
Stochastic Blockmodels meet Graph Neural Networks

Nikhil Mehta∗ 1 Lawrence Carin 1 Piyush Rai 2

Abstract
Stochastic blockmodels (SBM) and their variants,
e.g., mixed-membership and overlapping stochas-
tic blockmodels, are latent variable based gener-
ative models for graphs. They have proven to be
successful for various tasks, such as discovering
the community structure and link prediction on
graph-structured data. Recently, graph neural net-
works, e.g., graph convolutional networks, have
also emerged as a promising approach to learn
powerful representations (embeddings) for the
nodes in the graph, by exploiting graph properties
such as locality and invariance. In this work, we
unify these two directions by developing a sparse
variational autoencoder for graphs, that retains the
interpretability of SBMs, while also enjoying the
excellent predictive performance of graph neural
nets. Moreover, our framework is accompanied
by a fast recognition model that enables fast in-
ference of the node embeddings (which are of
independent interest for inference in SBM and
its variants). Although we develop this frame-
work for a particular type of SBM, namely the
overlapping stochastic blockmodel, the proposed
framework can be adapted readily for other types
of SBMs. Experimental results on several bench-
marks demonstrate encouraging results on link
prediction while learning an interpretable latent
structure that can be used for community discov-
ery.

1. Introduction
Learning the latent structure in graph-structured data (For-
tunato, 2010; Goldenberg et al., 2010; Schmidt & Morup,
2013) is an important problem in a wide range of domains,
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such as social and biological network analysis and recom-
mender systems. These latent structures help discover the
underlying communities in the network, as well as in pre-
dicting potential links between nodes. Latent space mod-
els (Hoff et al., 2002) and their structured extensions, such
as the stochastic blockmodel (Nowicki & Snijders, 2001)
and variants like the infinite relational model (IRM) (Kemp
et al., 2006), mixed-membership stochastic blockmodel
(MMSB) (Airoldi et al., 2008), and the overlapping stochas-
tic blockmodel (OSBM) (Miller et al., 2009a; Latouche
et al., 2011a) accomplish this by learning low-dimensional,
interpretable node embeddings defined via structured latent
variables. These embeddings can be used to identify the
community membership(s) of each node in the graph, as
well as for tasks such as link prediction.

The overlapping stochastic blockmodel (OSBM), also
known as the latent feature relational model (LFRM), is
a particularly appealing model for relational data (Miller
et al., 2009a; Latouche et al., 2011a; Zhu et al., 2016). The
OSBM/LFRM models each node in the graph as belonging
to one or more communities using a binary membership
vector, and defines the link probability between any pair of
nodes as a bilinear function of their community membership
vectors. Despite its appealing properties, the OSBM/LFRM
has a number of limitations. In particular, although usually
considered to be more expressive (Miller et al., 2009a) than
models such as IRM and MMSB, a single layer of binary
node embeddings and the bilinear model for the link gen-
eration can still limit the expressiveness of OSBM/LFRM.
Moreover, it has a challenging inference procedure, which
primarily relies on MCMC (Miller et al., 2009a; Latouche
et al., 2011a) or mean-field variational inference (Zhu et al.,
2016). Although recent models have tried to improve the ex-
pressiveness of OSBM/LFRM, e.g., by assuming a deep hi-
erarchy of binary-vector-based node embeddings (Hu et al.,
2017), inference in such models remains intractable, re-
quiring expensive MCMC-based inference. It is therefore
desirable to have a model that retains the basic spirit to
OSBM/LFRM (e.g., easy interpretability and strong link
prediction performance), but with greater expressiveness,
and a simpler and scalable inference procedure.

Motivated by these desiderata, we develop a deep generative
framework for graph-structured data, that inherits the easy
interpretability of overlapping stochastic blockmodels, but is
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much more expressive and enjoys a fast inference procedure.
Our framework is based on a novel, sparse variant of the
variational autoencoder (VAE) (Kingma & Welling, 2013),
designed to model graph-structured data. Our VAE-based
setup comprises a nonlinear generator/decoder for the graph
and a nonlinear encoder based on the graph convolutional
network (GCN) (Kipf & Welling, 2016a) (although other
graph neural networks can also be used). Our framework
posits each node of the graph to have an embedding in the
form of a sparse latent representation (modeled by a Beta-
Bernoulli process (Griffiths & Ghahramani, 2011), which
also enables learning the size of the embeddings). The gen-
erator/decoder part of the VAE models the probability of a
link between two nodes via a nonlinear function (defined by
a deep neural network) of their associated embeddings. The
encoder part of the VAE consists of a fast recognition model
that is designed leveraging reparameterization method for
Beta and Bernoulli distributions (Maddison et al., 2017; Nal-
isnick & Smyth, 2017). The recognition model, based on
stochastic gradient variational Bayes (SGVB) inference, en-
ables fast inference of the node embeddings. In contrast, the
traditional stochastic blockmodels rely on iterative MCMC
or variational inference procedures for inferring the node
embeddings. Consequently, the SGVB inference algorithm
we develop is also of independent interest, since the recog-
nition model enables fast inference of the node embeddings
in single-layer overlapping stochastic blockmodels.

