
Graphical-model based estimation and inference for differential privacy

A. Estimation
Define µ(θ) to be the marginals of the graphical model
with parameters θ, which may be computed with the
MARGINAL-ORACLE.

A.1. Proximal Algorithm Derivation

Our goal is to solve the following optimization problem:

µ̂ = argmin
µ∈M

L(µ)

where L is some convex function such as �QCµ− y�.

Using the mirror descent algorithm (Beck & Teboulle, 2003),
we can use the following update equation:

µt+1 = argmin
µ∈M

µT∇L(µt) +
1

ηt
D(µ,µt)

Where D is a Bregman distance measure defined as

D(µ,µt) = ψ(µ)− ψ(µt)− (µ− µt)T∇ψ(µt)

for some strongly convex and continuously differentiable
function ψ. Using ψ = −H to be the negative entropy, we
arrive at the following update equation:

µt+1 = argmin
µ∈M

µT∇L(µt) +
1

ηt
D(µ,µt)

= argmin
µ∈M

µT∇L(µt) +
1

ηt

�
−H(µ) + µT∇H(µt)

�

= argmin
µ∈M

µT
�
∇L(µt) +

1

ηt
∇H(µt)

�
− 1

ηt
H(µ)

= argmin
µ∈M

µT
�
ηt∇L(µt) +∇H(µt)

�
−H(µ)

= argmin
µ∈M

µT
�
ηt∇L(µt)− θt

�
−H(µ)

= µ
�
θt − ηt∇L(µt)

�

The first four steps are simple algebraic manipulation of
the mirror descent update equation. The final two steps
use the observation that ∇H(µt) = −θt and that marginal
inference can be cast as the following optimization problem:
(Wainwright & Jordan, 2008; Vilnis et al., 2015)

µ(θ) = argmin
µ∈M

−µTθ −H(µ)

Thus, optimization over the marginal polytope is reduced
to computing the marginals of a graphical model with pa-
rameters θt − ηt∇L(µt), which can be accomplished using
belief propagation or some other MARGINAL-ORACLE.

A.2. Accelerated Proximal Algorithm Derivation

The derivation of the accelerated proximal algorithm is sim-
ilar. It is based on Algorithm 3 from (Xiao, 2010). Applied
to our setting, step 4 of that algorithm requires solving the
following problem:

νt = argmin
µ∈M

µT ḡ − 4K

t(t+ 1)
H(µ)

= argmin
µ∈M

t(t+ 1)

4K
µT ḡ −H(µ)

= µ
�
− t(t+ 1)

4L
ḡ
�

which we solve by using the MARGINAL-ORACLE.

A.3. Direct Optimization

In preliminary experiments we also evaluated a direct
method to solve the optimization problem. For the direct
method, we estimate the parameters θ̂ directly by refor-
mulating the optimization problem and instead solving the
unconstrained problem θ̂ = argminθ L

�
µ(θ)

�
.To evaluate

the optimization objective, we use MARGINAL-ORACLE
to compute µ(θ) and then compute the loss. For opti-
mization, it has been observed that it is possible to back-
propagate through marginal inference procedures (with
or without automatic differentiation software) to com-
pute their gradients (Eaton & Ghahramani, 2009; Domke,
2013). We apply automatic differentiation to the entire for-
ward computation (Maclaurin et al., 2015), which includes
MARGINAL-ORACLE, to compute the gradient of L.

Since this is now an unconstrained optimization problem
and we can compute the gradient of L, many optimization
methods apply. In our experiments, we use L2 loss, which
is smooth, and apply the L-BFGS algorithm for optimiza-
tion (Byrd et al., 1995).

