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Abstract
Online advertising platforms are thriving due to
the customizable audiences they offer advertisers.
However, recent studies show that advertisements
can be discriminatory with respect to the gender
or race of the audience that sees the ad, and may
inadvertently cross ethical and/or legal bound-
aries. To prevent this, we propose a constrained ad
auction framework that maximizes the platform’s
revenue conditioned on ensuring that the audi-
ence seeing an advertiser’s ad is distributed ap-
propriately across sensitive types such as gender
or race. Building upon Myerson’s classic work,
we first present an optimal auction mechanism
for a large class of fairness constraints. Finding
the parameters of this optimal auction, however,
turns out to be a non-convex problem. We show
that this non-convex problem can be reformulated
as a more structured non-convex problem with
no saddle points or local-maxima; this allows us
to develop a gradient-descent-based algorithm to
solve it. Our empirical results on the A1 Yahoo!
dataset demonstrate that our algorithm can obtain
uniform coverage across different user types for
each advertiser at a minor loss to the revenue of
the platform, and a small change to the size of the
audience each advertiser reaches.

1. Introduction
Online advertisements are the main source of revenue
for social-networking sites and search engines such as
Google (Alphabet Inc.). Ad exchange platforms allow adver-
tisers to select the target audience for their ad by specifying
desired user demographics, interests and browsing histo-
ries (Facebook, Ad Targeting). Every time a user loads a
webpage or enters a search term, bids are collected from
relevant advertisers (Google, Ad Rank), and an auction is
conducted to determine which ad is shown, and how much
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the advertiser is charged (Muthukrishnan, 2009; Yuan et al.,
2012; Varian, 2007). As it is not practical for advertisers
to place individual bids for every user, the advertiser in-
stead gives some high-level preferences about their budget
and target audience, and the platform places bids on their
behalf (Google, Automated Bidding).

More formally, let there be n advertisers, and m types of
users. Each advertiser i specifies their target demographic,
average bid, and budget to the platform, which then decides
a distribution, Pij , of bids of advertiser i ∈ [n] for user type
j ∈ [m]. These distributions represent the value of the user
to the advertiser, and ensure that the advertiser only bids for
users in their target demographic, with the expected bid not
exceeding the amount specified by the advertiser (Facebook,
Bid Strategies). At each time step, a user visits a web page
(e.g., Facebook or Twitter), the user’s type j is observed, and
a bid vi is drawn from Pij , for each advertiser i. Receiving
these bids as input, the mechanismM decides an allocation
x(v) and price p(v) for the advertisement slot. Several
Ad Exchanges including Google Ads (Ad targeting) and
Facebook Ads (About Ad Auctions), use variants of second
price auction mechanism (Ostrovsky & Schwarz, 2011)1.

Overall, such targeted advertising leads to higher utili-
ties for the advertisers who show content to relevant au-
diences, for the users who view related advertisements,
and for the platform which can benefit from selling tar-
geted advertisements (Farahat, 2013; Yan et al., 2009; Fox-
Brewster, 2017; Goldfarb & Tucker, 2011). However, tar-
geted advertising can also lead to discriminatory practices.
For instance, searches with “black-sounding” names were
much more likely to be shown ads suggestive of an arrest
record (Sweeney, 2013). Another study found that women
were shown fewer advertisements for high paying jobs than
men with similar profiles (Datta et al., 2015). In fact, recent
experiments demonstrate that ads can be inadvertently dis-
criminatory; (Lambrecht & Tucker, 2018) found that STEM
job ads, specifically designed to be unbiased by the advertis-
ers, were shown to more men than women across all major
platforms (Facebook Ads, Google Ads, Instagram and Twit-
ter). On Facebook, a platform with 52% women (Vermeren,

1If the auction sells a single item, then Myerson’s mecha-
nism (Myerson, 1981) reduces to a second price auction mecha-
nism with a reserve price (Hartline, 2017).
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2015) the advertisement was shown to 20% more men than
women. (Ali et al., 2019) find that this could be a result of
competitive spillovers among advertisers, and is neither a
pure reflection of pre-existing cultural bias, nor a result
of user input to the algorithm. Such (likely inadvertent)
discrimination has led to two recent cases filed against Face-
book, which will potentially lead to civil lawsuits alleging
employment and housing discrimination (Guynn, 2018; Tim-
berg & Jan, 2018; NFHA, 2018; Angwin & Parris Jr., 2016).

To gain intuition on how inadvertent discrimination could
happen, consider the setting in which there are two advertis-
ers with similar bids/budgets, but one advertiser specifically
targets women (which is allowed for certain types of ads,
e.g., related to clothing), while the second advertiser does
not target based on gender (e.g., because they are advertising
a job). The first advertiser creates an imbalance on the plat-
form by taking up ad slots for women and, as a consequence,
the second advertiser ends up advertising to disproportion-
ately fewer women and is inadvertently discriminatory. Cur-
rently, online advertising platforms have no mechanism to
check this type of discrimination. In fact, the only way
around this would be for the advertiser to set up separate
campaigns for different user types and ensure that each cam-
paign reached a similar number of the sub-target audience.
However, online platforms often reject such campaigns in
the apprehension of discriminatory practices (Lambrecht &
Tucker, 2018; Discriminatory practices).