2. Preliminaries
We first introduce notation and then briefly describe the over-
lapping stochastic blockmodel (OSBM) (Latouche et al.,
2011a; Miller et al., 2009a; Zhu et al., 2016). As described
in the next section, our deep generative model enriches
OSBM by endowing it with a deep architecture based on
a sparse variational autoencoder, and a fast inference algo-
rithm based on a recognition model. We assume that the
graph is given as an adjacency matrix A ∈ {0, 1}N×N ,
where N denotes the number of nodes. We assume Anm =
1 if there exist a link between node n and node m, and
otherwise Anm = 0. In addition to A, for each node we
may also be provided node features. These are given in the
form of an N ×D matrix X, with xn ∈ RD being the node
features for node n, and D being the number of observed
features.

The OSBM (Latouche et al., 2011a; Miller et al., 2009a; Zhu
et al., 2016) is a stochastic blockmodel for networks; it as-
sumes each node n has an associated binary vector (node em-
bedding), also termed a latent feature vector zn ∈ {0, 1}K .
Within the node embedding, znk = 1 denotes that node n
belongs to cluster/community k, and znk = 0 otherwise.
The OSBM allows each node to simultaneously belong to
multiple communities, and defines the link probability be-

tween two nodes via a bilinear function of their latent feature
vectors

p(Anm = 1|zn, zm,W) = σ(z>nWzm) (1)

where entry wk` in W ∈ RK×K affects the probability of a
link between node n and node m belonging to cluster k and
cluster `, respectively.

The nonparametric latent feature relational model (LFRM)
is a specific type of OSBM, that leverages the Indian Buffet
Process (IBP) prior (Miller et al., 2009a) on the N × K
binary matrix Z = [z1, . . . ,zN ]> of the node-community
membership vectors. Use of the IBP enables learning the
number of communities. Inference in LFRM/OSBM is typi-
cally performed via MCMC or variational inference (Miller
et al., 2009a; Latouche et al., 2011a; Zhu et al., 2016), which
tends to be slow and often cannot scale easily to more than
a few hundred nodes.

3. Deep Generative OSBM
We now present our sparse VAE based deep generative
framework for overlapping stochastic blockmodel. The pro-
posed architecture, depicted in Fig. 1 (left), associates each
link Anm ∈ {0, 1} with two latent embeddings zn and zm
(for the nodes associated with this link). Each link probabil-
ity is modeled as a nonlinear function of the embeddings of
its associated nodes. Unlike the standard VAE that assumes
dense, Gaussian-distributed embeddings, since we wish to
use the node embeddings to also infer the community mem-
bership(s) of each node (as it is one of the goals of stochastic
blockmodels), we impose sparsity on the node embeddings.
This is done by modeling them as a sparse vector of the form
zn = bn� rn, where bn ∈ {0, 1}K is a binary vector mod-
eled using a stick-breaking process prior (Teh et al., 2007)
and rn ∈ RK is a real-valued vector with a Gaussian prior.
Modeling bn using the stick-breaking prior enables learning
the node embedding size K from data. Note that, unlike
the OSBM/LFRM, which assumes the node embedding zn
to be a strictly binary vector, our framework models it as
a sparse real-valued vector, providing a more flexible and
informative representation for the nodes. In particular, this
enables inference of not just the node’s membership into
communities, but also the strength of the membership in
each of the communities the node belongs to. Specifically,
bnk ∈ {0, 1} denotes whether node n belongs to cluster k
or not, and rnk ∈ R denotes the strength.

