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Abstract

In this paper, we develop a new variant of k-
means++ seeding that in expectation achieves a
constant approximation guarantee. We obtain this
result by a simple combination of k-means++ sam-
pling with a local search strategy. We evaluate
our algorithm empirically and show that it also
improves the quality of the solution in practice.

1. Introduction
As a central problem in unsupervised learning clustering
received a lot of attention in the past decades. The goal of
clustering is to partition a given set of objects into clusters
with the idea that objects in the same cluster should be simi-
lar to each other while objects in different clusters should
be less similar. One basic formulation of clustering is the
k-clustering problem with sum-of-squared-error objective
function. In this problem, the objects are represented as vec-
tors in Rd and we think of the squared Euclidean distance
as a measure of dissimilarity. Formally, in this setting we
want to find a set C of k centers that minimizes∑

p∈P
min
c∈C
‖p− c‖2.

The clusters are defined by assigning each point to their
closest center. It is known that the optimal center of a given
cluster is the average or mean of the cluster, which is why
the problem is also often called k-means clustering.

k-means has been extensively studied in literature, and sev-
eral heuristic have been proposed to solve the problem. Prob-
ably the most celebrated heuristic for k-means is the well-
known Lloyd’s algorithm (Lloyd, 2006). The algorithm is
also often called the k-means algorithm. The algorithm usu-
ally performs very well in practice, but it does not provide a
theoretical approximation guarantee.
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The k-means++ seeding algorithm (Arthur & Vassilvitskii,
2007) is a simple way to improve Lloyd’s algorithm. The
algorithm incrementally chooses a set of k centers by sam-
pling the next center from a distribution where every point
has probability proportional to its squared distance to the
currently closest center. The solution computed by the seed-
ing algorithm has expected cost of O(log k) times the cost
of the optimum solution. In practice, it is then often used
as a starting solution for Lloyd’s algorithm (which never
decreases the objective function).

k-means++ is easy to implement and is known to some-
times heavily outperform Lloyd’s algorithm with random
initialization in terms of the cost of the computed solu-
tion (Arthur & Vassilvitskii, 2007). However, from a
theoretical point of view, the approximation guarantee of
O(log k) is not fully satisfying as constant approximation
algorithms exist (Ahmadian et al., 2017). Unfortunately,
it is known that the analysis is tight (Arthur & Vassilvit-
skii, 2007) and there are also input sets such that k-means++
achieves an o(log k)-approximation with probability at most
exp(−k1−o(1)) (Brunsch & Röglin, 2011). At the same
time, it is known that k-means++ provides a constant bi-
criteria approximation with constant probability, if one al-
lows to sample O(k) centers (Aggarwal et al., 2009). More
recently, a more precise tradeoff with respect to the number
of centers and the expected cost has been given by (Wei,
2016).

1.1. Our Contribution

We show that a simple combination of k-means++ seeding
with O(k log log k) rounds of local search gives a constant
approximation guarantee in expectation. Our strategy is as
follows. We start similarly as k-means++: We iteratively
sample centers from a distribution where every point has
probability proportional to its cost in the current clustering.
However, after we have sampled k centers we continue for
another O(k log log k) rounds. In order to maintain a set
of k centers, we exchange the newly sampled center with
the old center, such that the swap improves the cost by the
largest amount. If there is no improving swap, we discard
the sampled center. We prove that after O(k log log k) itera-
tions our solution is in expectation a constant factor larger
than the optimal solution.
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We remark that the analysis of the local search algorithm
by Kanungo et al. (Kanungo et al., 2004) already implies
that after some (potentially very large) number of rounds
the algorithm ends up with a constant approximation. Their
algorithm improves the current solution by swapping one
center with an input point. Kanungo et al. proved that this
algorithm gives in polynomial time a constant approxima-
tion (Kanungo et al., 2004). Unfortunately the running time
of this simple swapping strategy can be very high. The main
contribution of the paper is to introduce a new improvement
strategy that is provably very fast: after only O(k log log k)
rounds the resulting center has constant approximation guar-
antee in expectation.

We empirically evaluated our algorithm. The evaluation
shows that we improve the quality of the solution signifi-
cantly (8-35%) compared with the basic k-means++ seeding
when both algorithms are not using Lloyd’s algorithm for
postprocessing. In the case that both algorithms perform
10 steps of Lloyd’s algorithm after the seeding the relative
improvement over k-means++ is in the range of 1− 18%.