Our Contributions
Our main contribution is an optimization-based framework
which maximizes the revenue of the platform subject to
satisfying constraints that prevent the emergence of inad-
vertent discrimination as described above. The constraints
can be formulated as any one of a wide class of “group
fairness” constraints as presented in (Celis et al., 2019c),
which constrains the distribution of an ad’s audience across
the sensitive types to ensure proportionality across types as
defined by the platform. The framework allows for inter-
sectionality, allowing constraints across multiple sensitive
attributes (e.g., gender, race, geography and economic class)
and allows for restricting different advertisers to different
constraints.

Formally, building on Myerson’s seminal work (Myerson,
1981), we characterize the truthful revenue-optimal mecha-
nism which satisfies the given constraints (Theorem 1). The
user types, as defined by their sensitive attributes, are taken
as input along with the type-specific bid distributions for
each advertiser, and we assume that bids are drawn from
these distributions independently. Our mechanism is param-
eterized by constant “shifts” which it applies to bids for each
advertiser-type pair. Finding the parameters of this optimal
mechanism, however, is a non-convex optimization problem,
both in the objective and the constraints. Towards solving

this, we first propose a novel reformulation of the objec-
tive as a composition of a convex function constrained on a
polytope, and an unconstrained non-convex function (Theo-
rem 2). Interestingly, the non-convex function is reasonably
well behaved, with no saddle-points or local-maxima. This
allows us to develop a gradient descent based scheme (Al-
gorithm 1) to solve the reformulated program, which under
mild assumptions has a fast convergence rate of Õ(1/ε2)
(Theorem 3).

We evaluate our approach empirically by studying the effect
of the constraints on the revenue of the platform and the
advertisers using the Yahoo! Search Marketing Advertis-
ing Bidding Data (Yahoo). We find that our mechanism
can obtain uniform coverage across different user types for
each advertiser while losing less than 5% of the revenue
(Figure 1(b)). Further, we observe that the total-variation
distance between the fair and unconstrained distributions of
total advertisements an advertiser shows on the platform is
less than 0.05 (Figure 1(c)).

To the best of our knowledge, we are the first to give a
framework to prevent inadvertent discrimination in online
ad auctions.

2. Our model
Preliminaries
We refer the reader to the excellent treatise (Hartline, 2017)
on Mechanism design for a detailed discussion of the pre-
liminaries. In addition, we provide some key definitions in
Section B in the Supplementary File.

A mechanismM is defined by its allocation rule x : Rn →
[0, 1]n, and its payment rule p : Rn → Rn≥0. It is a well
known fact (Nisan et al., 2007) that for any truthful mech-
anism, p is uniquely defined by x. Hence, for any truthful
mechanism our only concern is the allocation rule x.

Let P be the distribution of valuation of a bidder, pdf : R→
R>0 be its probability density function, and cdf : R →
[0, 1] be its cumulative density function, then we define the
virtual valuation φ : supp(P) → R, as φ(v) := v − (1 −
cdf(v))(pdf(v))−1. We say P is regular if φ(v) is non-
decreasing in v. Likewise, we say P is strictly regular if
φ(v) is strictly increasing in v.

Let φij ∈ R be the virtual valuation of advertiser i ∈ [n]
for type j ∈ [m], fij : R→ R≥0 be its probability density
function, and Fij : R → [0, 1] be its cumulative density
function. We denote the joint virtual valuation of all ad-
vertisers for type j by φj ∈ Rn, and its joint probability
density function by fj : Rn → R≥0. The types j ∈ [m]
are distributed according to a known distribution U . Finally,
given a user of type j, let a mechanism’s allocation rule be
xj : Rn → [0, 1]n.
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2.1. Fairness Constraints
We would like to guarantee that advertisers have a fair cov-
erage across user types. We do so by placing constraints on
the coverage of an advertiser. Formally, we define adver-
tiser i’s coverage of type j, qij , as the joint probability that
advertiser i wins the auction and the user is of type j

qij(xj) := PrU [j]

∫
supp(φj)

xij(φj)dfj(φj), (Coverage, 1)

where xij(φj) is the i-th component of xj(φj). Then, we
consider the proportional coverage of the advertiser on each
type. Given vectors `j , uj ∈ [0, 1]n ∀ j ∈ [m], we define
(`, u)-fairness constraints for each advertiser i and type j, as
a lower bound `ij , and an upper bound uij , on the proportion
of users of type j the advertiser shows ads to, i.e., we impose
the following constraints for all i ∈ [n] and j ∈ [m]

`ij ≤
qij∑m
t=1 qit

≤ uij . ((`, u)-fairness constraints, 2)

2.2. Discussion of Fairness constraints
Returning to the example presented in the introduction, we
can ensure that the advertiser shows x% of total ads to
women, by choosing a lower bound of x for this advertiser
on women. More generally, for m user types, moderately
placed lower bounds and upper bounds (`ij ∼ 1/m and
uij ∼ 1/m), for some subset of advertisers, ensure this sub-
set has a uniform coverage across all types, while allowing
other advertisers to target specific types.

Importantly, while ensuring fairness across multiple types
our constraints allow for targeting within any single type.
This is vital as the advertiser may not derive the same utility
from each user, and could be willing to pay a higher amount
for more relevant users in the same type. For example,
if the advertiser is displaying job ads, then a user already
looking for job opportunities may be of a higher value to
the advertiser than one who is not.