3.1. VAE Generator/Decoder

Given the node embeddings zn = bn�rn, the VAE decoder
generates each link in the graph as Anm ∼ pθ(zn, zm),
where probability distribution pθ defines a decoder or gener-
ator model for the graph. This decoder can consist of one or
more layers of deterministic nonlinear transformation of the
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Figure 1. (Left) The generator/decoder model in plate notation. Note that the mapping from zn to fn is a deterministic nonlinear
transformation, modeled by a deep neural network. (Right) The encoder model, defined by a graph convolutional network (Kipf & Welling,
2016a) that takes as input the network A and node features X (if available) and outputs the parameters of the variational distributions of
the model parameters.

node embeddings zn. Denoting the overall transformation
for a node embedding zn as f(zn) = fn, we model the
probability of a link as p(Anm = 1|fn,fm) = σ(f>n fm),
where the nonlinear function f can be modeled by a deep
neural network (in our experiments, we use a deep neural
net with each hidden layer having leaky ReLU nonlinearity).
Figure 1 (left) depicts the generator.

We model the binary vector bn ∈ {0, 1}K , denoting node-
community memberships, using the stick-breaking construc-
tion of the IBP (Teh et al., 2007), which enables learning of
the effective K by specifying a sufficiently large truncation
level K. The stick-breaking construction is given as follows

vk ∼ Beta(α, 1), k = 1, . . . ,K (2)

πk =

k∏
j=1

vj , bnk ∼ Bernoulli(πk) (3)

We further assume a Gaussian prior on membership
strengths rn ∈ RK , i.e., p(rn) = N (0, σ2I).

3.2. VAE Encoder

We employ a nonlinear encoder to infer the node em-
bedding zn for each node, using a fast non-iterative
recognition model (Kingma & Welling, 2013). Denot-
ing the parameters of the variational posterior for the em-
beddings of all the nodes collectively as {v, b, r}, we
consider an approximation to the model’s true posterior
p(v, b, r|A,X) with a variational posterior of the form
qφ(v, b, r). For simplicity, we consider a mean-field ap-

proximation, which allows us to factorize the posterior as
qφ(v, b, r) =

∏K
k=1

∏N
n=1 qφ(vnk)qφ(bn,k)qφ(rn,k). Our

nonlinear encoder, as shown in Fig. 1 (Right), assumes
variational distributions on the local variables of each node,
i.e., vn, bn and rn, and defines the variational parameters
of these distributions as the outputs of a graph convolutional
network (GCN) (Kipf & Welling, 2016a), which takes as in-
put the network A and the node feature matrix X. GCN has
recently emerged as a flexible encoder of graph-structured
data (similar in spirit to convolutional neural networks for
images), which makes it an ideal choice of the encoder
in our VAE-based generative model for graphs. The for-
ward propagation rule for each layer l in GCN is defined
as Hl = g(ÂHl−1Wl), where H0 = X (X = I when no
side information is present), Wl is the weight matrix, g(·)
is the non-linear activation, and Â is the symmetric normal-
ization of adjacency A. Although here we have used the
vanilla GCN in our architecture, more-generalized variants
of GCN, such as GraphSAGE (Hamilton et al., 2017), can
also be used as the encoder. The variational distributions
have the following forms

qφ(vnk) = Beta(cnk, dnk) k = 1, . . . ,K (4)
qφ(bnk) = Bernoulli(πnk) k = 1, . . . ,K (5)
qφ(rn) = N (µn, diag(σ2

n)) (6)

where cnk, dnk, πnk,µn, and σn are outputs of a GCN,
i.e., {ck, dk, πk, µk, σk}n=Nn=1 = GCN(A,X). We use
the stochastic gradient variational Bayes (SGVB) algo-
rithm (Kingma & Welling, 2013) to infer the parameters of
the variational distributions. Details on reparameterization
and the loss formulation are provided in Section 4.
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3.3. Special Cases

Existing models for graph-structured data can be seen as
special cases of our framework. Recall that we model the
node embeddings as zn = bn � rn, and our generative
model is of the form Anm ∼ pθ(zn, zm). If we ignore the
community strength latent variable rn, i.e., zn is defined
simply as zn = bn (just a binary vector) and further define
pθ as a Bernoulli distribution with its probability being a
bilinear function of the embeddings zn and zm, then we
recover the OSBM/LFRM (Latouche et al., 2011a; Miller
et al., 2009a). Note, however, that while OSBM/LFRM typi-
cally rely on MCMC or variational inference, our framework
can leverage SGVB for efficient inference.

