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S1 Extended Prior Work

This section presents an extended version of the prior
works in the body of the text.

Structure in Variational Distributions. Indepen-
dently, Ainsworth et al. (2018) developed a method-
ology for leveraging block factorization in factor
analysis. Hierarchical models in variational infer-
ence have previous been associated with hierarchi-
cal structure within the variational distribution, as
in (Ranganath et al., 2016). For nonlinear mixed-
effects models, we are instead interested in hierar-
chical structure within the dependent variable rather
than the approximate posterior. Hence, we can keep
the computationally-convenient, fully factorized ap-
proximate posterior, and induce conditioning through
a block-factorization. We therefore expand the formu-
lation of NLME ODE models proposed in Karlsson
et al. (2015) to consider a more general hierarchical
structure.

ODE Parameter Inference Markov-Chain Monte
Carlo (MCMC) methods have been considered the
gold standard for inference in ODEs (e.g., Xun et al.
2013). This is largely because MCMC permits sam-
pling exactly from the true posterior, as guaranteed
by asymptotic analysis of the ergodic sampling chain.
However, MCMC inference requires expensive nu-
merical integration at each step. For a latent sequen-
tial process, approximating an integral can be pro-
hibitively expensive. Moreover, MCMC does not typ-
ically converge quickly when there is multimodality
in the true posterior due to the accept/reject sampling.
Our case study was chosen to exhibit this problem:
Dalchau et al. (2019) applied MCMC inference to the
synthetic biological problem described in sec. 4, and
report chain convergence times of approximately 24
hours for relatively small datasets.

Likelihood-free methods (a.k.a. Approximate
Bayesian Computation (ABC)) are also commonly
used to learn parameters of dynamical systems, avoid-
ing the need to run a chain to convergence (Gorbach
et al., 2017). ABC leverages fast model simulations
and computes approximate likelihoods through com-
paring summary statistics. This also avoids the need
to compute a potentially costly or intractable likeli-
hood functions. Sequential Monte Carlo (SMC) ABC
(Sisson et al., 2007) simulates a discretised dynamical
system with Runge-Kutta methods Toni et al. (2009).
We also apply a Runge-Kutta simulation, but use an
explicit likelihood and variational inference without
SMC to take advantage of fast, gradient-based opti-
mization.

Gradient matching is a learning algorithm that
avoids numerical integration through Gaussian Pro-
cess regression to the state variables of the dynamical
system. Gorbach et al. (2017) introduce a gradient
matching algorithm that applies mean-field varia-
tional inference to discover moments of the popu-
lation distribution in order to fit a GP that matches
them. GP regression is very effective for small to
medium sized models with little data. However, GPs
do not scale adequately to massive datasets without
sparse inducing points or additional structural as-
sumptions. It is not clear how to extend GP regres-
sion to the kinds of conditional distributions required
for hierarchical modelling as we investigate here.

Variational Inference for Dynamical Systems A
number previous works have applied variational in-
ference to learn the parameters of non-hierarchical
dynamical models, mostly in the Kalman filter family.
We briefly summarize and indicate key differences
with our work.

State-space models have been learned through vari-
ational inference, as in Archer et al. (2015). The goal
of Archer et al. (2015) method is to reduce the di-
mension of the input space down to an interpretable
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two-dimensional random variable. Such compres-
sion induces a loss of information, which is not a goal
of our method. Their method generalizes linear dy-
namical systems, and applies variational inference to
learn a suitable approximate posterior distribution.
Methodologically, our paper deals with dynamical
systems that have hierarchical latent structure with
highly nonlinear latent transitions. Moreover, our
model does not require full state observability, e.g.,
we model hidden latent processes that are captured
implicitly in the equations but do not explicitly ap-
pear as terms in the final observation process.

Similarly, Krishnan et al. (2015) learn nonlinear
Kalman filters through stochastic variational infer-
ence. Krishnan et al. (2015) explicitly generalise linear
dynamical systems, discovering arbitrarily complex
transition dynamics and emission distributions. A
key difference is that the mean and covariance func-
tions for their (tridiagonal) variational distribution
are recurrent neural networks. The use of an RNN to
generate the parameters of a highly nonlinear Kalman
filter is similar to but more constrained than our black-
box model (since we make no restrictions on the tran-
sitions).

