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A. Missing Proofs

Proof of Claim 5.5 of the paper. We prove the claim by
induction on t, and show that for any j s.t. j > t, the point
Π(G′t)(q′j) can be written as the sum

∑
i≤t αiq

′
i such that

|αi| ≤ 3t.

Base Case. First, we prove the base case of induction, i.e.,
t = 1. Recall that by our assumption, ||q1|| > 3kx, and thus
by triangle inequality, we have that ||q′1|| ≥ ||q1|| − x/k ≥
3kx − x/k ≥ 2x. Therefore, since q1 is the vector with
largest norm in P , using triangle inequality again, we have
that for any j > 1,

||q′j || ≤ ||qj || ≤ ||q1|| ≤ ||q′1||+ x/k ≤ (1 +
1

2k
)||q′1||

Therefore we can write Π(G′1)(q′j) = α1q
′
1 where |α1| ≤ 2.

Inductive step. Now, lets assume that the hypothesis
holds for G′t. In particular this means that we can write
Π(G′t)(q′t+1) =

∑
i≤t βiq

′
i where |βi| ≤ 3t, and that for

a given j > t + 1, we can write Π(G′t)(q′j) =
∑

i≤t γiq
′
i

where |γi|’s are at most 3t. Now let ` = dist(q′t+1,G′t). By

*Equal contribution 1Department of Electrical Engineer-
ing and Computer Science, Massachusetts Insitiute of Tech-
nology, Cambridge, Massachusetts, USA 2Toyota Tech-
nological Institute at Chicago, Chicago, Illinois, USA
3Department of Computer Science , University of Washing-
ton, Seattle, USA. Correspondence to: Piotr Indyk <in-
dyk@mit.edu>, Sepideh Mahabadi <mahabadi@ttic.edu>,
Shayan Oveis Gharan <shayan@cs.washington.edu>, Alireza
Rezaei <arezaei@cs.washington.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

triangle inequality, we get that

dist(qt+1,Gt) ≤ dist(qt+1, q
′
t+1) (1)

+ dist(q′t+1,Π(G′t)(q′t+1)+ (2)
dist(Π(G′t)(q′t+1),Gt)

≤ x/k + `+ dist(
∑
i≤t

βiq
′
i,
∑
i≤t

βiqi)

≤ x/k + `+
∑
i≤t

|βi|x/k

≤ `+ 3tx. (3)

Now we consider two case. If ` ≤ 3tx then using the above

dist(qt+1,Gt) ≤ 2 · 3tx ≤ 3kx,

which contradicts our assumption of dist(qt+1,Gt) > 3kx.
Otherwise,

dist(Π(G′t+1)(q′j),G′t) ≤ dist(q′j ,G′t) ≤ dist(qj ,Gt)
≤ dist(qt+1,Gt) ≤ 2`,

where the last inequality follows from Equation 1 .
Therefore, we can write Π(G′t+1)(q′j) = αt+1q

′
t+1 −

αt+1Π(G′t)(q′t+1) + Π(Gt)(q′j) where αt+1 ≤ 2.

By the hypothesis, we can write Π(G′t)(q′j) =
∑

i≤t γiq
′
i,

where |γi| ≤ 3t. Since |αt+1| ≤ 2, we can write

Π(G′t+1)(q′j) = αt+1q
′
t+1 +

∑
i≤t

(γi − αt+1βi)q
′
i

=
∑

i≤t+1

αiq
′
i where |αi| ≤ 3t+1.

This completes the proof of the claim.

B. Details of Experiments on Local Search vs.
Greedy as offline algorithms

Here, we compare the quality of Greedy and Local Search
as centralized algorithms on the whole data sets. Figure
1 shows the improvement ratio of the determinant of the
solution returned by the Local Search algorithm over the de-
terminant of the solution returned by the Greedy algorithm.
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On average over all values of k, Local Search improves over
Greedy by 13% for GENES data set and 5% for MNIST
data set. Figure 2 shows the ratio of the time it takes to run
the Local Search and Greedy algorithms as a function of k
for both data sets. On average, it takes about 6.5 times more
to run the Local Search algorithm.