However, despite its simplicity, there is a significant draw-
back to the direct algorithm. It is not, in general, convex
with respect to θ. This may seem surprising since the origi-
nal problem is convex, i.e., L(µ) is convex with respect to
µ and M is convex. Also, the most well known problem
of this form, maximum-likelihood estimation in graphical
models, is convex with respect to θ (Wainwright & Jor-
dan, 2008); however, this relies on properties of exponential
families that do not apply to other loss functions. One can
verify for losses as simple as L2 that the Hessian need not
be positive definite. As a result, the direct algorithm is not
guaranteed to converge to a global minimum of the origi-
nal convex optimization problem minµ∈M L(µ). We did
not observe convergence problems in our experiments, but
it was not better in practice than the proximal algorithms,
which is why it is not included in the paper.

Graphical-model based estimation and inference for differential privacy

Algorithm 3 Inference for Factored Queries

Input: Parameters θ, factored query matrix Q
Output: Query answers Qpθ

ψ = {exp(θC) | C ∈ C} ∪ {Qi | i ∈ [d]}
Z =MARGINAL-ORACLE(θ)
return VARIABLE-ELIM(ψ,X)/Z

B. Inference
We now discuss how to exploit our compact factored repre-
sentation of pθ to answer new linear queries. We give an
efficient algorithm for answering factored linear queries.

Definition 4 (Factored Query Matrix). A factored query
matrix Q has columns that are indexed by x and rows that
are indexed by vectors z ∈ [r1]×· · ·×[rd]. The total number
of rows (queries) is r =

�d
i=1 ri. The entries of Q are given

by Q(z,x) =
�d

i=1 Qi(zi,xi), where Qi ∈ Rri×ni is a
specified factor for the ith attribute. The matrix Q can be
expressed as Q = Q1⊗ · · ·⊗Qd, where ⊗ is the Kronecker
product.

Factored query matrices are expressive enough to encode
any conjunctive query (or a cartesian product of such
queries), and more. There are a number of concrete exam-
ples that demonstrate the usefulness of answering queries
of this form, including:

• Computing the marginal µC for any C ⊆ [d] (including
unmeasured marginals).

• Computing the multivariate CDF of µC for any C ⊆ [d].
• Answering range queries.
• Compressing the distribution by transforming the domain.
• Computing the (unnormalized) expected value of one

variable conditioned on other variables.

For the first two examples, we could have used standard
variable elimination to eliminate all variables except those
in C. Existing algorithms are not able to handle the other
examples without materializing p̂ (or a marginal that sup-
ports the queries). Thus, our algorithm generalizes variable
elimination. A more comprehensive set of examples, and
details on how to construct these query matrices are given
in section B.1

The procedure for answering these queries is given in Algo-
rithm 3, which can be understood as follows. For a particular
z, write f(z,x) = Q(z,x)pθ(x) =

�
i Qi(zi,xi)pθ(x).

This can be viewed as an augmented graphical model on the
variables z and x where we have introduced new pairwise
factors between each (xi, zi) pair defined by the query ma-
trix. Unlike a regular graphical model, the new factors can
contain negative values. The query answers are obtained by
multiplying Q and p, which sums over x. The zth answer

is given by:

(Qpθ)(z) =
�

x∈X
Q(z,x)pθ(x)

=
1

Z

�

x∈X

d�

i=1

Qi(zi,xi)
�

C∈C
exp[θC(xC)]

This can be understood as marginalizing over the x variables
in the augmented model f(z,x). The VARIABLE-ELIM rou-
tine referenced in the algorithm is standard variable elimina-
tion to perform this marginalization; it can handle negative
values with no modification. We stress that, in practice,
factor matrices Qi may have only one row (ri = 1, e.g., for
marginalization); hence the output size r =

�d
i=1 ri is not

necessarily exponential in d.

B.1. Factored Query Matrices

Table 2 gives some example “building block” factors that
can be used to construct factored query matrices. This
is by no means an exhaustive list of possible factors but
it provides the reader with evidence that answering these
types of queries efficiently is practically useful. The factored
query matrix for computing the marginal µC uses Qi = I
for i ∈ C and Qi = 1 for i /∈ C. Similarly, the factored
query matrix for computing the multivariate CDF of µC

would simply use Qi = P for i ∈ C. A query matrix
for compressing a distribution could be characterized by
functions fi : [ni] → [2] or equivalently binary matrices
Qi = Rfi ∈ R2×ni . The query matrix for computing the
(unnormalized) expected value of variable i conditioned on
variable j would use Qi = E and Qj = I (and Qk = 1
for all other k). These are only a few examples; these
building blocks can be combined arbitrarily to construct a
wide variety of interesting query matrices.