1.2. Other Related Work

Kanungo et al. analyzed and empirically evaluated their
local search algorithm as well as a few other variants of
k-means clustering (Kanungo et al., 2004). In their exper-
iments the local search based algorithm was converging
very slowly. They achieved the best performance using a
combination of local search and Lloyd’s algorithm (Lloyd,
2006). A combination of local search and Lloyd’s algorithm
with a coreset construction has been developed (Frahling
& Sohler, 2008). In the setting of streaming algorithms, as
part of the StreamKM++ algorithm a heuristic is given to
quickly approximate the k-means++ seeding using coreset
trees (Ackermann et al., 2012). A more recent approach to
approximately sample from the k-means++ distribution uses
the Metropolis-Hastings algorithm to approximately sample
from the k-means++ distribution (Bachem et al., 2016). In
order to make the seeding applicable in a parallel setting,
the k-means|| algorithm (Bahmani et al., 2012) reduces the
number of rounds by sampling centers independently with
probability proportional to the squared distance. This allows
to sample sets of centers in parallel.

In terms of (mostly) theoretical results, it is known that there
are different constant approximation algorithms for the k-
clustering problem with sum of squared errors (“k-means
clustering”) (Jain & Vazirani, 2001; Kanungo et al., 2004;
Ahmadian et al., 2017). Currently, the best approximation
ratio is 6.357 (Ahmadian et al., 2017). It is also known that
it is NP-hard to obtain a solution with approximation factor
less than 1.0013, i.e. there is no (1 + ε)-approximation
algorithm for arbitrary small ε > 0, if k and d can be large
(Lee et al., 2017). For constant d, one can obtain (1 + ε)-

approximation algorithms using local search (Cohen-Addad,
2018; Cohen-Addad et al., 2016; Friggstad et al., 2016) (see
also (Bandyapadhyay & Varadarajan, 2016)). However, the
running time of these algorithm depends doubly exponential
on the dimension. If k and ε are considered to be constant,
there are many (1 + ε) approximation algorithms available
that are based on reducing the input size or the number of
candidate solutions (see, for example, (Har-Peled & Mazum-
dar, 2004; Feldman et al., 2007; Chen, 2009; Kumar et al.,
2010)).

2. Preliminaries
Let P = {p1, . . . , pn} be a point set in Rd. For two points
p, q ∈ Rd we use ‖p−q‖ to denote their Euclidean distance.
In the sum-of-squared-error problem (or k-means problem)
we aim to find a set C of k centers in Rd that minimizes the
following objective function over all such sets C:

cost(P,C) =

n∑
i=1

min
c∈C
‖pi − c‖2.

For a point set P we define its mean or center of gravity to
be

µ(P ) =
1

|P |
∑
p∈P

p.

We note that µ(P ) is an optimal solution to the 1-means
problem. Finally we refer to the set of optimal centers as
C∗. We use P ∗1 , . . . , P

∗
k to be the partitioning into clusters

induced by the optimal centers and we refer to the cost of
the optimal solution as Optk.

The following lemma is folklore:

Lemma 1. Let P ⊆ Rd be a set of points and let c ∈ Rd be
a center. Then we have cost(P, {c}) = |P | · ‖c− µ(P )‖2 +
cost(P, µ(P )).

We will also use the following lemma (rephrased from Corol-
lary 21 in (Feldman et al., 2018)).

Lemma 2. Let ε > 0. Let p, q ∈ Rd and let C ⊆ Rd be
a set of k centers. Then |cost({p}, C) − cost({q}, C)| ≤
ε · cost({p}, C) + (1 + 1

ε )‖p− q‖2.

3. An improved k-means++ algorithm
We analyze the following algorithm. Starting with an empty
solution C we sample a point p at random from P where the
probability to sample p ∈ P is proportional to cost({p}, C)
(in the first step we sample uniformly at random). Then
if C < k, we add the sampled point to C. Otherwise
we check whether there exists a point c ∈ C such that
cost(P,C \ {c} ∪ {p}) < cost(P,C). If this is the case, we
replace c by the point in C that reduces the cost function by
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Algorithm 1 k-means++ seeding with local search
Require: P , k, Z

1: Uniformly sample p ∈ P and set C = {p}.
2: for i← 2, 3, . . . , k do
3: Sample p ∈ P with probability cost({p},C)∑

q∈P cost({q},C) and
add it to C.

4: end for
5: for i← 2, 3, . . . , Z do
6: C = LocalSearch++(P,C)
7: end for
8: return C

Algorithm 2 LocalSearch++
Require: P , C

1: Sample p ∈ P with probability cost({p},C)∑
q∈P cost({q},C)

2: if ∃q ∈ C s.t. cost(P,C \ {q} ∪ {p}) < cost(P,C)
then

3: Let q ∈ C be the q s.t. cost(P,C \ {q} ∪ {p}) is
minimized

4: C = C \ {q} ∪ {p}
5: end if
6: return C

the largest amount. The pseudo-code for the algorithm is
presented in Algorithm 1.

