training (SET) Because the
larger-scale experiments here (WRN-28-2 on CIFAR10 and
Resnet-50 on Imagenet) were not attempted by (Mocanu
et al., 2018), no specific settings for reparameterization in
these cases were available in the original paper. In order to
make a fair comparison, we used the same hyperparameters
as those used in our dynamic reparameterization scheme
(third block in Table 1). At each reparameterization step,
the weights in each layer were sorted by magnitude and the
smallest fraction was pruned. An equal number of param-
eters were then randomly allocated in the same layer and
initialized to zero. For control, the total number of reallo-
cated weights at each step was chosen to be the same as our



Appendices: Dynamic sparse reparameterization

dynamic reparameterization method, as was the schedule
for reparameterization.

Deep Rewiring (DeepR) The fourth block in Table 1 con-
tain hyperparameters for the DeepR experiments. We refer
the reader to (Bellec et al., 2017) for details of the deep
rewiring algorithm and for explanation of the hyperparame-
ters. We chose the DeepR hyperparameters for the different
networks based on a parameter sweep.

C. Comparison to dense reparameterization
method HashedNet

We also compared our dynamic sparse reparameterization
method to a number of static dense reparameterization tech-
niques, e.g. (Denil et al., 2013; Yang et al., 2014; Moczulski
et al., 2015; Sindhwani et al., 2015; Chen et al., 2015; Treis-
ter et al., 2018). Instead of sparsification, these methods
impose structure on large parameter tensors by parameter
sharing. Most of these methods have not been used for con-
volutional layers except for recent ones (Chen et al., 2015;
Treister et al., 2018). We found that HashedNet (Chen et al.,
2015) had the best performance over other static dense repa-
rameterization methods, and also benchmarked our method
against it. Instead of reparameterizing a parameter tensor
with IV entries to a sparse one with M/ < N non-zero com-
ponents, HashedNet’s reparameterization is to put M free
parameters into [V positions in the parameter through a ran-
dom mapping from {1,--- , N} to {1, -+, M} computed
by cheap hashing, resulting in a dense parameter tensor with
shared components.

Results of LeNet-300-100-10 on MNIST are presented in
Figure 1a, those of WRN-28-2 on CIFARI1O0 in Figure 1b,
and those of Resnet-50 on Imagenet in Table 2. For a certain
global sparsity s of our method, we compare it against a
HashedNet with all reparameterized tensors hashed such that
each had a fraction 1 — s of unique parameters. We found
that our method dynamic sparse significantly outperformed
HashedNet.

D. A taxonomy of training methods that yield
“sparse” deep CNNs

As an extension to Section 2 of the main text, here we elabo-
rate on existing methods related to ours, how they compare
with and contrast to each other, and what features, apart
from effectiveness, distinguished our approach from all pre-
vious ones. We confine the scope of comparison to training
methods that produce smaller versions (i.e. ones with fewer
parameters) of a given modern (i.e. post-AlexNet) deep
convolutional neural network model. We list representative
methods in Table 3. We classify these methods by three key
features.

(a) Global sparsity
99 0.99 0.98 0.97 0.96 0.95 0.90
=0
&o 98_ /__./”ﬁ
>
Q
<
=
g 97 4
<
-
8
96 1
= Full dense
HashedNet
Dynamic sparse
95 r T . : .
5 10 15 20 25

Number of parameters (K)

—_
=3
~

Global sparsity
0.9 0.8 0.7 0.6 0.5

©o
ot

e
~

(=]
w

Test accuracy%

=]
S

Full dense
HashedNet

Dynamic sparse
2 3 4 5 6 7
Number of parameters (100K)

Figure 1: Comparison to HashedNet. (a) Test accuracy for LeNet-
300-100-10 trained on MNIST. (b) Test accuracy for WRN-28-2
trained on CIFAR10. Conventions same as in Figure 3a.