For a detailed discussion on how such constraints can en-
capsulate other popular metrics, such as satistical parity, we
refer the reader to (Celis et al., 2019a).

2.3. Optimization Problem
We would like to develop a mechanism which maximizes
the revenue while satisfying the upper and lower bound
constraints in Eq. (2). Towards formally stating our problem,
we define the revenue of mechanismM, with an allocation
rule xj : Rn → [0, 1]n for type j as

revM :=
∑

i∈[n], j∈[m]

PrU [j]

∫
supp(φj)

φijxij(φj)dfj(φj), (Revenue, 3)

where xij(φj) and φij are the i-th component of xj(φj)
and φj respectively. Thus, we can express our optimization

problem with respect to functions x(·), or as an infinite
dimensional optimization problem as follows.
(Infinite-dimensional fair advertising problem). For all
user types j ∈ [m], find the optimal allocation rule
xj(·) : Rn → [0, 1]n for
max

xij(·)≥0
revM(x1, x2, . . . , xm) (4)

s.t., qij(xj) ≥ `ij
∑m

t=1
qit(xt) ∀ i ∈ [n], j ∈ [m] (5)

qij(xj) ≤uij
∑m

t=1
qit(xt) ∀ i ∈ [n], j ∈ [m] (6)∑n

i=1
xij(φj) ≤ 1 ∀ j ∈ [m], φj , (7)

where (5) and (6) encode the lower bound and upper bound
constraints, and (7) ensures that only one ad is allocated.
In the above problem, we are looking for a collection of
optimal continuous function x?. To be able to solve this
problem, we need – in the least – a finite dimensional for-
mulation of the fair online advertisement problem.

3. Other Related Work
(Dwork & Ilvento, 2019) consider a framework which se-
lects an ad category (e.g., job or housing) every time a
user visits the platform. Given fair mechanisms for each
category, they construct a fair composition of these mech-
anisms. However, they do not show how to design fair
mechanisms for each category, or study how the compo-
sition affects the platform’s ad revenue. Another related
problem is to design optimal mechanisms which satisfy con-
tract constraints (Ghosh et al., 2009; Balseiro et al., 2014;
Pai & Vohra, 2012); these constraints allocate a minimum
number of ad spots to advertisers with a contract, and are
different from our constraints which control the fraction of
each sensitive type the ads are shown to.

Several prior works address the problems of polarization
and algorithmic bias, including (Garimella et al., 2018; Celis
et al., 2019b) who control polarization in social-networks
and personalized feeds, (Panigrahi et al., 2012) who diver-
sify personal feeds, and (Celis et al., 2018b) who create a
diverse and balanced summary of a set of results. In addi-
tion, (Radlinski et al., 2008; Asudeh et al., 2017; Celis et al.,
2018c) study fair ranking algorithms; these could be used
to generate a balanced list of results on job platforms and
other search engines. While these works are related to our
broad goal of controlling algorithmic bias, their formulation
is different since they do not involve a bidding mechanism.
Therefore, their solutions cannot be applied to our problem.

Finally, a framework approach to fairness constraints has
shown to be effective in various other applications such as
classification (Celis et al., 2019a; Huang & Vishnoi, 2019;
Zafar et al., 2017), selection of representatives (Celis et al.,
2018a), and personalization (Celis & Vishnoi, 2017).

4. Theoretical Results
Our first result is structural, and gives a characterization of
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the optimal solution x?, to the infinite-dimensional fair ad-
vertising problem, in terms of a matrix α ∈ Rn×m, making
it a finite dimensional optimization problem in α.
Theorem 1. (Characterization of an optimal allocation
rule). There exists an α = {αj}j∈[m] ∈ Rn×m such that if
for all j ∈ [m],Pj are strictly regular and independent, then
the set of allocation rules xj(·, αj) : Rn → [0, 1]n ∀ j ∈
[m], defined below, is optimal for the infinite-dimensional
fair advertising problem

xij(vj , αj) := I[ i ∈ argmax`∈[n](φ`j(v`j) + α`j) ].

(α-shifted mechanism, 8)
Where we randomly breaks ties if any (this is equivalent to
the allocation rule of the VCG mechanism).

We present the proof of Theorem 1 in Section D.1 in the
Supplementary File. In the proof, we analyze the dual of the
infinite-dimensional fair advertising problem. We reduce
the dual problem to one lagrangian variable, by fixing the
lagrangian variables corresponding lower bound (5) and
upper bound (6) constraints to their optimal values. The
resulting problem turns out to be the dual of the uncon-
strained revenue maximizing problem, for which Myerson’s
mechanism is the optimal solution. We interpret the fixed
lagrangian variables as shifting the original virtual valua-
tions φij . It then follows that for some shift α ∈ Rn×m,
the α-shifted mechanism (8) is the optimal solution to the
infinite-dimensional fair advertising problem.