In order to implement the k-means++ sampling, we need to
maintain the squared distance of every point to the current
set of centers. Once we have sampled a new point we can do
so by computing the distance from the new center to every
input point and comparing this to the currently closest center.
If the new distance is smaller, we update our data structure.
This can be done in O(dn) time. Using the maintained
distance values we can easily implement the sampling in
linear time. We first obtain rescaled weights w1, . . . , w|P |
that sum up to 1. We then sample a number r uniformly at
random from [0, 1] and return the point with index i such
that

∑
j<i wj < r ≤

∑
j≤i wj .

In order to implement the local search, we need to compute
the cost of swapping the new sample point with an old center.
This requires to iterate over all clusters and for each cluster
we need to compute the distance to all other centers. Thus,
a local search step requires O(dkn) time in the worst case,
which leads to an overall running time of O(dnkZ)1. A
simple heuristic to improve the running time is to remember
the closest and the second closest center. This way, we
can compute the change of cost more efficiently. However,
maintaining the closest and second closed cluster center

1We note here that it is possible to remove the dependency from
d using dimensionality reduction techniques (Cohen et al., 2015;
Becchetti et al., 2019; Makarychev et al., 2019) and to obtain a
constant approximation in O(nk log kZ) time.

under insertions and deletions of cluster centers requires
O(dkn) time per update, since it may happen that we delete
the center of a cluster that has Ω(n) points. However, if on
average we delete clusters of size O(n/k) we end up with a
running time of O(dnk log log k).

We are now ready to state the main result of the paper.
The proof for the approximation guarantee can be found in
Section 4.

Theorem 1. Let P ⊆ Rd be a set of points and C be the
output of Algorithm 1 with Z ≥ 100000k log log k then we
have E[cost(P,C)] ∈ O(cost(P,C∗)), where C∗ is the set
of optimum centers. The running time of the algorithm is
O(dnk2 log log k).

We note that in the proofs for sake of simplicity we did
not optimize the constant in our analysis so the number of
iterations required by the algorithm has a large constant.
In the experimental section we observe that just after few
iteration the quality of the solution improves significantly.

4. Analysis
In the following we argue that the above algorithm with
probability O(1) reduces the cost of the current solution by
a O(1/k) factor in every iteration. This, in turn, implies
that afterO(k log log k) iterations we haveE[cost(P,C)] ∈
O(Optk). Formally,

Lemma 3. Let P be a set of points and C a set of
centers with cost cost(P,C) > 500Optk. Let C ′ =
LocalSearch++(P,C) then with probability 1

1000 we have
cost(P,C ′) ≤ (1− 1

100k )cost(P,C).

We prove the lemma in Section 4.1. Now we show that the
previous lemma combined with the main result in (Arthur
& Vassilvitskii, 2007) gives our Theorem 1.

Proof of Theorem 1. Let Ĉ be the set of centers after the
end of the first for loop in Algorithm 1 and let C be the set
of centers output by Algorithm 1. By Lemma 3 we know
that if before any call of LocalSearch++ the cost of the
centers is bigger than 500Optk then with probability 1

1000
we reduce the cost by a (1− 1

100k ) multiplicative factor.

Now consider another random process X with initial
value equal to cost(P, Ĉ) and such that for Z =
100000k log log k it reduces its value by a

(
1− 1

100k

)
mul-

tiplicative factor with probability 1/1000 and finally it in-
creases its value by additive 500Optk. It is not hard to see
that the final value of X stochastically dominates the cost
of the clustering. So the final expected value of X is larger
than the expected value of cost(P,C) conditioned on the
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initial clustering Ĉ. Furthermore:

E[X] = 500Optk + cost(P, Ĉ) ·
Z∑
i=0

(
Z

i

)
1

1000

i 999

1000

Z−i(
1− 1

100k

)i

= cost(P, Ĉ)

(
1− 1

100000k

)100000k log log k

+500Optk

≤ cost(P, Ĉ)

log k
+ 500Optk

This implies that E[cost(P,C)|Ĉ] ≤ cost(P,Ĉ)
log k + 500Optk.

But now:

E[cost(P,C)] =
∑
Ĉ

E[cost(P,C)|Ĉ]P (Ĉ)

=
∑
Ĉ

P (Ĉ)

(
cost(P, Ĉ)

log k
+ 500Optk

)

=
E[cost(P, Ĉ)]

log k
+ 500Optk

Now the theorem follows from (Arthur & Vassilvitskii,
2007) where the authors prove that E[cost(P, Ĉ)] ≤
(8 log k + 2)Optk. So E[cost(P,C)] ≤ 509Optk.