C. Loss Functions
C.1. L1 and L2 losses

The L1 and L2 loss functions have simple (sub)gradients.

∇L1(µ) = QT
C sign(QCµ− y)

∇L2(µ) = QT
C (QCµ− y)

C.2. Linear measurements with unequal noise

When the privacy budget is not distributed evenly to the
measurements in the we have to appropriately modify the
loss functions, which assume that the noisy answers all
have equal variance. In order to do proper estimation and
inference we have to account for this varying noise level in
the loss function. In section 3.1 we claimed that L(p) =
�Qp− y� makes sense as a loss function when the noise
introduced to y are iid. Luckily, even if this assumption is

Graphical-model based estimation and inference for differential privacy

Qi Requirements Size Definition (∀a ∈ [ni]) Description
I ni × ni Qi(a, a) = 1 keep variable in
1 1× ni Qi(1, a) = 1 marginalize variable out
ej j ∈ [ni] 1× ni Qi(1, j) = 1 inject evidence
eS S ⊆ [ni] 1× ni Qi(1, j) = 1 ∀j ∈ S inject evidence (disjuncts)
P ni × ni Qi(b, a) = 1 ∀b ≥ a transform into CDF
Rf f : [ni] → [ri] ri × ni Qi(f(a), a) = 1 compress domain
E 1× ni Qi(1, a) = a reduce to mean
Ek k ≥ 1 k × ni Qi(b, a) = ab ∀b ≤ k reduce to first k moments

Table 2: Example factors in the factored query matrix

not satisfied it is easy to correct. Assume that yi = qT
i p+εi

where εi ∼ Lap(bi). Then 1
bi
yi = 1

bi
qT
i p + 1

bi
εi and

1
bi
εi ∼ Lap(1). Thus, we can replace the query matrix

Q ← DQ and the answer vector y ← Dy where D is the
diagonal matrix defined by Dii =

1
bi

. All the new query
answers have the same effective noise scale, and so the
standard loss functions may be used. This idea still applies
if the noise on each query answer is sampled from a normal
distribution as well (for (�, δ)-differential privacy).

C.3. Dual Query Loss Function

Algorithm 4 shows DualQuery applied to workloads de-
fined over the marginals of the data. There are five hyper-
parameters, of which four must be specified and the remain-
ing one can be determined from the others.

The first step of the algorithm computes the answers to the
workload queries. Then for T time steps observations are
made about the true data via samples from the distribution
Qt. These observations are used to find a record x ∈ X to
add to the synthetic database.

Algorithm 4 Dual Query for marginals workloads

Input: X , the true data
Input: WC , workload queries
Input: (s, T, η, �, δ), hyper-parameters
Output: synthetic database of T records
y = WCµX

Q1 = uniform(W)
for t = 1, . . . , T do

sample qt
1, . . .q

t
s from Qt

xt = argmaxx∈X
�s

i=1 q
t
iµ− qt

iµx

Qt+1 = Qt � exp (−η ∗ (y −WCµxt))
normalize Qt

end for
return (x1, . . . ,xT)

Algorithm 5 shows a procedure for computing the negative
log likelihood (our loss function) of observing the Dual-
Query output, given some marginals. Evaluating the log

likelihood is fairly expensive, as it requires basically simu-
lating the entire DualQuery algorithm. Fortunately we do
not have to run the most computationally expensive step
within the procedure, which is finding xt. We differentiate
this loss function using automatic differentiation (Maclaurin
et al., 2015) for use within our estimation algorithms.