Now, our task is reduced from finding an optimal allo-
cation rule, to finding an α characterizing the optimal
allocation rule. Towards this, let us define the revenue,
revshift : Rn×m → R and coverage qij : Rn×m → [0, 1] as
functions of α

revshift(α) :=
∑
i∈[n]
j∈[m]

PrU [j]

∫
supp(fij)

yfij(y)
∏

k∈[n]\{i}

Fkj(y+αij−αkj)dy

(Revenue α-shifted mechanism, 9)

qij(α) := PrU [j]

∫
supp(fij)

fij(y)
∏

k∈[n]\{i}

Fkj(y+αij−αkj)dy.

(Coverage α-shifted mechanism, 10)

These follow by observing that (8) selects the advertiser with
the highest shifted virtual valuation, and then using this allo-
cation rule in Eq. (3) and Eq. (1) respectively. Depending on
the nature of the distribution, the gradients ∂revshift(α)/∂αi
and ∂qij(α)/∂αi may not be monotone in α (e.g., consider
the exponential distribution). Therefore, in general neither
is revshift(·) a concave, nor is qij(·) a convex function of α
(see Section D.2 in the Supplementary File for a concrete
example). Hence, this optimization problem is non-convex
both in its objective and in its constraints. We require further
insights to solve the problem efficiently.

Towards this, we observe that revenue is a concave func-
tion of q. Consider two optimal allocation rules obtaining

coverages q1, q2 ∈ [0, 1]n×m and revenues R1, R2 ∈ R
respectively. If we use the first with probability γ ∈ [0, 1],
we achieve a coverage γq1 + (1 − γ)q2 with revenue
γR1 + (1 − γ)R2. Therefore, the optimal allocation
rule achieving γq1 + (1 − γ)q2 has a revenue of at least
γR1 + (1 − γ)R2. This shows that for optimal allocation
rules revenue is a concave function of the coverage q.

Let rev : [0, 1](n−1)×m → R, be the maximum revenue of
the platform as a function of coverage q.2 Consider the
following two optimization problems.

(Optimal coverage problem). Find the optimal q ∈
[0, 1]n×m for,

max
q∈[0,1]n

rev(q) (11)

s.t., qij ≥ `ij
∑m

t=1
qit ∀ i ∈ [n], j ∈ [m] (12)

qij ≤ uij
∑m

t=1
qit ∀ i ∈ [n], j ∈ [m] (13)∑n

i=1
qij ≤ PrU [j] ∀ j ∈ [m]. (14)

(Optimal shift problem). Given the target coverage δ ∈
[0, 1]n×m, find the optimal α ∈ Rn×m for,

minα∈Rn×m L(α) := ‖δ − q(α)‖2F . (15)

Our next result relates the solution of the above two prob-
lems with the infinite-dimensional fair advertising problem.

Theorem 2. Given a solution q? ∈ [0, 1]n×m to the optimal
coverage problem, the solution α? to the optimal shift prob-
lem with δ = q?, defines an optimal α-shifted mechanism (8)
for the infinite-dimensional fair advertising problem.
Proof. For any j ∈ [m] adding the all 1 vector, 1n, to αj
does not change the allocation rule in (8). Thus, it suffices
to show that for all δ ∈ [0, 1]n×m, there is a unique α with
α1j = 0 ∀ j ∈ [m], such that q(α) = δ.

We can show that for all δ ∈ [0, 1]n×m, there is at-least
one α ∈ Rn×m such that q(α) = δ. In fact, the greedy
algorithm which increases all αij , where qij(α) < δij and
i 6= 1, will find the required α.

To prove it is unique consider distinct α, β ∈ Rn×m
such that α1j = β1j = 0. We can show that q(α) 6=
q(β). In particular, that qi′j′(α) 6= qi′j′(β) for (i′, j′) =
argmaxi∈[n], j∈[m] |αij − βij |. Now, the uniqueness of α
follows by contradiction.
The above theorem allows us to find the optimal α by solv-
ing the optimal coverage and optimal shift problems. First,
let us consider the optimal coverage problem. We already
know that its objective is concave. We can further observe
that its constraints are linear in q, and in particular, they

2We drop qij for one i ∈ [n] and each j ∈ [m]. This is crucial
to calculate∇rev (see Remark 5). By some abuse of notation we
write rev(q) for q ∈ Rn×m instead of using q ∈ R(n−1)·m.
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define a constraint-polytope Q ⊆ [0, 1]n×m. Therefore, it
is a convex program, and one approach to solve it is to use
gradient-based algorithms.

The problem is that we do not have access to ∇rev. The
key idea is that if we let α = q−1(δ), then we can calculate
∇rev(δ) by solving the following linear-system,

(Jq(α))
>∇rev(δ) = ∇revshift(α), (Gradient Oracle, 16)

where Jq(α) is the Jacobian of vec(q(α)) ∈ R(n−1)m 3,
with respect to vec(α) ∈ R(n−1)m. It turns out that Jq(α) is
invertible for all α ∈ Rn×m(see Section 6.2), and therefore,
the above linear-system has an exact solution.

Now, let us consider the optimal shift problem. Its objec-
tive is non-convex (see Figure 4 in the Supplementary File).
∇L(α) is a linear combination of ∇qij(α) for all i ∈ [n]
and j ∈ [m]. Since Jq(α) is invertible, its rows {∇qij(α)},
are linearly independent, and the gradient is never zero un-
less we are at the global minimum where α = q−1(δ). This
guarantees that the objective does not have a saddle-point
or local-maximum, and that any local-minimum is a global
minimum. Using this we can develop an efficient algorithm
to solve the optimal coverage problem (Lemma 3).