Strict parameter budget throughout training and infer-
ence This feature was discussed in depth in the main text.
Most of the methods to date are compression techniques,
i.e. they start training with a fully parameterized, dense
model, and then reduce parameter counts. To the best of
our knowledge, only three methods, namely DeepR (Bellec
etal., 2017), SET (Mocanu et al., 2018) and ours, strictly im-
pose, throughout the entire course of training, a fixed small
parameter budget, one that is equal to the size of the final
sparse model for inference. We make a distinction between
these direct training methods (first block) and compression
methods (second and third blocks of Table 3) .

This distinction is meaningful in two ways: (a) practically,

8Note that an intermediate case is NeST (Dai et al., 2017;
2018), which starts training with a small network, grows it to a
large size, and finally prunes it down again. Thus, a fixed parameter
footprint is not strictly imposed throughout training, so we list
NeST in the second block of Table 3.



Appendices: Dynamic sparse reparameterization

direct training methods are more memory-efficient on appro-
priate computing substrate by requiring parameter storage of
no more than the final compressed model size; (b) theoreti-
cally, these methods, if performing on par with or better than
compression methods (as this work suggests), shed light on
an important question: whether gross overparameterization
during training is necessary for good generalization perfor-
mance?

Granularity of sparsity The granularity of sparsity
refers to the additional structure imposed on the placement
of the non-zero entries of a sparsified parameter tensor. The
finest-grained case, namely non-structured, allows each indi-
vidual weight in a parameter tensor to be zero or non-zero in-
dependently. Early compression techniques, e.g. (Han et al.,
2015), and more recent pruning-based compression methods
based thereon, e.g. (Zhu & Gupta, 2017), are non-structured
(second block of Table 3). So are all direct training methods
like ours (first block of Table 3).

Non-structured sparsity can not be fully exploited by main-
stream compute devices such as GPUs. To tackle this prob-
lem, a class of compression methods, structured pruning
methods (third block in Table 3), constrain “sparsity” to a
much coarser granularity. Typically, pruning is performed
at the level of an entire feature map, e.g. ThiNet (Luo et al.,
2017), whole layers, or even entire residual blocks (Huang
& Wang, 2017). This way, the compressed “sparse” model
has essentially smaller and/or fewer dense parameter ten-
sors, and computation can thus be accelerated on GPUs the
same way as dense neural networks.

These structured compression methods, however, did not
make a useful baseline in this work, for the following rea-
sons. First, because they produce dense models, their rel-
evance to our method (non-structured, non-compression)
is far more remote than non-structured compression tech-
niques yielding sparse models, for a meaningful comparison.
Second, typical structured pruning methods substantially
underperformed non-structured ones (see Table 2 in the
main text for two examples, ThiNet and SSS), and emerging
evidence has called into question the fundamental value
of structured pruning: (Mittal et al., 2018) found that the
channel pruning criteria used in a number of state-of-the-art
structured pruning methods performed no better than ran-
dom channel elimination, and (Liu et al., 2018) found that
fine-tuning in a number of state-of-the-art pruning methods
fared no better than direct training of a randomly initialized
pruned model which, in the case of channel/layer pruning,
is simply a less wide and/or less deep dense model (see
Table 2 in the main text for comparison of ThiNet and SSS
against thin dense).

In addition, we performed extra experiments in which we
constrained our method to operate on networks with struc-
tured sparsity and obtained significantly worse results, see

Appendix E.

Predefined versus automatically discovered sparsity lev-
els across layers The last key feature (rightmost column
of Table 3) for our classification of methods is whether the
sparsity levels of different layers of the network is automat-
ically discovered during training or predefined by manual
configuration. The value of automatic sparsification, e.g.
ours, is twofold. First, it is conceptually more general be-
cause parameter reallocation heuristics can be applied to
diverse model architectures, whereas layer-specific config-
uration has to be cognizant of network architecture, and
at times also of the task to learn. Second, it is practically
more scalable because it obviates the need for manual con-
figuration of layer-wise sparsity, keeping the overhead of
hyperparameter tuning constant rather than scaling with
model depth/size. In addition to efficiency, we also show in
Appendix F extra experiments on how automatic parameter
reallocation across layers contributed to its effectiveness.