Likewise, if we define zn = rn, i.e., a dense vector, and
define pθ as a Bernoulli distribution with its probability be-
ing a bilinear function of the embeddings, we recover the
Eigenmodel or latent-space model (LSM) (Hoff et al., 2002).
Note that this model cannot infer K since the binary vector
bn is not present. Finally, if pθ is a Bernoulli distribution
with its probability being a nonlinear function of the embed-
dings, then we recover the VGAE model (Kipf & Welling,
2016b), which can also be seen as a nonlinear extension
of LSM. Moreover, note that a key limitation of LSM and
VGAE is that these cannot be used to infer the community
structure (due to the non-sparse nature of zn) and usually
can only be used for link-prediction tasks.

4. Inference
We define the factorized variational posterior qφ(v, b, r) as

qφ(vnk) = Beta(vnk|ck(A,X), dk(A,X))

qφ(bnk) = Bernoulli(bnk|πk(A,X))

qφ(rn) = N (µn(A,X), diag(σ2
n(A,X)))

where ck, dk, πk,µnand σn are a function of the GCN en-
coder, with inputs A and X. We define the loss function L
parameterized by inference network (encoder) parameters
(φ) and generator parameters (θ) by minimizing the negative
of the evidence lower bound (ELBO)

L =
N∑
n=1

(
KL[qφ(bn|vn) || pθ(bn|vn)]+KL[qφ(rn) || pθ(rn)]

+KL[qφ(vn) || p(vn)]
)
−

N∑
n=1

(
Eq[log pθ(Xn|zn)]

)
−

N∑
n=1

N∑
m=1

(
Eq[log pθ(Anm|zn,zm)]

)
(7)

where KL[q(·)||p(·)] is the Kullback-Leibler divergence be-
tween q(·) and p(·). Note that here we have also included
the loss from the reconstruction of the side information
Xn. We have considered that the side information X and

the links A are conditionally independent given the node
embeddings z1:N . When there is no side information, we
can ignore the Eq[log pθ(Xn|zn)] term in the loss func-
tion. For the encoder and decoder parameters we infer point
estimates, while we learn the distribution over the latent
variables b,v, and r.

Our variational autoencoder for link generation is trained us-
ing Stochastic Gradient Variational Bayes (SGVB) (Kingma
& Welling, 2013). SGVB can be used to perform inference
for a broad class of non-conjugate models and is therefore
appealing to Bayesian nonparametric models, such as those
based on stick-breaking priors that we use in our framework.
SGVB uses differentiable Monte Carlo (MC) expectations
to learn the model parameters. Specifically, it requires differ-
entiable, non-centered parameterization (DNCP) (Kingma
& Welling, 2014) to allow backpropagation. However, our
model has expectations over Beta and Bernoulli distribu-
tions, neither of which permit easy reparameterization as
required by SGVB. We leverage recent developments on
reparameterizing these distributions (Maddison et al., 2017;
Nalisnick & Smyth, 2017), which consequently leads to a
simple inference procedure.

Following (Nalisnick & Smyth, 2017), we approximate the
Beta posterior in (4) with the Kumaraswamy distribution,
defined as: Kumar(x; a, b) = abxa−1(1 − xa)b−1 for
x ∈ (0, 1) and a, b > 0. The closed-form inverse CDF
allows easy reparameterization, and samples for vnk (with
parameters cnk and dnk) can be drawn using:

u ∼ Uniform(0, 1)

vnk
d
= (1− u

1
dnk )

1
cnk (8)

We compute the KL divergence between the Kumaraswamy
q(v) and the Beta distribution p(v) by taking a finite ap-
proximation of the infinite sum as mentioned in (Nalisnick
& Smyth, 2017).

For the Bernoulli random variable, we use the Binary Con-
crete distribution (Maddison et al., 2017; Jang et al., 2017)
at the time of training, as a continuous relaxation to get
the biased low-variance estimates of the gradient. The KL
divergence between two Bernoulli distributions is relaxed
using two Binary Concrete distributions.