Recently, Ryder et al. (2018) explores variational
inference for stochastic differential equations. Method-
ologically, our paper is similar to Ryder et al. (2018)
in that an ordinary differential equation is the limit of
a stochastic differential equation as the diffusion term
approaches zero. The approximate posterior in Ryder
et al. (2018) factorizes into a component that deter-
mines the parameters for the SDE drift and diffusion
matrices, and a component that describes the evolu-
tion of the latent process. The component that de-
scribes the latent process evolution is autoregressive,
requiring a sequential evaluation for the log-density
that includes a log-det Jacobian term to account for
how the probability mass changes step to step. Our
method uses much less computation by simplifying
the approximate posterior, supporting our goal of
fast iteration among different candidate models of
a data-generating process. Moreover, we apply our
approximate posterior not to model the evolution of
the latent process, but to identify the parameters of
the dynamical system.

Recently (Chen et al., 2018) proposed neural ordi-
nary differential equations, a new perspective on resid-
ual networks, recurrent neural network decoders,
normalizing flows and other functions approxima-
tors that exhibit repeated composition. They observe
that since the outputs of such recursive functions are
functionally identical to discretised ODEs, then some
continuous-time differential function at some initial
condition can uniquely generate them. They learn a

variational distribution over the initial conditions for
such models, and then use an ODE solver to simulate
the system. They instead apply the adjoint method
to compute the gradients Pontryagin (2018), helping
alleviate memory problems with large models.

Despite surface similarities, the modeling regime
of (Chen et al., 2018) is markedly different from ours.
We learn a block-conditional variational distribution
over the parameters of a system of ODEs (in the white
box case), or over a hierarchical factorization of the
latent variables (in the black box case). The varia-
tional distribution our method discovers represents
the parameters of this system of ODEs, rather than
the latent state itself. By contrast, Chen et al. (2018)’s
variational distribution is over the initial state of the
latent time series. They simulate by generating the
solution using any off-the-shelf ODE solver. In our
case, the initial state is irrelevant, as we are leveraging
probabilistic structure in the variational distribution
to capture data-generating process more efficiently,
by sharing statistical strength where relevant. In par-
ticular, each dimension of the variational distribution
we learn has a specified interpretation according to
either a mechanistic model of the data-generating pro-
cess, or a hierarchical assumption about variability,
in the black-box case.

By ’wiring up’ interactions in cells, a synthetic biol-
ogist can build information processing systems that
function like Boolean logic gates (Nielsen et al., 2016),
like analog electrical circuits (Daniel et al., 2013), or
that mimic the behavior of natural biological systems
(Grant et al., 2016). While a design environment ex-
ists for scalably building transcriptional logic circuits
with predictable Boolean behaviors (Nielsen et al.,
2016), existing approaches for constructing circuits
with dynamical behaviors are still in their infancy
(Dalchau et al., 2019). The quantitative behavior over
time of biological circuits cannot currently be pre-
dicted from DNA sequence alone, so experiments
must be performed to measure key properties to un-
derstand the dynamics of these systems and to allow
rational design decisions about future circuits.

S2 Extended Case Study Descrip-
tion

The synthetic genetic circuits we have used in this
work are built from gene cassettes comprised of DNA
sequences encoding a promoter, ribosome binding
site, coding region, and terminator. These cassettes
are assembled into plasmids that are used to trans-
form E. coli cells. We refer to a collection of cassettes
that implement a particular design as a device. The
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devices used in this paper are all double receiver de-
vices that respond to 3-oxo-C6-homoserine lactone
(C6) by producing cyan fluorescent protein (CFP) and
to 3-oxo-C12-homoserine lactone (C12) by producing
yellow fluorescent protein (YFP) (Grant et al., 2016).
These devices are built of 5 cassettes. The first 4 cas-
settes are arranged on a plasmid, which includes one
cassette each for producing luxR and lasR proteins (R
and S in the main text), the receiver proteins that bind
C6 and C12, respectively, a CFP cassette activated by
C6-bound luxR, and a YFP cassette activated by C12-
bound lasR. The fifth cassette is chromosomally inte-
grated, and constitutively expresses RFP. The devices
vary in the strength of the ribosome binding sites in
the luxR and lasR cassettes, creating devices that vary
in the amount of each of those proteins expressed and
therefore their sensitivity to C6 and C12.

S2.1 White-box (mechanistic)

Our general approach for constructing prescribed
(white-box) models of biological circuits combines
a population-level model for cell culture growth with
more detailed models for the concentrations of intra-
and intercellular molecules, and resembles the ap-
proach commonly used in the synthetic biology liter-
ature (Balagaddé et al., 2008; Daniel et al., 2013; Chen
et al., 2015; Dalchau et al., 2019). Cell growth models
are generally described by the product of the current
cell density c(t) and the specific growth rate γ(c(t)),
which describes both the per capita growth rate and
the decrease in intracellular concentrations due to an
increased volume. As explained in the main text, we
used a smoothed version of the lag-logistic model for
cell growth here.