In conclusion, our method is unique in that it:

1. strictly maintains a fixed parameter footprint throughout
the entire course of training.

2. automatically discovers layer-wise sparsity levels during
training.

E. Structured versus non-structured sparsity

We investigated how our method performs if it were con-
strained to training sparse models at a coarser granularity.
Consider a weight tensor of a convolution layer, of size
Cout X Ciy x 3 x 3, where Cy,; and C}, are the number of
output and input channels, respectively. Our method per-
formed dynamic sparse reparameterization by pruning and
reallocating individual weights of the 4-dimensional param-
eter tensor—the finest granularity. To adapt our procedure
to coarse-grain sparsity on groups of parameters, we mod-
ified our algorithm (Algorithm 1 in the main text) in the
following ways:

1. the pruning step now removed entire groups of weights by
comparing their L'-norms with the adaptive threshold.

2. the adaptive threshold was updated based on the differ-
ence between the target number and the actual number
of groups to prune/grow at each step.

3. the growth step reallocated groups of weights within and
across parameter tensors using the heuristic in Line 11 of
Algorithm 1.

We show results at kernel-level granularity (i.e. groups are
3 x 3 kernels) in Figure 2 and Table 4, for WRN-28-2 on
CIFARI10 and Resnet-50 on Imagenet, respectively. We
observe that enforcing kernel-level sparsity leads to signif-
icantly worse accuracy compared to unstructured sparsity.
For WRN-28-2, kernel-level parameter re-allocation still



Appendices: Dynamic sparse reparameterization

outperforms the thin dense baseline, though the performance
advantage disappears as the level of sparsity decreases. Note
that the thin dense baseline was always trained for double
the number of epochs used to train the models with dynamic
parameter re-allocation.

Global sparsity

0.9 0.8 0.7 0.6 0.5
95 : : : :
X944
>
Q
<
—
g
8 934
<
-
é Full d
i ull dense
& 92 Thin dense
Dynamic sparse (kernel granularity)
Dynamic sparse (non-structured)
2 3 4 5 6 7

Number of parameters (100K)

Figure 2: Test accuracy for WRN-28-2 trained on CIFAR10 for
two variants of dynamic sparse, i.e. kernel-level granularity of
sparsity and non-structured (same as dynamic sparse in the main
text), as well as the thin dense baseline. Conventions same as in
Figure 3a.

When we further coarsened the granularity of sparsity to
channel level (i.e. groups are Cj, x 3 X 3 slices that gen-
erate output feature maps), our method failed to produce
performant models.

F. Multi-layer perceptrons and training at
extreme sparsity levels

We carried out experiments on small multi-layer per-
ceptrons to assess whether our dynamic parameter re-
allocation method can effectively distribute parameters in
small networks at extreme sparsity levels. we experimented
with a simple LeNet-300-100 trained on MNIST. Hyper-
parameters for the experiments are reported in appendix B.
The results are shown in Fig. 3a. Our method is the only
method, other than pruning from a large dense model, that
is capable of effectively training the network at the highest
sparsity setting by automatically moving parameters be-
tween layers to realize layer sparsities that can be effectively
trained. The per-layer sparsities discovered by our method
are shown in Fig. 3b. Our method automatically leads to
a top layer with much lower sparsity than the two hidden
layers. Similar sparsity patterns were found through hand-
tuning to improve the performance of DeepR (Bellec et al.,
2017). All layers were initialized at the same sparsity level
(equal to the global sparsity level). While hand-tuning the
per-layer sparsities should allow SET and DeepR to learn
at the highest sparsity setting, our method automatically
discovers the per-layer sparsities and allows us to dispense