In the rest of section we show Lemma 3, the main idea
behind the proof is to compare the current set of centers
and the optimal set of centers and to show that if the cost
of the current solution is high(> 500Optk) we are likely to
sample a node that will improve the clustering. Our general
proof strategy is inspired to the analysis of the single swap
heuristic (Kanungo et al., 2002), although we modified them
to make them work in our context.

4.1. Proof of Lemma 3

We assume that the optimal solution C∗ = {c∗1, . . . , c∗k}
is unique (this can be enforced using proper tiebreakers)
and use P ∗1 , . . . , P

∗
k to denote the corresponding optimal

partition. We will also use C = {c1, . . . , ck} to refer to our
current clustering with corresponding partition P1, . . . , Pk.
When the indices are not relevant, we will drop the index
and write, for example, c ∈ C.

We use some ideas from (Kanungo et al., 2002) that have
been used to analyze the single swap heuristic. We say that
an optimal center c∗ is captured by a center c ∈ C, if c is
the nearest center to c∗ among all centers in C. Note that a
center c ∈ C may capture more than one optimal center and
every optimal center is captured by exactly one center from

C (ties are dealt with in an arbitrary way). Hence, some
center in c may not capture any optimal center. Similarly to
(Kanungo et al., 2002) we call these centers lonely. Let L
be the index set of lonely centers and let H be the index set
of centers capturing exactly one cluster. Wlog. we assume
that for h ∈ H we have that ch ∈ C captures c∗h ∈ C∗, i.e.
the indices of the clusters with a one-to-one correspondence
are identical.

We will use the above definition in the following way. If a
center c captures exactly one cluster of the optimal solution,
we think of it as a candidate center for this cluster. In this
case, if c is far away from the center of this optimal cluster,
we argue that with good probability we sample a point close
to the center. In order to analyze the change of cost, we will
argue that we can assign all points in the cluster of c that
are not in the captured optimal cluster to a different center
without increasing their contribution by too much. This will
be called the reassignment cost and is formally defined in the
definition below. We will show that with good probability
we sample from a cluster such that the improvement for the
points in the optimal cluster is significantly bigger than the
reassignment cost.

If a center is lonely, we think of it as a center that can be
moved to a different cluster. Again, we will argue that with
high probability we can sample points from other clusters
such that the reassignment cost is much smaller than the
improvement for this cluster.

Now we start to analyze the cost of reassignment of the
points due to a center swap.

We would like to argue that reassigning the points currently
assigned to a cluster center with index from H or L to
other clusters is small. In the case of clusters with index
h ∈ H , we will assign all points from Ph that are not in P ∗h
to other centers. In the case of clusters with index l ∈ L we
will consider the cost of assigning all points in Pi to other
clusters. We introduce the following definition to captures
the cost of this reassignment.
Definition 1. Let P ⊆ Rd be a point set and C ⊆ Rd be a
set of k cluster centers and let H be the subset of indices of
cluster centers from C = {c1, . . . , ck} that capture exactly
one cluster center of an optimal solutionC∗ = {c∗1, . . . , c∗k}.
Let Pi, P ∗i , 1 ≤ i ≤ k, be the corresponding clusters. Let
h ∈ H be an index with cluster Ph and wlog. let P ∗h be
the cluster in the optimal solution captured by ch. The
reassignment cost of ch is defined as

reassign(P,C, ch) = cost(P\P ∗h , C\{ch})−cost(P\P ∗h , C)

For ` ∈ L we define the reassignment cost of c` as

reassign(P,C, c`) = cost(P,C \ {c`})− cost(P,C)

We will now prove the following lemma on reassignment
costs.
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Lemma 4. For r ∈ H ∪ L we have

reassign(P,C, cr) ≤
21

100
cost(Pr, C) + 24cost(Pr, C∗).

Proof. We only present the case r ∈ H . The case
r ∈ L is almost identical (in fact, simpler). We ob-
serve that reassign(P,C, cr) = cost(Pr \ P ∗r , C \ {r}) −
cost(Pr, \P ∗r , C) since vertices in clusters other than Pr
will still be assigned to their current center. Our main idea
is as follows. If r ∈ H , we assign every point in Pr ∩ P ∗i ,
i 6= r, to the center that captured the center of P ∗i . While
this assignment may not be optimal, its cost gives an upper
bound on the cost of reassigning the points. In order to
get an estimate for the cost of reassigning the points, we
proceed as follows: We move every point in Pr ∩P ∗i , i 6= r,
to the center of P ∗i . After this movement, the closest center
of C to these points is the center that captured the center of
P ∗i , which, for points not in P ∗r , cannot be r, since r is in
H . We then use the fact that the squared moved distance
of each point equals its contribution to the optimal solution
to get an upper bound on the cost change using Lemma 2.
After this, we move the points back to their original location
while keeping their cluster assignments fixed. Again we
can use the bound on the overall moved distance together
with Lemma 2 to obtain a bound on the change of cost.
Combining the two bounds we obtain an upper bound on
the increase of cost that comes from reassigning the points.
Details follow.