To model the cellular biochemistry, we translate
chemical reaction networks to ODEs using mass ac-
tion kinetics, which assumes that reactions fire at a
rate proportional to the concentration of the reactants.
Translating chemical reactions in this way in general
leads to a large number of equations, because all mR-
NAs, proteins, small molecules and complexes be-
tween each produce their own equation. As such,
model reductions are commonly applied to reduce
the number of dependent variables, but result in more
complex nonlinearities. Following this approach, the
white-box model we consider here (Section 4) was de-
rived in detail previously (Grant et al., 2016; Dalchau
et al., 2019). It describes the time-evolution of the
response of double receiver devices to HSL signals
C6 and C12, vector u in (2). The latent variables x in
(2) are the culture density c, the intracellular concen-
trations of each expressed protein (luxR, lasR, RFP,
CFP, YFP) and variables for autofluorescence, which

we model as concentration of intracellular material
fluorescent at 480 nm (F480) and 530 nm (F530).

As there are no mRNA species, the variables ak
describe a lumped maximal rate of transcription and
translation. The variables dk describe the intracellular
degradation rates of each protein.

The response functions f76 and f81 describe the in-
ducibility of CFP and YFP to complexes involving the
HSL signals and the receiver proteins luxR and lasR.
The response functions were derived from chemical
reactions, making the assumption that signal-receiver
binding and unbinding is faster than protein synthe-
sis and degradation (Dalchau et al., 2019). This results
in very complex functions, but they are still inter-
pretable as exhibiting saturation behaviour, which oc-
curs as either receiver proteins or promoters become
limiting. We define B(k)

R and B(k)
S as the fractions of

luxR and lasR proteins bound by an HSL signal

BR =
(KR6.C6)

nR + (KR12.C12)
nR

(1 + KR6.C6 + KR12.C12)nR
(S1a)

BS =
(KS6.C6)

nS + (KS12.C12)
nS

(1 + KS6.C6 + KS12.C12)nS
, (S1b)

These functions are bounded above by 1, which oc-
curs when luxR/lasR become limiting. The CFP or
YFP genes are transcribed more efficiently when their
promoters are bound by one of the receiver-signal
complexes. As such, an additional saturation can be
observed within the derived forms

f j(R, S, C6, C12) =
ε(j) + K(j)

GRR2BR + K(j)
GSS2BS

1 + K(j)
GRR2BR + K(i)

GSS2BS

(S2)

where j ∈ {76, 81}. Here, the parameters K(j)
GR and

K(j)
GS are the affinity constants of receiver-signal com-

plexes for each promoter j, and ε(j) is the leaky rate
of transcription/translation in the absence of an acti-
vating complex (such as when there is no HSL).

The specific growth rate γ(ci) describes the per-
capita cellular growth rate of culture i. Cultures are
subscripted in this way because their growth parame-
ters will be local to the culture, which enables implicit
accounting for feedback from circuit activity or ex-
trinsic factors that vary in different experiments. As
in (Dalchau et al., 2019), we use a lag-logistic growth
model which explicitly quantifies a lag phase of bac-
terial growth before an exponential phase and then
stationary phase. This is usually formulated as

γ(ci) =

{
ri.(1− c

Ki
), t > tlag,i

0, t < tlag,i
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but to ensure that the right-hand sides of f are differ-
entiable, we replace the switch at tlag,i with a steep
sigmoid (Equation 9).

Finally, we remind the reader that we consider
the application of this model to multiple devices, in
which different ribosome-binding site sequences have
been used for the luxR and lasR genes (Section 4). In
this mechanistic model, it is the parameters aR and aS
that are allowed to be device-conditioned. Therefore,
using the one-hot mapping strategy for specifying the
rbs elements in each device, the model can take on
device-specific quantities for luxR and lasR synthesis.

S3 Comparison with MCMC

To determine how VI-HDS compares with a simple
approach to Bayesian inference, we sought to ap-
proximate the inference problem using Markov chain
Monte Carlo (MCMC). In principle, MCMC methods
can provide an exact characterisation of the posterior,
but often many samples are necessary for conver-
gence. For comparison with our VI-HDS results, we
generated MCMC chains for the white-box model.
Due to the presence of 4 individual parameters in the
model (r, K, tlag, rc), and N = 312 data-points, there
were more than 4× 312 parameters to be sampled.
With so many parameters, we found that even 1 mil-
lion burn-in samples was insufficient to reach conver-
gence (Figure S1). Furthermore, local optima of the
likelihood function were difficult to avoid.