(a) Global sparsity
99 0.99 0.98 0.97 0.96 0.95 0.90
X
& 981
<
o
=]
15}
s}
<
%974
ﬁ Full dense
Compressed sparse
Static sparse
SET Dynamic sparse
96 T + + 4 - :
3 6 8 11 14 27

Number of parameters (K)

Layer 3 (100 by 10)

H
=
|

Layer sparsity
o
oo

I
1=y

0.4
0.99 098 097 096 095 0.90

Overall sparsity

Figure 3: Test accuracy for LeNet-300-100-10 on MNIST for
different training methods. Circular symbols mark the median of 5
runs, and error bars are the standard deviation. Parameter counts
include all trainable parameters, i.e, parameters in sparse tensors
plus all other dense tensors, such as those of batch normalization
layers. Notice the failure of training at the highest sparsity level
for static sparse, SET, and DeepR.

with such a tuning step.

References

Bellec, G., Kappel, D., Maass, W., and Legenstein, R. Deep
Rewiring: Training very sparse deep networks. nov 2017.
URL http://arxiv.org/abs/1711.05136.

Chen, W., Wilson, J. T., Tyree, S., Weinberger, K. Q., and
Chen, Y. Compressing Neural Networks with the Hashing
Trick. apr 2015. URL http://arxiv.org/abs/
1504.04788.

Dai, X., Yin, H., and Jha, N. K. NeST: A Neural Network
Synthesis Tool Based on a Grow-and-Prune Paradigm. pp.
1-15,2017. URL http://arxiv.org/abs/1711.
02017.

Dai, X., Yin, H., and Jha, N. K. Grow and Prune Compact,



Appendices: Dynamic sparse reparameterization

Fast, and Accurate LSTMs. may 2018. URL http:
//arxiv.org/abs/1805.11797.

Denil, M., Shakibi, B., Dinh, L., Ranzato, M., and de Freitas,
N. Predicting Parameters in Deep Learning. jun 2013.
URL http://arxiv.org/abs/1306.0543.

Han, S., Pool, J., Tran, J., and Dally, W. J. Learning both
Weights and Connections for Efficient Neural Networks.

jun 2015. URL http://arxiv.org/abs/1506.

02626.

He, Y., Zhang, X., and Sun, J. Channel Pruning for Ac-
celerating Very Deep Neural Networks. jul 2017. URL
http://arxiv.org/abs/1707.06168.

Huang, Z. and Wang, N. Data-Driven Sparse Structure
Selection for Deep Neural Networks. jul 2017. URL
https://arxiv.org/abs/1707.01213.

Lebedev, V. and Lempitsky, V. Fast ConvNets Using Group-

wise Brain Damage. jun 2015. URL https://arxiv.

org/abs/1506.02515.

Li, H., Kadav, A., Durdanovic, 1., Samet, H., and Graf, H. P.
Pruning Filters for Efficient ConvNets. aug 2016. URL
http://arxiv.org/abs/1608.08710.

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang,
C. Learning Efficient Convolutional Networks through

Network Slimming. aug 2017. URL https://arxiv.

org/abs/1708.06519.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. Re-
thinking the Value of Network Pruning. oct 2018. URL
http://arxiv.org/abs/1810.05270.

Luo, J.-H., Wu, J., and Lin, W. ThiNet: A Filter Level
Pruning Method for Deep Neural Network Compres-
sion. jul 2017. URL http://arxiv.org/abs/
1707.06342.

Mittal, D., Bhardwaj, S., Khapra, M. M., and Ravindran, B.
Recovering from Random Pruning: On the Plasticity of
Deep Convolutional Neural Networks. jan 2018. URL
http://arxiv.org/abs/1801.10447.

Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H.,
Gibescu, M., and Liotta, A. Scalable training of arti-
ficial neural networks with adaptive sparse connectivity
inspired by network science. Nature Communications,
9(1):2383, dec 2018. ISSN 2041-1723. doi: 10.1038/
s41467-018-04316-3. URL http://www.nature.
com/articles/s41467-018-04316-3.