k GENES MNIST
3 1.0003 1.0051
4 1.0017 1.008
5 1.0436 1.012
6 1.0739 1.0159
7 1.0578 1.0196
8 1.057 1.0276
9 1.025 1.0275

10 1.0507 1.0445
11 1.1653 1.0373
12 1.1805 1.0417
13 1.172 1.0581
14 1.16 1.0696
15 1.187 1.0597
16 1.219 1.0908
17 1.2295 1.0648
18 1.2608 1.0857
19 1.2697 1.0912
20 1.2533 1.0932
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Figure 1. Average improvement of Local Search over Greedy as a
function of k.

k GENES MNIST
3 4.252185014 4.520659
4 3.628135018 5.518008
5 3.912222876 4.002805
6 5.152512352 5.395237
7 5.849152274 5.288874
8 4.828292535 6.615502
9 4.206225084 3.87074

10 5.53964497 5.40507
11 6.181963621 5.473657
12 6.041923838 4.335843
13 5.406760241 8.769056
14 5.216842902 6.972853
15 6.986131002 5.94605
16 8.856555323 12.0629
17 10.7310948 8.706691
18 10.72993578 12.60435
19 11.88349435 6.716885
20 8.440220912 6.78466
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Figure 2. Average ratio of the run time of Local Search over Greedy
as a function of k.

C. Details of Experiments for Comparing
Local Search vs. the LP-based Algorithm

In this section, we compare the performance of the Local
Search algorithm and the LP-based algorithm of (Indyk
et al., 2018) for constructing core-sets, i.e., we compare
GD/LS with GD/LP. Figure 3 shows how much Local Search
improves over the LP-based algorithm. On average this im-
provement is 7.3%, 1.8% and 1.4% for GENES, MNIST10
and MNIST50 respectively. Moreover, in 78% of all runs,
Local Search performed better than Lp-based algorithm,
and this improvement can go upto 63%. Figure 4 shows
the average ratio of the time to construct core-sets using the
LP-based algorithm vs. Local Search.

As it is clear from the graphs, our proposed Local Search
algorithm performs better than even the LP-based algorithm
which has almost tight approximation guarantees: while

picking fewer points in the core-set, in most cases it finds a
better solution and runs faster.

k GENES MNIST-10 MNIST-50
3 1.000124054 1.001715 1.001806
4 1.003197666 1.004108 1.004867
5 1.024120491 1.011481 1.005427
6 1.024554844 1.01006 1.006916
7 1.048889085 1.012598 1.009603
8 1.075159321 1.00706 1.018686
9 1.068101367 1.008979 1.009526

10 1.052013164 1.005951 1.007937
11 1.013192948 1.023985 1.011816
12 1.068254112 1.020296 1.014486
13 1.093764917 1.013679 1.0179
14 1.152385691 1.021577 1.022474
15 1.118240745 1.028806 1.010807
16 1.115802233 1.03473 1.03248
17 1.043254253 1.024259 1.011253
18 1.195888835 1.024141 1.015632
19 1.214422179 1.040717 1.047187
20 1.010183695 1.037825 1.019219
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Figure 3. Average improvement of Local Search over LP-based
algorithm for constructing core-sets as a function of k.

k GENES MNIST-10 MNIST-50
3 47.33821314 30.86994 120.8938
4 26.34109406 17.13871 47.24331
5 17.57559353 11.73645 32.19383
6 14.26120983 8.983629 25.88948
7 11.40078344 7.159142 21.03272
8 10.42236235 5.114151 20.81031
9 8.040940524 6.794177 15.28664

10 7.67089475 4.965756 13.28056
11 6.060403191 4.271216 10.77189
12 4.816823431 3.049642 11.96998
13 4.376154146 2.512919 8.332015
14 4.175234906 2.277239 7.556957
15 3.679920977 2.076699 6.927933
16 2.917858246 2.146268 3.999247
17 2.464225892 2.069627 3.458858
18 2.31127254 1.617301 3.498983
19 2.173437596 1.316572 3.20848
20 2.194894447 1.304353 3.495524
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Figure 4. Average ratio of the run time of the optimal algorithm
over local search as a function of k.
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