103 104 105 106

Iteration

5000

4000

3000

2000

1000

0

1000

lo
g-

Lik
el

ih
oo

d

0 500 1000 1500 2000
Iteration (x1,000)

0

200

400

600

800

1000

lo
g-

Lik
el

ih
oo

d

Figure S1: Convergence of Markov chain Monte Carlo

The solutions found by MCMC after 2 million sam-
ples were not as convincing as those found after 500
epochs of VI-HDS. We found that the RFP signal was
poorly reconstructed, with the model showing faster
dynamics than the data, and the posterior predictive
distribution having higher variance than for other
signals (Figure S2). With even more MCMC samples,
perhaps a better parameter regime could be found.

In summary, the shortcomings of MCMC are clearly
visible. A sequence of 1-2 million likelihood evalua-
tions is the absolute minimum required to find a rea-
sonable solution to the inference problem, whereas
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Figure S2: Summary plots for the white-box model inferred
using MCMC. The posterior samples from the MCMC chain
with highest log-likelihood was used to produce a posterior
predictive distribution. Time-series are partitioned by treat-
ment (C6 in the top row of each panel, C12 in the bottom
row), with a color scale indicating the concentration (warm
colors indicate higher concentration). Devices shown are
(A) Pcat-Pcat and (B) R33-S175.

in VI-HDS, a sequence of 500 epochs is sufficient.
As each epoch incorporates 100 importance samples,
there are essentially 50,000 likelihood function evalu-
ations, which is 40 times fewer than was required of
MCMC.
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S4 Supplementary Figures
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Figure S3: The convergence of the ELBO is improved by the DReG estimator. Shown are 5 independent evaluations of
the VI method applied to the prescribed constant model, using the standard gradient estimator (blue) and the DReG
estimator (red). Each reported ELBO score is the average of a 4-fold cross-validation at a given epoch.
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Figure S4: Summary plots for the white-box model. Time-series are partitioned by device and by treatment (C6 or C12),
with a color scale indicating the concentration (warm colors indicate higher concentration). Devices shown are (A)
Pcat-Pcat, (B) RS100-S32, (C) RS100-S34, (D) R33-S32, (E) R33-S34 and (F) R33-S175.
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Figure S5: Posterior predictive distribution for 4-fold cross-validation experiment: Pcat-Pcat device. The left half shows
the white-box model, and the right half shows the black-box model comparisons. Within each half, the left batch of four
columns are C6 treatments, and the right batch of four columns are C12 treatments, as detailed to the left of each row.
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Figure S6: Posterior predictive distribution for 4-fold cross-validation experiment: RS100-S32 device. The left half shows
the white-box model, and the right half shows the black-box model comparisons. Within each half, the left batch of four
columns are C6 treatments, and the right batch of four columns are C12 treatments, as detailed to the left of each row.
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Figure S7: Posterior predictive distribution for 4-fold cross-validation experiment: RS100-S34 device. The left half shows
the white-box model, and the right half shows the black-box model comparisons. Within each half, the left batch of four
columns are C6 treatments, and the right batch of four columns are C12 treatments, as detailed to the left of each row.
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Figure S8: Posterior predictive distribution for 4-fold cross-validation experiment: R33-S32 device. The left half shows
the white-box model, and the right half shows the black-box model comparisons. Within each half, the left batch of four
columns are C6 treatments, and the right batch of four columns are C12 treatments, as detailed to the left of each row.
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Figure S9: Posterior predictive distribution for 4-fold cross-validation experiment: R33-S34 device. The left half shows
the white-box model, and the right half shows the black-box model comparisons. Within each half, the left batch of four
columns are C6 treatments, and the right batch of four columns are C12 treatments, as detailed to the left of each row.
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Figure S10: Posterior predictive distribution for 4-fold cross-validation experiment: R33-S175 device. The left half shows
the white-box model, and the right half shows the black-box model comparisons. Within each half, the left batch of four
columns are C6 treatments, and the right batch of four columns are C12 treatments, as detailed to the left of each row.
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Figure S11: Treatment response plots
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Figure S12: Predicted concentration dynamics of the hidden species (x) in the white-box model. In each panel, the traces
are coloured according to whether they correspond to cultures treated with C6 (green) or C12 (red).
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Figure S13: Predicted concentration dynamics of the hidden species (x) in the black-box model. In each panel, the traces
are coloured according to whether they correspond to cultures treated with C6 (green) or C12 (red).
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