This brings us to our main algorithmic result, which is an
algorithm to find the optimal allocation rule for the infinite-
dimensional fair advertising problem.

Theorem 3. (An algorithm to solve the infinite-
dimensional fair advertising problem). There is an algo-
rithm (Algorithm 1) which outputs α ∈ Rn×m such that if
assumptions (17), (18), (19), and (20) are satisfied, the α-
shifted mechanism (8) achieves a revenue ε-close to the opti-
mal for the infinite-dimensional fair advertising problem in

Õ

(
n7 logm

ε2
(µmaxρ)

2

(µminη)4
(L+ n2µ2

max)

)
steps.

Where the arithmetic calculations in each step are bounded
by calculating ∇rev once and Õ hides log factors in
n, ρ, η, µmax, 1/ε and 1/µmin.

Roughly, the above algorithm has a convergence rate of
Õ(1/ε2), under the assumptions which we list below.

Assumptions
For all i ∈ [n], j ∈ [m], and y1, y2 ∈ supp(fij)

qij > η (η-coverage, 17)
µmin ≤ fij(y1) ≤ µmax (Distributed distribution, 18)
|fij(y1)− fij(y2)| < L|y1 − y2| (Lipschitz distribution, 19)∣∣E[φij ]∣∣ = ∣∣∣∣ ∫

supp(fij)

zfij(z)dz

∣∣∣∣ < ρ. (Bounded bid, 20)

Assumption (17) guarantees that all advertisers have at least
an η probability of winning on every type, assumption (18)

3vec(·) represents the vectorization operator.

Algorithm 1 Algorithm1(Q, G, L, η, µmax, µmin, ε)

Input: Constraint polytope Q ⊆ [0, 1]n×m, Lipschitz constant
G > 0 of rev(·), Lipschitz constant L > 0 of fij(·), minimum
coverage η > 0, lower and upper bounds, µmin and µmax of fij(·),
and a constant ε > 0.
Output: Shifts α ∈ Rn×m for the optimal mechanism.
1: Initialize γ:=ε/2G2, ξ:=(Gγ)2, T=(

√
2G/ε)2

2: Compute q1 := projQ(q(0n×m))
3: Compute α1 := Algorithm2(qt, αt, ξ, L, η, µmax, µmin)
4: for t = 1,2,. . . ,T do
5: Compute Jq(αt)
6: Compute rev(qt) from

Jq(αt)
>∇rev(qt):=∇revshift(αt)

7: Update qt+1 := projQ(qt + γ∇rev(qt))
8: Update

αt+1 := Algorithm2(qt, αt, ξ, L, η, µmax, µmin)
9: end for

10: return α
places lower and upper bounds on the probability density
functions of the φij , assumption (19) guarantees that the
probability density functions of the φij are L-Lipschitz
continuous, and assumption (20) assumes that the expected
φij is bounded.

We expect Assumptions (17) and (20) to hold in any real-
world setting. We can drop the lower bound in Assump-
tion (18) by introducing “jumps” in α to avoid ranges where
the measure of bids is small. Removing assumption (19)
would be an interesting direction for future work.

Remark 4. We inherit the assumption of independent and
regular distributions from Myerson. In addition, we require
the the distributions of valuations are strictly regular to
guarantee that ties between advertisers happen with 0 prob-
ability. We can drop this assumption by incorporating a
randomized tie-breaking rule which retains fairness. The
above allocation rule is monotone and allocates the ad spot
to the bidder with the highest shifted valuation φij +αij for
a given user. Thus, it defines a unique truthful mechanism
and corresponding payment rule.

5. Our Algorithm
Algorithm 1 performs a projected gradient descent to find
the optimal q? ∈ Q (11). It starts with an initial coverage
q1 ∈ Q, and the corresponding shift α1 = q−1(q1). At step
k, it calculates the gradient∇rev(qk), by solving the linear-
system in Eq. (16). To solve this linear-system, we need to
calculate Jq(αk)> and ∇revshift(αk). This can be done in
O(n2m) steps if we have αk = q−1(qk) (see Remark 6).
Therefore, the algorithm requires a “good” approximation of
α at each step, it maintains this by “updating” the previous
approximation αk−1 using Algorithm 2 to approximately
solve the optimal-shift problem (15).

After calculating ∇rev(qk), it takes a gradient step and
projects the current iterate on Q in O((nm)ω) time (Sec-
tion 6.1), where ω is the fast matrix multiplication coeffi-
cient. It takes roughly O(1/ε2) steps to obtain an ε-accurate
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solution, and then returns its current shift α ≈ α?. We can
bound the error introduced by the approximation of αk at
each step by ensuring that Algorithm 2 has sufficient accu-
racy. In particular, if it is O(ε2) accurate we can prove that
Algorithm 1 converges in Õ(1/ε2) steps.

6. Proof Overviews
6.1. Projection on Constraint Polytope (Q)
Given any point q ∈ [0, 1]n×m, by determining the con-
straints it violates, we can express the projection on the
constraint polytope Q, as a quadratic program with equality
constraints. Using this we can construct a projection oracle
projQ, which given a point q ∈ [0, 1]n×m projects it onto
Q in O((nm)ω) arithmetic operations, where ω is the fast
matrix multiplication coefficient.