Moczulski, M., Denil, M., Appleyard, J., and de Freitas, N.
ACDC: A Structured Efficient Linear Layer. nov 2015.
URL http://arxiv.org/abs/1511.05946.

Narang, S., Elsen, E., Diamos, G., and Sengupta, S. Ex-
ploring Sparsity in Recurrent Neural Networks. apr 2017.
URL http://arxiv.org/abs/1704.051109.

Sindhwani, V., Sainath, T. N., and Kumar, S. Structured
Transforms for Small-Footprint Deep Learning. oct 2015.
URL http://arxiv.org/abs/1510.01722.

Suau, X., Zappella, L., and Apostoloff, N. Network Com-
pression using Correlation Analysis of Layer Responses.
jul 2018. URL http://arxiv.org/abs/1807.
10585.

Treister, E., Ruthotto, L., Sharoni, M., Zafrani, S., and
Haber, E. Low-Cost Parameterizations of Deep Con-
volution Neural Networks. may 2018. URL http:
//arxiv.org/abs/1805.07821.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. Learn-
ing structured sparsity in deep neural networks. In Ad-

vances in Neural Information Processing Systems, pp.
2074-2082, 2016.

Yang, Z., Moczulski, M., Denil, M., de Freitas, N., Smola,
A., Song, L., and Wang, Z. Deep Fried Convnets.
dec 2014. URL http://arxiv.org/abs/1412.
7149.

Zhu, M. and Gupta, S. To prune, or not to prune: exploring
the efficacy of pruning for model compression. 2017.
URL http://arxiv.org/abs/1710.01878.



Appendices: Dynamic sparse reparameterization

Table 1: Hyperparameters for all experiments presented in the paper

Experiment LeNet-300-100 WRN-28-2 Resnet-50
on MNIST on CIFAR10 on Imagenet

Hyperparameters for training

Number of training epochs | 100 | 200 | 100
Mini-batch size ‘ 100 ‘ 100 ‘ 256
Learning rate schedule 1-25: 0.100 1-60: 0.100 1-30: 0.1000
(epoch range: learning rate) 26-50: 0.020 | 61-120: 0.020 | 31-60: 0.0100
51-75: 0.040 | 121-160: 0.040 | 61-90: 0.0010
76 -100:  0.008 | 161 -200:  0.008 | 91 -100: 0.0001
Momentum (Nesterov) ‘ 0.9 ‘ 0.9 ‘ 0.9
L' regularization multiplier ‘ 0.0001 ‘ 0.0 ‘ 0.0
L? regularization multiplier | 0.0 | 0.0005 | 0.0001
Hyperparameters for sparse compression (compressed sparse) (Zhu & Gupta, 2017)
Number of pruning iterations (7°) ‘ 10 ‘ 20 ‘ 20
Number of training epochs 2 2 2
between pruning iterations
Number of training epochs post-pruning | 20 | 10 | 10
Total number of pruning epochs ‘ 40 ‘ 50 ‘ 50
Learning rate schedule during pruning 1-20: 0.0200 1-25: 0.0200 1-25: 0.0100
(epoch range: learning rate) 21-30: 0.0040 25-35: 0.0040 | 26-35: 0.0010
31-40: 0.0008 36-50: 0.0008 | 36-50: 0.0001
Hyperparameters for dynamic sparse reparameterization (dynamic sparse) (ours)
Number of parameters to prune (N;,) ‘ 600 ‘ 20,000 ‘ 200,000
Fractional tolerance of N, () | 0.1 | 0.1 | 0.1
Initial pruning threshold (H () | 0.001 | 0.001 | 0.001
Reparameterization period (P) schedule 1-25: 100 1-25: 100 1-25: 1000
(epoch range: P) 26 - 50: 200 26 - 80: 200 | 26-50: 2000
51-75: 400 | 81 - 140: 400 | 51-75: 4000
76 - 100: 800 | 141 - 200: 800 | 76 - 100: 8000
Hyperparameters for Sparse Evolutionary Training (SET) (Mocanu et al., 2018)
Number of paramete.rs tf) prune 600 20,000 200,000
at each re-parameterization step
Reparameterization period (P) schedule 1-25: 100 1-25: 100 1-25: 1000
(epoch range: P) 26 - 50: 200 26 - 80: 200 | 26-50: 2000
51-75: 400 | 81 - 140: 400 | 51-75: 4000
76 - 100: 800 | 141 - 200: 800 | 76 - 100: 8000
Hyperparameters for Deep Rewiring (DeepR) (Bellec et al., 2017)
L' regularization multiplier (o) 107 | 1077 | 107°
Temperature (T') schedule 1-25 1073 1-25. 107° 1-25: 107°
(epoch range: T) 26-50: 1074 26 - 80: 1078 | 26-50: 1078
51-75: 1075 | 81-140: 10712 | 51-75. 10712
76-100: 1075 | 141-200: 107'° | 76-100: 10~1°