We reparameterize bnk, defined by a Bernoulli with proba-
bility πnk, (in (3) and (5)) with reparameterization:

L = log
( u

1− u

)
bnk

d
= σ

(
logit(πnk) + L

λ

)
(9)

where σ(·) is the sigmoid function, logit(·) is the inverse-
sigmoid function, λ is the relaxation temperature and u ∼
Uniform(0, 1).
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Structured Mean-Field: Since the vanilla mean-field vari-
ational inference ignores the posterior dependence among
the latent variables, we also considered Structured Stochas-
tic Variational Inference (SSVI) (Hoffman, 2014; Hoffman
et al., 2013), which allows global-local parameter depen-
dency and improves upon the mean-field approximation.
We considered v (and its variational parameters c and d) as
global parameters and impose a hierarchical structure on
bn by conditioning it on v. The variational posterior of our
framework using SSVI can be factorized as qφ(v, b, r) =∏K
k=1 qφ(vk)

∏N
n=1 qφ(bn,k|v)qφ(rn,k) with qφ(vk) =

Beta(ck, dk); qφ(bnk|v) = Bernoulli(πk);πk =
∏K
j=1 vk,

where ck, dk are parameters to be learned. In practice, we
have found structured mean-field to perform better than the
mean-field, and our model implementation uses the former.

5. Related Work
The proposed framework can be seen as bridging two lines
of research on modeling graphs: (i) structured latent vari-
able models for graphs, such as stochastic blockmodels
and its variants (Kemp et al., 2006; Airoldi et al., 2008;
Miller et al., 2009a; Latouche et al., 2011a); and (ii) deep
learning models for graphs, such as graph convolutional
networks (Kipf & Welling, 2016a). Our effort is motivated
by the goal of harnessing their complementary strengths to
develop a deep generative stochastic blockmodel for graphs,
that also enjoys an efficient inference procedure.

The most prominent methods in stochastic blockmodels
include models that associate each node to a single com-
munity (Nowicki & Snijders, 2001; Kemp et al., 2006), a
mixture of communities (Airoldi et al., 2008), and an over-
lapping set of communities (Miller et al., 2009a; Latouche
et al., 2011a; Yang & Leskovec, 2012; Zhou, 2015). While
stochastic blockmodels have nice interpretability, these mod-
els usually assume the links of the networks to be modeled
as a simple bilinear function of the node embeddings, which
may not be able to capture the nonlinear interactions be-
tween the nodes (Yan et al., 2011). An approach to model
such nonlinear interactions was proposed in (Yan et al.,
2011), using a matrix-variate Gaussian process. However,
despite the modeling flexibility, inference in this model is
challenging and the model is usually infeasible to run on
networks with more than 100 nodes.

There is also significant recent interest in non-probabilistic
deep learning models for graphs. Some of the prominent
works in this direction include DeepWalk (Perozzi et al.,
2014) and graph autoencoders (GAE) (Kipf & Welling,
2016a; Hamilton et al., 2017). DeepWalk is inspired by
the idea of word embeddings. It treats each node as a “doc-
ument,” by starting a random walk at that node and taking
the nodes encountered in the path taken as the word in that
document. It uses document/word embedding methods to

the learn embedding of each node. In contrast, the GAE
approaches are based on the idea of graph convolutional net-
works (GCN) (Kipf & Welling, 2016a). This line of work
nicely complements our contribution, since modules like
GCN can be effectively used to design the encoder model
for our deep generative framework. In particular, as noted
in the model description, our encoder is essentially a GCN.
We believe that such advances in graph encoding can be
used as modules to design new deep generative models for
relational data.

Despite the significant success of deep generative models
for images and text data, there has been relatively little
work on deep generative models for relational data (You
et al., 2018; Hu et al., 2017; Wang et al., 2017; Kipf &
Welling, 2016b). GraphRNN (You et al., 2018) learns a
single representation of an entire graph to model the joint
distribution of different graphs. The focus of GraphRNN
is on generating small-sized graphs, whereas we focus on
link prediction and community detection for a given graph.
Among other existing methods, (Hu et al., 2017) proposed
an extension of the LFRM via a deep hierarchy of binary
latent features for each node. However, this model relies on
expensive batch MCMC inference, precluding its applica-
bility to large-scale networks. Another deep latent variable
model was proposed recently in (Wang et al., 2017). How-
ever, this model also has a difficult inference procedure,
requiring model-specific inference. Moreover, the node em-
beddings are not interpretable. Perhaps the closest in spirit
to our work is the recent work on variational graph autoen-
coders (VGAE) (Kipf & Welling, 2016b). Graphite (Grover
et al., 2018) extends the VGAE by using a multi-layer iter-
ative decoder that alternates between message passing and
graph refinement. A similar decoding scheme can also be
applied in our framework; however, the focus of this work
is on learning sparse interpretable node embeddings. Both
VGAE and Graphite are built on top of the standard VAE,
and consequently do not have direct interpretability of node
embeddings as desired by stochastic blockmodels. This
leads to a model with different properties and a different
inference procedure, compared to (Kipf & Welling, 2016b).
Moreover, our VAE architecture is nonparametric in nature
and can infer the node embedding size.