6.2. Calculating and Bounding∇rev(·)
We fix the shift of one advertiser i ∈ [n] for each type
j ∈ [m]. Then, to obtain∇rev(q) we use the fact that Jq(α)
is always invertible (Lemma 1). Given α = q−1(δ) for
some δ ∈ [0, 1]n×m, we can calculate ∇rev(δ) by solving
the linear-system in Eq. (16).
Remark 5. Jq(α) is invertible iff we fix the shift αij of one
advertiser i ∈ [n] for each type j ∈ [m]. Intuitively, if we
increase the αij for all i ∈ [n] and j ∈ [m] by the same
amount, then q remains invariant. This implies that each
row of Jq(α) has 0 sum, or that Jq(α) is not invertible.
Lemma 1. (Jacobian is invertible). For all α ∈ R(n−1)×m,
if all advertisers have non-zero coverage for all types j ∈
[m], then Jq(α) ∈ R(n−1)·m×(n−1)·m is invertible.
See Section D.4 in the Supplementary File for the proof.
Remark 6. For all i, s ∈ [n] such that i 6= s, qij is inde-
pendent of αst. Therefore, that Jacobian Jq(α) is sparse.
and the linear-system in Eq. (16) can be solved in O(nωm)
steps, where ω is the fast matrix multiplication coefficient.
In order to get a complexity bound for Algorithm 1, we
show that the Frobenius norm of ∇rev is bounded. The
proof is presented in Section D.5 in the Supplementary File.
Lemma 2. (Revenue is Lipschitz). For all coverages q1, q2
∈ Q, if assumptions (17), (18) and (20) are satisfied, then

|rev(q1)− rev(q2)| ≤ (µmaxρ/µminη)n
2‖q1 − q2‖F 4. (21)

6.3. An Algorithm to Solve the Optimal Shift Problem
Lemma 3. (An algorithm to solve the optimal shift prob-
lem). There is an algorithm (Algorithm 2) which outputs
α ∈ Rn×m such that if assumptions (17), (18) and (19) are
satisfied, then α is an ε-optimal solution for the optimal
shift problem, i.e., L(α) < ε, in

log
(
mL(α1)/ε

)
· n3(L+ n2µ2

max)(ηµmin)
−2 steps.

Where the arithmetic operations in each step are bounded
by calculating ∇L once.

4We use ‖ · ‖F to denote the Frobenius norm.

Algorithm 2 Algorithm2(δ, α1, ξ, L, η, µmax, µmin)
Input: Target coverage δ ∈ [0, 1]n×m, approximate shift α1,
a constant ξ > 0 that controls the accuracy, Lipschitz constant
L > 0 of fij(·), minimum coverage η > 0, and lower and upper
bounds, µmin and µmax, of fij(·).
Output: Approximation α ∈ Rn×m of shifts for δ.
1: Initialize γ := (4nL+ 2n3µ2

max)
−1

2: Initialize
T := log

(
mn3L(α1)/ε

) (L+n2µ2
max)

(ηµmin)
2

3: for t = 1,2,. . . ,T do
4: Compute∇L(αt) := ∇[L1(αt), . . . ,Lm(αt)]
5: Update αt+1 := αt − γ∇L(αt)
6: end for
7: return α

We give an overview of the proof here, and defer the details
to Section D.6 in the Supplementary File.

First, we observe that ∇L = 2
∑
i,j(qij(α)− δij)∇qij(α)

is a linear combination of the rows, {∇qij}, of Jq(α). Since
{∇qij(α)} are linearly independent, ∇L 6= 0 unless we
are at the global minimum of L, where δ = q(α). This
guarantees that L does not have any saddle-points or local-
maxima, and that any local minimum is a global minimum.

Then, to get an efficient complexity with a gradient-based
algorithm we want to avoid small gradients “far” from the
optimal. We show that ifL(α) ≥ ε, then the Frobenius norm
‖∇L(α)‖F ≥

√
ε (Lemma 6 in the Supplementary File).

Finally, we show that the gradient, ∇L(α) is O(n(L +
n2µ2

max))-Lipschitz continuous (Lemma 7 in the Supple-
mentary File). Therefore, at each step where L(α) ≥ ξ, we
improve the loss by a factor of 1− βξ, where β does not de-
pend on ξ. This gives us a complexity bound of O(log 1/ε).
6.4. Proof of Theorem 3
Starting from q0 ∈ Q, Algorithm 1 performs a projected
gradient descent on Q. Since Q is convex, the projection is
contractive. In particular, for the optimal q? ∈ Q

∀ q, ‖projQ(q)− q?‖2 ≤ ‖q − q?‖2. (22)

It queries the shift αk ≈ q−1(qk) from Algorithm 2 at each
step. This introduces some error ξ > 0 at each step, which
we fix later in the proof.

