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A. Kac-Rice formula
A.1. p-odd Cases

In the cases in which the order of the tensor p is odd we
encounter an interesting phenomenon due to the different
symmetries of the two types of observation. The matrix
is symmetric by inverting the sign of the signal, x̂ 7→ −x̂,
while the tensor is not symmetric for odd p. This creates an
asymmetry in the complexity, Fig. 6 (to be compared with
Fig. 2) and causes a shift toward lower correlations of the
band characterizing the non-informative minima. Therefor
observing when the complexity at m = 0 becomes nega-
tive does not guarantee that the non-informative minima
disappeared. To do so, one must check that the whole non-
informative band disappears. This should be contrasted
with the case of even p where a maximum of the complex-
ity Σ(m) is always at m = 0. These two definitions of
the threshold have little, but not negligible, difference, see
Fig. 7. Observe that as ∆p increases the peak of the com-
plexity decreases, since the loss Eq. (3) tends to the simple
matrix-factorization problem where the landscape is char-
acterized by two isolated minima. This implies that the
two definitions become indistinguishable for large ∆p. In
the main text we use the definition taking into account the
maximum (even when it is not strictly at m = 0) because
gives a more accurate characterization of the trivialization

threshold.

B. Gradient Flow
B.1. Dependence on the Initial C onditions

The dynamics of the gradient flow shows a dependence on
the initial conditions, because formally zero correlation is a
(unstable) fixed point of the GF state evolution. In practice
we observe for both GF and ML-AMP that instability of
the fixed point is sufficient for good performance of the
algorithm. However, this makes the definition of the conver-
gence time depend of the initial condition.

We observed from our numerical solution of the GF state
evolution equations that the initial condition add a factor
alogm(0) to the convergence times. Thus by fitting this term
and rescaling the convergence times, the different initializa-
tions collapse into a single curve, see inset of Fig. 8. Finally,
the collapsed points were used to extrapolate the critical line
as shown in the main text, Fig. 4.

C. AMP
C.1. From AMP to ML-AMP

In this section we consider the spiked-tensor model in a
Bayesian way. We show how the Bayes-optimal AMP leads
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Figure 6. Analogously to Fig. 2, the figures show the complexity, Eq. (19), as a function of the correlation with the signal for different
values of parameter ∆2 at fixed ∆p = 4.0 in the case p = 3.
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Figure 7. The thresholds representing the trivialization of the land-
scape (purple) and the point where the support of Σ(m) ≥ 0
become disconnected (brown) for tensors of order p = 3. We com-
pare the two definitions of the trivialization threshold described
in Sec. A.1: the solid line considers just the positivity of the com-
plexity Eq. (19) at m = 0, the dashed line considers the whole
non-informative band.

to the Maximum Likelihood AMP using a temperature-like
parameter T . We will introduce the algorithm AMP for a
generic T , and show that as T → 0 we recover ML-AMP
as presented in the main text. The probability distribution
we consider is

P (X|Y, T ) ∝ e−µ‖x‖
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The scheme for deriving AMP estimating marginals of such
a probability distribution can be found in (Lesieur et al.,
2017; Sarao Mannelli et al., 2018) and consist in making
a Gaussian assumption on the distribution of the messages
in the belief propagation (BP) algorithm and neglecting the
node-dependence in the messages. A final consideration to
be used in order to derive the algorithm is that the spherical
constrain can be imposed by setting 1

N

∑
i(x̂i

2 + σi) = 1
at every iteration. The resulting AMP algorithm will iterate
on the following equations:
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Figure 8. The time corresponding to convergence close to the
signal is shown for ∆p = 4.0 in the case p = 3. Different
shades of grey correspond to different initial conditions, from
m(0) = 10−10 (light grey) to m(0) = 10−42 (dark grey). The
different initializations collapse to a single line when the time is
rescaled by alogm(0) with a = 1.3, see inset. In the figure we
fit only the case m(0) = 10−10 with a power law and use the
same parameters for all the other fits with a vertical translation.
The divergence point extrapolated is 1/∆GF

2 = 1.35 and is repre-
sented by the vertical dotted line, while the dashed line identifies
the landscape trivialization predicted with the Kac-Rice formula,
1/∆triv

2 = 1.57.
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with || · · · ||22 the `2-norm and rt the Onsager reaction term

rt =
1

∆2T 2

1

N

∑
k

σtk

+
p− 1

∆pT 2

1

N

∑
k

σtk

 1

N

∑
k

x̂tkx̂
t−1
k

p−2

.