6. Experiments
We report experimental results on several synthetic and real-
world datasets, to demonstrate the efficacy of our model.
Our experimental results include quantitative comparisons
on the task of link prediction as well as qualitative results,
such as using the embeddings to discover the underlying
communities in the network data. The qualitative results are
meant to demonstrate the expressiveness of the latent space
that our model infers. The expressive nature of our model
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is the result of the sparse and interpretable embedding for
each node of the graph. In particular, we show that these
sparse embeddings can be interpreted as the memberships
and strength of memberships of each node in one or more
communities.

First we evaluate our model on link-prediction, comparing
it with various baselines on several benchmark datasets on
moderate (about 2000 nodes) to large-scale (about 20,000
nodes) datasets. We then analyze the latent structure zn
learned by our model on a synthetic and a real-world co-
authorship dataset. We compare the latent structure with
the embeddings learned by the variational graph autoen-
coder (VGAE) (Kipf & Welling, 2016b). We also examine
the community structure on the real-world co-authorship
dataset, and show that the proposed framework is able to
readily capture the underlying communities. We refer to our
framework as DGLFRM (Deep Generative Latent Feature
Relational Model), which refers to our most general model
with sparse embeddings zn = bn � rn with nonlinear gen-
erator and nonlinear encoder. We also consider a variant
of DGLFRM with binary embeddings zn = bn, which we
refer to as DGLFRM-B (the ‘B’ here denotes “binary”).
Note that DGLFRM-B can be seen as a deep generaliza-
tion of LFRM (Miller et al., 2009b)/OSBM (Latouche et al.,
2011b), with another key difference from LFRM/OSBM
being the fact that we use amortized inference.

6.1. Baselines

For link prediction, we compare the proposed model with
four baselines, one of which is a simplified variant of DGL-
FRM akin to LFRM (Miller et al., 2009a), which is an over-
lapping stochastic blockmodel. The original LFRM, which
uses MCMC-based inference, was infeasible to run on the
datasets used in these experiments. On the other hand, DGL-
FRM with zn = bn and bilinear decoder (link generation
model) is similar to LFRM, but with a much faster SGVB
based inference (we will refer to this simplified variant of
DGLFRM as LFRM).

Among the other three baselines, Spectral Clustering (SC)
and DeepWalk (DW) (Perozzi et al., 2014) learn node em-
beddings, which we use to compute the link probability as
σ(z>n zm). The third baseline is the recently proposed vari-
ational autoencoder on graphs (VGAE) (Kipf & Welling,
2016b). Note that none of these baselines can be used for
community detection, since the real-valued embeddings
learned by these baselines are not interpretable (unlike our
model which learns sparse embeddings, with nonzeros de-
noting community memberships).

6.2. Datasets

We consider five real-world datasets, with three datasets con-
sisting of side information in the form of the node features,

and the other two datasets having only the link information.
For the link-prediction experiments, all models are provided
a partially-complete network (with unknown part to be pre-
dicted). The node features (when available) are provided
to all the models. The description of each data set is as
follows:

• NIPS12: The NIPS12 coauthor network (Zhou, 2015)
includes all 2037 authors in NIPS papers from vol-
umes 1-12, with 3134 edges. This network has no side
information.

• Yeast: The Yeast protein interaction network (Zhou,
2015) has 2361 nodes and 6646 non-self edges. This
network has no side information.

• Cora: Cora network is a citation network consisting
of 2708 documents. The datasets contain sparse bag-
of-words feature vectors of length 1433 for each doc-
ument. These are used as node features. The network
has total 5278 links.

• Citeseer: Citeseer is a citation network consisting of
3312 scientific publications from six categories: agents,
AI, databases, human computer interaction, machine
learning, and information retrieval. The side informa-
tion for the dataset is the category label for each paper
which is converted into a one-hot representation. These
one-hot vectors are used as node features. The network
has a total of 4552 links.

• Pubmed: A citation network consisting of 19,717
nodes. The dataset contains sparse bag-of-words fea-
ture vectors of length 500 for each document, used as
node features. The network has total 44,324 links.