Let zk+1 = qk + γ∇rev(qk) be the coverage at the k +
1-th gradient-step, and qk+1 = q(αk+1) be the coverage
obtained by querying αk ≈ q−1(projQ(qk+1)). Then, we
have the following bound on the error

‖projQ(zk+1)−qk+1‖22 ≤ ξ. (Error from Algorithm2, 23)

We know that rev(·) is a concave function of q. Using the
first-order condition of concavity at q? and qk we have

‖zk+1 − q?‖22 = ‖qk + γ∇rev(qk)− q?‖22
≤ ‖qk−q?‖22+2γ(rev(qk)−rev(q?))+γ2‖∇rev(qk)‖22 (24)

Using the triangle inequality with Eq. (22) and (23) we get
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..‖qk+1−q?‖22 = ‖qk+1−projQ(zk+1)+projQ(zk+1)−q?‖22
≤ ‖zk+1 − q?‖22 + ξ (25)

(24)
≤‖qk–q?‖22+2γ(rev(qk)–rev(q?))+γ2‖∇rev(qk)‖22+ξ (26)

Expanding the above recurrence we get

‖qk+1−q?‖22
(26)
≤ kξ+‖q1−q?‖22+

∑k

i=1
γ2‖∇rev(qi)‖22

+ 2
∑k

i=1
γ(rev(qi)−rev(q?)). (27)

Substituting ‖qk+1− q?‖22 ≥ 0, and ‖q1− q?‖22 ≤ 1 we get

kξ+1+2
∑
i∈[k]

γ(rev(qi)−rev(q?))+
∑
i∈[k]

γ2‖∇rev(qi)‖22≥0.

Replacing rev(qi) by its maximum, choosing ξ := G2γ2,
and using ‖∇rev(qi)‖2 ≤ G and k :=

(√
2G/ε

)2
we get

rev(q?)−max
i∈[k]

(
rev(xi)

)
≤

1 + kξ +G2
∑
i∈[k] γ

2

2
∑
i∈[k] γ

≤ ε

At each step we perform a small update to qk and query
αk, therefore, Algorithm 2 is always warm-started, i.e.,
‖zk+1 − qk‖22 < Gγ. Now, from Lemma 3 the total steps
required to update α are∑k

i=1
log
(
mGγ/ξ

)
· n3(L+ n2µ2

max)(ηµmin)
−2

= (
√
2G/ε)2 log

(
2mG/ε

)
· n3(L+ n2µ2

max)(ηµmin)
−2

The sum of the total gradient steps by Algorithm 1, and the
total gradient steps by all calls of Algorithm 2 is

O
(
G2
/ε2 log

(
2mG/ε

)
· n3(L+ n2µ2

max)(ηµmin)
−2).

Using G = (µmaxρ/µminη) ·n2 (from Lemma 2) we have that
Algorithm 1 gets an ε-approximation of optimal revenue in

Õ

(
n7 logm

ε2
(µmaxρ)

2

(µminη)4
(L+ n2µ2

max)

)
steps.

WhereÕ hides log factors in n, ρ, η, µmax, 1/ε and1/µmin.

7. Empirical Study
We evaluate our approach empirically on the Yahoo! A1
dataset (Yahoo). We vary the strength of the fairness con-
straint for all advertisers, find an optimal fair mechanism
F using Algorithm 1 and compare it against the optimal
unconstrained (and hence potentially unfair) mechanismM,
which is given by Myerson (Myerson, 1981). We first con-
sider the impact of the fairness constraints on the revenue
of the platform. Let revN denote the revenue of mecha-
nism N . We report the revenue ratio κM,F := revF/revM.
Note that the revenue of F can be at most that of M,
as it solves a constrained version of the same problem;

thus κM,F ∈ [0, 1]. We then consider the impact of
the fairness constraints on the advertisers. Towards this,
we consider the distribution of winners among advertis-
ers in an auction given by M and an auction given by
F . We report the total variation distance dTV (M,F) :=
1/2
∑n
i=1 |

∑m
j=1 qij(M) − qij(F)| ∈ [0, 1] between the

two distributions, as a measure of how much the winning
distribution changes due to the fairness constraints. Lastly,
we consider the fairness of the resultant mechanism F . To
this end, we measure selection lift (slift) achieved by F ,
slift(F) := mini,j(qij/1−qij) ∈ [0, 1]. Where slift(F) = 1,
represents perfect fairness among the two user types.
7.1. Dataset
We use the Yahoo! A1 dataset (Yahoo), which contains
bids placed by advertisers on the top 1000 keywords on
Yahoo! Online Auctions between June 15, 2002 and June 14,
2003. The dataset has 10475 advertisers, and each advertiser
places bids on a subset of keywords; there are approximately
2 · 107 bids in the dataset.
For each keyword k, let Ak be the set of advertisers that bid
on it. We infer the distribution of valuation of an advertiser
for a keyword by the bids they place on the keyword. In
order to retain sufficiently rich valuation profiles for each
advertiser, we remove advertisers who place less than 1000
bids on k or whose valuations have variance lower than
3 · 10−3 from Ak, and then those who win the auction less
than 5% of the time. This retains more than 1.5 · 107 bids.