Algorithm 5 Dual Query Loss Function

Input: µ, marginals of the data
Input: WC , workload queries
Input: cache, all relevant output from DualQuery
> qt

1, . . .q
t
s - sampled queries at each time step

> xt - chosen record at each time step
Output: L(µ), the negative log likelihood
y = WCµ
Q1 = uniform(W)
loss = 0
for t = 1, . . . , T do

loss –=
�s

i=1 log (Q
t(qt

i))
Qt+1 = Qt � exp (−η ∗ (y −WCµxt))
normalize Qt

end for
return loss

D. Additional Experiments
D.1. L1 vs. L2 Loss

In Section 3 we mentioned that minimizing L1 loss is equiv-
alent to maximizing likelihood for linear measurements with
Laplace noise, but that L2 loss is more commonly used in
the literature. In this experiment we compare these two
estimators side-by-side. Specifically, we consider the work-
load from Figure 1 and measurements chosen by HDMM
with � = 1.0. As expected, performing L1 minimization
results in lower L1 loss but higher L2 loss, although the
difference is quite small, especially for L1 loss. The dif-
ference is larger for L2 loss. Minimizing L2 loss results in
lower workload error, indicating that it generalizes better.
This is somewhat surprising given that L1 minimization is
maximizing likelihood. Another interesting observation is

Graphical-model based estimation and inference for differential privacy

��
� ��

�
��

�
��

� ��
�

���������

����
�

�
�
��
�
�
�

�������������

�������������

��
� ��

�
��

�
��

� ��
�

���������

��
�

����
�

����
�

����
�

�
�
��
�
�
�

�������������

�������������

��
� ��

�
��

�
��

� ��
�

���������

����

����

����

����

����

����

����

�
�
�
�
��
�
�
��
�
�
�
� �������������

�������������

Figure 3: L1 minimization vs. L2 minimization, evaluated on L1 loss, L2 loss, and workload error

that the workload error actually starts going up after about
200 iterations, suggesting that some form of over-fitting is
occurring. There minimum workload error achieved was
0.066 while the final workload error was 0.084 — a pretty
meaningful difference. Of course, in practice we cannot
stop iterating when workload error starts increasing because
evaluating it requires looking at the true data.

E. Additional Details
E.1. Unknown Total

Our algorithms require m, the total number of records in the
dataset is known or can be estimated. Under a slightly differ-
ent privacy definition where nbrs(X) is the set of databases
where a single record is added or removed (instead of mod-
ified), this total is a sensitive quantity which cannot be re-
leased exactly (Dwork & Roth, 2014). Thus, the total is not
known in this setting, but a good estimate can typically be
obtained from the measurements taken, without spending ad-
ditional privacy budget. First observe that 1TµC = m is the
total for an unnormalized database. Now suppose we have
measured yC = QCµC + zC . Then as long as 1T is in the
row-space of QC , mC = 1TQ+

CyC is an unbiased estimate
for m with variance V ar(mC) = V ar(yC)

��1TQ+
C

��2
2
.

This is a direct consequence of Proposition 9 from (Li et al.,
2015). We thus have multiple estimates for m which we can
combine using inverse variance weighting, resulting in the
final estimate of m̂ =

�
C mC/V ar(mC)�
C 1/V ar(mC) , which we can use

in place of m.

E.2. Multiplicative Weights vs Entropic Mirror
Descent

Recall from Section 4 that the multiplicative weights update
equation is:

p̂ ← p̂� exp (qi(q
T
i p̂− yi))/2m/Z

and the update is applied (possibly cyclically) for i =
1, . . . , T . Now imagine taking all of the measurements
and organizing them into a T × n matrix Q. Then we can
apply all the updates at once, instead of sequentially, and

we end up with the following update equation.

p̂ ← p̂� exp (QT (Qp̂− y)/2m)/Z

Observing that ∇L2(p̂) = QT (Qp̂− y), this simplifies to:

p̂ ← p̂� exp (∇L2(p̂)/2m)/Z

which is precisely the update equation for entropic mirror
descent for minimizing L2(p) over the probability simplex
(Beck & Teboulle, 2003).