6.3. Link Prediction

We use Area Under the ROC Curve (AUC) and Average Pre-
cision (AP) to compare our model with the other baselines
for link prediction. For all datasets, we hold out 10% and
5% of the links as our test set and validation set, respectively,
and use the validation set to fine-tune the hyperparameters.
We take the average of AUC-ROC and AP scores by running
our model on 10 random splits of each dataset, to compare
with the baselines. The AUC-ROC scores of our models and
the various baselines are shown in Table 1 and AP scores
are shown in Table 2. As shown in the tables, our mod-
els outperforms the baselines on almost all datasets. We
again highlight that unlike the baselines, such as VGAE,
that cannot learn interpretable embeddings, our model also
learns embeddings that can be interpreted as memberships
of nodes into communities. The superior results of DGL-
FRM and DGLRFM-B demonstrate the benefit of our deep
generative models. The significantly better results of these
as compared to LFRM also show the benefit of endowing
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Table 1. AUC ROC

Method NIPS12 Yeast Cora Citeseer Pubmed

SC 0.8792± .0003 0.7886± .0001 0.8460± .0001 0.8050± .0001 0.8420± .0002
DW 0.8058± .0000 0.6443± .0003 0.8310± .0001 0.8050± .0002 0.8440± .0000
VGAE 0.8790± .0055 0.7784± .0002 0.9260± .0001 0.9080± .0002 0.9418± .0076
LFRM 0.8489± .0001 0.7975± .0006 0.9096± .0026 0.8965± .0035 0.9152± .0041

DGLFRM-B 0.8898± .0028 0.8061± .0003 0.9281± .0024 0.9007± .0020 0.9396± .0052
DGLFRM 0.8734± .0043 0.7856± .0005 0.9343± .0023 0.9379± .0032 0.9395± .0008

Table 2. Average Precision (AP).

Method NIPS12 Yeast Cora Citeseer Pubmed

SC 0.9022± .0002 0.8440± .0001 0.8850± .0000 0.8500± .0100 0.8780± .0100
DW 0.8634± .0000 0.6699± .0002 0.8500± .0001 0.8360± .0001 0.8440± .0000
VGAE 0.9114± .0042 0.8349± .0002 0.9328± .0001 0.9200± .0002 0.9394± .0088
LFRM 0.8870± .0000 0.8268± .0005 0.9060± .0033 0.9118± .0031 0.9197± .0054

DGLFRM-B 0.9120± .0021 0.8442± .0002 0.9259± .0023 0.9153± .0031 0.9454± .0050
DGLFRM 0.9005± .0027 0.8388± .0002 0.9376± .0022 0.9438± .0073 0.9497± .0035

Table 3. Example of communities inferred by our model on the NIPS data.

Cluster Authors

Probabilistic Modeling Sejnowski T, Hinton G, Dayan P, Jordan M, Williams C
Reinforcement Learning Barto A, Singh S, Sutton R, Connolly C, Precup D
Robotics/Vision Shibata T, Peper F, Thrun S, Giles C, Michel A
Computational Neuroscience Baldi P, Stein C, Rinott Y, Weinshall D, Druzinsky R
Neural Networks Pearlmutter B Abu-Mostafa Y, LeCun Y, Sejnowski T, Tang A

LFRM with a deep architecture, with nonlinear decoder and
nonlinear encoder. The hyperparameter settings used for
all experiments are included in the Supplementary Material.
We also performed an experiment to investigate the model’s
ability to leverage node features. As expected, when using
the features the model performs better compared to the case
when it ignores features. This experiment is included in the
supplementary section.

6.4. Qualitative Analysis on Learned Embeddings

To demonstrate the interpretable nature of the embeddings
learned by our model, we generate a synthetic dataset with
100 nodes and 10 communities. The dataset is generated by
fixing the ground-truth communities (by creating a binary
vector for each node) such that some of the nodes belong
to same communities. The adjacency matrix is then gener-
ated using a simple inner product, followed by the sigmoid
operation (Figure 2a). We train using 85% of the synthetic
adjacency matrix for link-prediction and for visualizing the
latent structure that our model learns. The latent structure
obtained using DGLFRM is plotted in Figure 2(b). Figure
2(c) shows that by using only the first two dimensions of the
latent structure we can reconstruct the graph reasonably well.