The actual keywords in the dataset are anonymized; hence,
in order to determine whether two keywords k1 and k2
are related, we consider whether they share more that one
advertiser, i.e., Ak1 ∩ Ak2 > 1. This allows us to identify
keywords that are related (see Figure 3 in the Supplementary
File), and hence for which spillover effects may be present
as described in (Lambrecht & Tucker, 2018). Drawing that
analogy, one can think of each keyword in the pair as a
different type of user for which the same advertisers are
competing, and the goal would be for the advertiser to win
an equal proportion of each user.
There are 14, 380 such pairs. However, we observe that
spillover does not affect all keyword pairs (see Figure 2
in the Supplementary File). To test the effect of imposing
fairness constrains in a challenging setting, we consider only
the auctions which are not already fair; in particular there
are 3282 keyword pairs which are less than ` = 0.3 fair.
7.2. Experimental Setup
As we only consider pairs of keywords in this experiment,
a lower bound constraint `11 = δ is equivalent to an upper
bound constraint u12 = 1− δ. Hence, it suffices to consider
lower bound constraints. We set `i1 = `i2 = ` ∀ i ∈ [2], and
vary ` uniformly from 0 to 0.5 , i.e., from the completely
unconstrained case (which is equivalent to Myerson’s ac-
tion) to completely constrained case (which requires each
advertiser to win each keywords in the pair with exactly
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(a) Fairness. We report the fairness slift(F)
achieved by our fair (F) mechanism for vary-
ing level of fairness.

(b) Fairness and Revenue. We report the
revenue ratio revM,F between the fair (F)
and the unconstrained (M) mechanisms.

(c) Effect of fairness on advertisers. We re-
port the dTV (M,F) of the distribution of
winners in ads allocated by F andM.

Figure 1. The x-axis represents fairness constraint ` (lower bound). Error bars represent the standard error of the mean.

the same probability). We report κN ,M, dTV (N ,M), and
slift(F) averaged over all auctions after 104 iterations in
Figure 1; error bars represent the standard error of the mean
over 104 iterations and 3282 auctions respectively.
Remark 7. Computationally, we could consider more types
(m). The bottleneck is empirical; whether the dataset con-
tains enough keywords with m overlapping advertisers for
the experiment to be meaningful. For m < 7 we get over
1000 such keywords sets, and observe results similar to
m = 2 case, losing less than 5% of the revenue with a TV-
distance smaller than 0.05 even for the setting with ` = 0.5.
7.3. Empirical Results
Fairness. Since the auctions are unbalanced to begin with,
we expect the selection lift to increase with the fairness
constraint. We observe a growing trend in the selection lift,
eventually achieving perfect fairness for ` = 0.5.
Revenue Ratio. We do not expect to outperform the optimal
unconstrained mechanism. However, we observe that even
in the perfectly balanced setting with ` = 0.5 our mecha-
nisms lose less than 5% of the revenue.
Advertiser Displacement. Since the auctions are unbalanced
to begin with, we expect TV-distance to grow with the fair-
ness constraint. We observe this growing trend in the TV-
distance on lowering the risk-difference. Even for zero risk-
difference (` = 0.5) our mechanisms obtain a TV-distance
smaller than 0.05.
8. Limitations and Future Work
This work leaves several interesting directions open. On the
technical side, it would be interesting to improve Theorem 3
by weakening the assumptions on the distributions, or by de-
riving better complexity bounds in terms of ε or n. Although
our algorithm works for intersectional types, it considers a
separate constraint for each intersection. Since there can be
exponentially many intersections compared to the types, it
would be important to improve the run-time in this setting.
Exploring the utility lost from the advertiser’s perspective,
and potential ways of bounding it would also be of interest.
Further, it would be relevant to extend our framework to the
(non-truthful) general second price auction (Edelman et al.,
2007; Varian, 2009), which is used to auction multiple ad
slots together.

From a practical standpoint, a natural problem is that ad-
vertisers run their campaigns at different times; while an
ad campaign is running on the platform, several other cam-
paigns start and finish. Our framework does not account
for this. Further, we do not ensure that users of different
types derive similar value from an ad. An advertiser could
intentionally design an ad to appeal to a specific type, and
then, even though the ad receives a balanced coverage, it
could generate biased value for users (Speicher et al., 2018).

Finally on the empirical side, testing our framework in the
field and studying how the constraints affect user satisfac-
tion, and the profile of ads they see would be important.

9. Conclusion
We initiate a formal study of designing mechanisms for
online ad auctions that can ensure advertisements are not
shown disproportionately to different populations. This is
especially relevant for ads for employment opportunities,
housing, and other regulated markets where biases in the
recipient population can be illegal and/or unethical. As has
been shown recently, existing platforms suffer from various
spillover effects that result in such biased distributions. Our
approach places constraints on the allocations achieved by
an ad across different sub-populations in order to ensure
balanced exposure of the content. It can be used flexibly
placing constraints on some or all advertisers, across some
or all sub-populations, and varying the tightness of the con-
straint depending on the level of fairness desired.

We present a truthful mechanism which attains the optimal
revenue while satisfying the constraints necessary to attain
such fairness, and present an efficient algorithm for finding
this mechanism given the advertiser properties and fairness
constraints. Empirically, we observe that our mechanisms
can satisfy fairness constraints at a minor loss to the revenue
of the platform, even when the constraints ensure it attains
perfect fairness. Hence, fairness is not necessarily at odds
with maximizing the platform’s ad revenue. Furthermore,
we show empirically that advertisers are not significantly
impacted with respect to their winning percentages – the
sub-populations their ads are shown to change to be fair, but
overall they are still reach a similar number of users.
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