(37)

In the limit T → 0 AMP defined by Eqs. (34-37) is equiv-
alent to ML-AMP, Eqs. (25-28). To see this we define the
rescaled variables σ̂t .

= σt/T , B̃t .
= T Bt and r̃t

.
= T rt.

Taking the limit T → 0 the expression for x̂t+1
i Eq. (35)

and the expression for σ̂t+1
i Eq. (36) simplify as Eq. (26)

and as Eq. (26) respectively. Dropping the tildes we obtain
ML-AMP as presented in the main text.
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(a) p = 3 (b) p = 4

Figure 9. The phase diagram already describe in Fig. 1 with two additional lines. The dashed brown line is the limit predicted by Kac-Rice
formula where the support of the Σ(m) ≥ 0 becomes disconnected (above the line). The full orange line is related to the ML-AMP
algorithm, is called dynamical spinodal, below it the algorithm converenges to m = 0 even if initialized in the solution. In the insets we
show the large ∆p behaviour of the thresholds, where we can observe that the lines merge at infinity.

C.2. State evolution

The generic T version of AMP has a slightly more compli-
cated SE that depends of two order parameters: the already
introduced mt = 1
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self-overlap of the estimator. The SE equations are:
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Given 1
N ||x̂

0||22 6= 0, in the limit T → 0 AMP SE Eqs. (38-
39) simplify, to a single equation corresponding to ML-
AMP SE Eq. (41). This is seen by taking the limit for
Eq. (39) which gives qt = 1 ∀t > 0, implying MSEt =
2(1 − mt). Then, using the result for qt, we show that
Eq. (38) tends to Eq. (30).

C.3. Derivation of spinodals

From SE Eq. (30) we can obtain analytical equations for
the spinodals, the threshold of stability of the different ML-
AMP fixed points. We have x̂t+1 = fSE(zt) with

fSE(z) =
z√
z2 + γ

, (41)

with γ = 1/∆2 + 1/∆p and z = m/∆2 + mp−1/∆p.
Observe that: f ′SE(z) = γ
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3
2

. We can now define either
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As remarked in (Sarao Mannelli et al., 2018), the spinodals
are given by the following condition:
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A trivial solution is given by z → 0 corresponding to sta-
bility of the non-informative solution m = 0, and gives the
algorithmic spinodal for the cases p ∈ {3, 4}. This solution
and has a very simple equation for every p: ∆2 = 1/

√
γ

giving Eq. (32), already presented in the main text. An
interesting implication of Eq. (32) is that it is independent
from the value of p, it is in some sense universal among the
2 + p-models.

The expression for the stability of the informative solution,
dynamical spinodal, is less straightforward, but analytical
progresses can be done in the cases p = 3 and p = 6 (using
Cardano formula) and in the case p = 4 for which it is
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p ∆2 ∆p

4 2
3 ' 0.667 4

3 ' 1.333
5 0.470 0.451
6 0.384 0.305
7 0.322 0.220
8 0.279 0.172
9 0.246 0.147

10 0.220 0.121

Table 1. Table of the values of tricritical points for p ≥ 4.

equivalent to a second order polynomial
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that admits a single solution in R+:
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An important point in the phase diagram is where the al-
gorithmic and dynamical spinodals meet, this is called the
tricritical point. Its value is obtained for different p, nu-
merically (for p > 4) and analytically (for p = 4), and is
reported in Table 1. The case p = 3 does not show any tri-
critical point for any finite ∆p, the two lines eventually meet
at ∆p =∞ when the spiked matrix problem is recovered.

For the cases p > 4 we observe additionally the zero tem-
perature analog of what is called hybrid phase in AMP in
Bayes-optimal regime (Ricci-Tersenghi et al.). The hybrid
phase is illustrated in Fig. 10. This phase is defined as a
region where the ML-AMP algorithm initialized at random
converges to a solution with positive correlation but that is
less correlated then the solution achievable starting from
the solution. In these cases Eq. (32) does not correspond
to the algorithmic spinodal but it is just the stability of the
non-informative solution.

Figure 10. Phase diagram as shown in Fig. 9 for the case p = 6.
The difference between p = 3, 4 and p > 4 is that a new phase
appears, called hybrid hard phase, where two fixed points of ML-
AMP aligned with the signal are present and the convergence
to one or the other depends on the initialization. The region is
highlighted in the inset. In the phase diagram the grey dashed
line represent the threshold above which the non-informative fixed
point becomes unstable.