This depicts an important property of using a stick-breaking
IBP prior which encourages the most commonly selected
communities (the columns on the left in Figure 2 (b)) to be
dense, while the communities with higher indices (columns
in right) to be sparse. This shows that DGLFRM can learn
the effective number of communities given a graph. Finally,
we can quantize the latent space into discrete intervals to
extract nodes belonging to different communities. In our ex-
periments we saw that the latent structure learned is in fact
close to the ground-truth community assignments we started
with. In Figure 2(d) we compare the community structure
from our model with the latent structure obtained by run-
ning the VGAE. Note that the Gaussian latent structure
in VGAE is dense and therefore fails to learn community
memberships that are readily interpretable.

We also do a qualitative analysis on the NIPS12 dataset.
Again we train DGLFRM and VGAE using 85% of the
adjacency matrix. Table 3 shows five of the inferred com-
munities by DGLFRM. The authors shown under each com-
munity are ordered by the strength of their community mem-
berships (in decreasing order). As Table 3 shows, each of
the communities represent a sub-field, with authors working
on similar topics. Moreover, note that some authors (e.g.,
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(a) Adjacency (b) DGLFRM (c) Generated (d) VGAE

Figure 2. (a) The synthetic adjacency matrix (where white, black and grey denote link, no-link and hidden parts of the graph). (b) The
latent structure of synthetic data learned using DGLFRM. The truncation parameter (K) of the latent structure was fixed to 10. (c) The
graph generated by DGLFRM using only the first 2 dimensions of the latent structure(i.e. columns 0 and 1 in (b)). The columns 2-9 were
all set to zero. The graph is represented as the probability of links; white (black) represents link (no-link) with high probability. (d) The
latent structure of synthetic data learned using VGAE.

Sejnowski) are inferred as belonging to more than one com-
munity. This qualitative experiment demonstrates that our
model can learn interpretable embeddings that can be used
for tasks such as (overlapping) clustering. We have included
a visualization of the latent structure learned on NIPS12
data in the Supplementary Material. Note that our model
can infer the number of communities naturally, via the stick-
breaking prior. The stick-breaking prior requires specifying
a large truncation level on the number of communities. Our
model effectively infers the “active” communities for a given
truncation level. As shown in Fig. 2 (b)-(c), the posterior
inference in our model is able to “turn off” the unnecessary
columns in Z. Although we do not know the ground truth
for the number of communities, the number of inferred ac-
tive communities is similar to what is reported in prior work
on nonparametric Bayesian overlapping stochastic block-
models (Miller et al., 2009a). Note that VGAE embeddings
require an additional step (such as K-Means clustering) to
cluster nodes. Moreover, a method such as K-means cannot
detect overlapping communities, and it is also sensitive to
the initialization of K (estimated number of communities).
For reference, we have included the clustering results on the
VGAE embeddings in the Supplementary Material.

7. Conclusion and Discussion
We have presented a deep generative framework for over-
lapping community discovery and link prediction. This
work combines the interpretability of stochastic blockmod-
els, such as the latent feature relational model, with the
modeling power of deep generative models. Moreover,
leveraging a nonparametric Bayesian prior on the node em-
beddings enables learning the node embedding size (i.e.,
the number of communities) from data. Our framework is
modular and a wide variety of decoder and encoder models

can be used. In particular, it can leverage recent advances
in non-probabilistic autoencoders for graphs, such as the
graph convolutional network (Kipf & Welling, 2016a) or
its extensions (Hamilton et al., 2017). Inference in the
model is based on SGVB, that does not require conjugacy.
This further widens the applicability of our framework to
model different types of networks (e.g., weighted, count-
valued edges, and power-law degree distribution of node
degrees). We believe this combination of discrete latent
variables based stochastic blockmodels and graph neural
network will help leverage their respective strengths, and
will fuel further research and advance the state-of-the-art in
(deep) generative modeling of graph-structured data.

Although SGVB inference makes our model fairly efficient,
it can be scaled up further for massive networks by using
mini-batch based inference (Chen et al., 2018). Another
possibility to scale up the model is to replace the Bernoulli-
logistic likelihood model by a Bernoulli-Poisson link (Zhou,
2015), which enable scaling up the model in the number
of nonzeros (i.e., number of edges) in the network. Given
that our framework can work with a wide variety of de-
coder/generator models, such modifications can be done
without much difficulty.

Finally, in this work we model each node as having a single
binary vector, denoting its memberships in one or more
communities. Another interesting extension would be to
consider multiple layers of latent variables, which can model
a node’s membership into a hierarchy of communities (Ho
et al., 2011; Blundell & Teh, 2013; Hu et al., 2017).
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