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A. Missing Proofs

Proof of Claim 5.5 of the paper. We prove the claim by
induction on ¢, and show that for any j s.t. j > ¢, the point
11(G;)(q}) can be written as the sum ), a;q; such that
|Oéi| S 3t.

Base Case. First, we prove the base case of induction, i.e.,
t = 1. Recall that by our assumption, ||q || > 3z, and thus
by triangle inequality, we have that ||¢}|| > ||q1|| — z/k >
3ky — x/k > 2x. Therefore, since ¢; is the vector with
largest norm in P, using triangle inequality again, we have
that for any j > 1,

1

g1l < llsll < Nl < flaall + 2/k < (1 + 5ol lall

Therefore we can write II(G)(q;) = a1q; where |a;| < 2.

Inductive step. Now, lets assume that the hypothesis
holds for G,. In particular this means that we can write
(G)) (44 41) = Y.<y Biq, where |3;] < 3%, and that for
a given j > t 4 1, we can write T1(G})(q}) = Y-, 7id;
where |y;|’s are at most 3¢. Now let ¢ = dist(q/,,,G}). By

“Equal contribution 'Department of Electrical Engineer-
ing and Computer Science, Massachusetts Insitiute of Tech-
nology, Cambridge, Massachusetts, USA *Toyota Tech-
nological Institute at Chicago, Chicago, Illinois, USA
3Department of Computer Science , University of Washing-
ton, Seattle, USA. Correspondence to: Piotr Indyk <in-
dyk@mit.edu>, Sepideh Mahabadi <mahabadi@ttic.edu>,
Shayan Oveis Gharan <shayan@cs.washington.edu>, Alireza
Rezaei <arezaei@cs.washington.edu>.

Proceedings of the 36" International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

triangle inequality, we get that

dist(ge41,Gr) < dist(gr41, q441) (D
+ dist(qy 1, IH(G)) (q)11)+ )
dist(T1(G;) (q111): G)
Sa/k+L+dist(Y ] Big, > Bigi)

i<t i<t
<z/k+L+) |Bi|x/k

i<t
< ¢+ 3. 3)

Now we consider two case. If ¢ < 3!z then using the above
dist(qey1,Gr) < 2-3'z < 3k,

which contradicts our assumption of dist (g4 1, G:) > 3Fx.
Otherwise,

diSt(H(g£+1)(q;‘)>g£) < dist(q}, Gi) < dist(q;, Gr)
< dist(q¢+1,Gt) < 20,

where the last inequality follows from Equation 1 .
Therefore, we can write II(G;)(q}) Qp1qip —
a1 11(G7) (g1 1) + TL(Ge ) (q) where argq < 2.
By the hypothesis, we can write I1(G})(q;) = >_;<, %id;>
where |;| < 3t. Since |a;11| < 2, we can write

(G )(d)) = auprdin + O (v — ar1Bi)g;
i<t
= Z a;q,  where |oy] < 31T
1<t+1

This completes the proof of the claim.

O

B. Details of Experiments on Local Search vs.
Greedy as offline algorithms

Here, we compare the quality of Greedy and Local Search
as centralized algorithms on the whole data sets. Figure
1 shows the improvement ratio of the determinant of the
solution returned by the Local Search algorithm over the de-
terminant of the solution returned by the Greedy algorithm.
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On average over all values of k, Local Search improves over
Greedy by 13% for GENES data set and 5% for MNIST
data set. Figure 2 shows the ratio of the time it takes to run
the Local Search and Greedy algorithms as a function of &
for both data sets. On average, it takes about 6.5 times more
to run the Local Search algorithm.
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Figure 1. Average improvement of Local Search over Greedy as a
function of k.
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Figure 2. Average ratio of the run time of Local Search over Greedy
as a function of k.

C. Details of Experiments for Comparing
Local Search vs. the LP-based Algorithm

In this section, we compare the performance of the Local
Search algorithm and the LP-based algorithm of (Indyk
et al., 2018) for constructing core-sets, i.e., we compare
GD/LS with GD/LP. Figure 3 shows how much Local Search
improves over the LP-based algorithm. On average this im-
provement is 7.3%, 1.8% and 1.4% for GENES, MNIST10
and MNISTS50 respectively. Moreover, in 78% of all runs,
Local Search performed better than Lp-based algorithm,
and this improvement can go upto 63%. Figure 4 shows
the average ratio of the time to construct core-sets using the
LP-based algorithm vs. Local Search.

As it is clear from the graphs, our proposed Local Search
algorithm performs better than even the LP-based algorithm
which has almost tight approximation guarantees: while

picking fewer points in the core-set, in most cases it finds a
better solution and runs faster.
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Figure 3. Average improvement of Local Search over LP-based
algorithm for constructing core-sets as a function of k.
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Figure 4. Average ratio of the run time of the optimal algorithm
over local search as a function of k.
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