Appendices: Dynamic sparse reparameterization

Table 2: Test accuracy% (top-1, top-5) of Resnet-50 on Imagenet for dynamic sparse vs. HashedNet. Numbers in square
brackets are differences from the full dense baseline.

Final global sparsity (# Parameters) ‘ 0.8 (7.3M) ‘ 0.9 (5.1M)
HashedNet 70.0 [-4.9] 89.6[-2.8] | 66.9[-8.0] 87.4[-5.0]
Dynamic sparse (ours) 73.3[-1.6] 92.4[0.0] | 71.6 [-3.3] 90.5[-1.9]

Table 3: Representative examples of training methods that yield “sparse” deep CNNs

Strict parameter budget Granularity Automatic
Method throughout P it 1 it
training and inference ot sparsity ayer sparsity
Dynamic Sparse Reparameterization
yes non-structured yes
(Ours)
Sparse Evolutionary Training (SET)

(Mocanu et al., 2018) yes non-structured no
De(e]é) eﬁ:gggi(z%ele %R) yes non-structured no
NN Synthesis Tool (NeST)

(Dai et al., 2017; 2018) no non-structured yes
tf.contrib.model pruning

(Zhu & Gupta, 2017) no non-structured no
RNN Pruning

(Narang et al., 2017) no non-structured no
Deep Compression

(Han et al., 2015) no non-structured no
Group-wise Brain Damage

(Lebedev & Lempitsky, 2015) no channel ho
L'-norm Channel Pruning

(Li et al., 2016) no channel no
Str(li;t;;ﬁ :]I.) ’a;)l?é)]“ earning (SSL) no channel/kernel/layer yes
ThiNet

(Luo et al., 2017) no channel no
LASSO-regression Channel Pruning

(He et al., 2017) no channel no
Network Slimming

(Liu et al., 2017) 1o channel yes
Sparse Structure Selection (SSS) o layer yes

(Huang & Wang, 2017)

Prl(nsclig zlelfliiirz?)lllgl)ysm (PFA) no channel yes/no

We provide examples of different categories of methods. This is not a complete list of methods.

Table 4: Test accuracy% (top-1, top-5) of Resnet-50 on Imagenet for different levels of granularity of sparsity. Numbers in
square brackets are differences from the full dense baseline.

Final overall sparsity (# Parameters) ‘ 0.8 (7.3M) ‘ 0.9 (5.1M)

Thin dense 724 [-2.5] 90.9[-1.5] | 70.7[-4.2] 89.9 [-2.5]
Dynamic sparse (kernel granularity) | 72.6 [-2.3] 91.0 [-1.4] | 70.2 [-4.7] 89.8 [-2.6]
Dynamic sparse (non-structured) 73.3[-1.6] 92.4[0.0] | 71.6 [-3.3] 90.5 [-1.9]