Let Qr be the (multi)set of points obtained from Pr \ P ∗r
by moving each point in P ∗i ∩ Pr, i 6= r, to c∗i . We apply
Lemma 2 with ε = 1/10 to get an upper bound for the
change of cost with respect to C that results from moving
the points to Qr. For p ∈ Pr \ P ∗r let qp ∈ Qr be the point
of Qr to which p has been moved. We have:

|cost({p}, C)− cost({qp}, C)|

≤ 1

10
cost({p}, C) + 11 · cost({p}, C∗).

Summing up over all points in Pr \ P ∗r yields

|cost(Pr \ P ∗r , C)− cost(Qr, C)|

≤ 1

10
cost(Pr \ P ∗r , C) + 11 · cost(Pr \ P ∗r , C∗).

Note that after this movement all points from Pr \ P ∗r have
been assigned to centers from C \ {r}. Now we analyze
the cost of moving the points back to their original location
while maintaining this assignment. Let Qr,i be the points
in Qr that are nearest to center ci ∈ C and let Pr,i be the
set of their original locations. For p ∈ Pr,i that has been

moved to qp ∈ Qr,i we have:

|cost({qp}, {ci})− cost({p}, {ci})|

≤ 1

10
cost({qp}, {ci}) + 11 · cost({p}, {qp})

Summing up over all points in Pr and the corresponding
points in Qr yields

|cost(Qr, C)−
k∑
i=1

cost(Pr,i, {ci})|

≤ 1

10
cost(Qr, C) + 11 · cost(Pr \ P ∗r , C∗)

≤ 1

10

(
11

10
cost(Pr \ P ∗r , C) +

11 · cost(Pr \ P ∗r , C∗)
)

+ 11 · cost(Pr \ P ∗r , C∗)

≤ 11

100
cost(Pr, C) + 13 · cost(Pr, C∗).

Hence,

reassign(P,C, cr) = |cost(Pr \ P ∗r , C)−∑
i

cost(Pr,i, {ci})|

≤ |cost(Pr \ P ∗r , C)− cost(Qr, C)|+
|cost(Qr, C)−

∑
i

cost(Pr,i, ci)|

≤ 21

100
cost(Pr, C) + 24cost(Pr, C∗).

For the first equality note that
∑
i cost(Pr,i, ci) = cost(Pr \

P ∗r , C − {r}).

Now that we have a good bound on the reassignment cost
we make a case distinction. Recall that we assume that for
every h ∈ H the optimal center captured by ch is c∗H , i.e.
the indices are identical. We first consider the case that∑
h∈H cost(P ∗h , C) > 1

3cost(P,C).

With the previous lemma at hand, we can focus on the
centers h ∈ H where replacing h by an arbitrary point close
to the optimal cluster center of the optimal cluster captured
by h improves the cost of the solution significantly. We
call such clusters good and make this notion precise in the
following definition.
Definition 2. A cluster index h ∈ H is called good, if

cost(P ∗h , C)− reassign(P,C, ch)− 9cost(P ∗h , {c∗h}) >
1

100k
· cost(P,C).

The above definition estimates the gain of replacing ch by a
point close to the center of P ∗h by considering a clustering
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that reassigns the points in Ph that do not belong to P ∗h and
assigns all points in P ∗h to the new center. Now we want
to show that we have a good probability to sample a good
cluster. In particular, we first argue that the sum of cost of
good clusters is large.

Lemma 5. If 3
∑
h∈H cost(P ∗h , C) > cost(P,C) ≥

500Optk, then∑
h∈H,h is good

cost(P ∗h , C) ≥ 1

25
cost(P,C).

Proof. We have
∑
h∈H cost(P ∗h , C) ≥ 1

3cost(P,C) and by
the definition of good and Lemma 4∑
h∈H,h is not good

cost(P ∗h , C) ≤
∑
h∈H

reassign(P,C, ch) +

9Optk +
1

100
cost(P,C)

≤ 22

100
cost(P,C) + 33Optk.

Using that cost(P,C) ≥ 500Optk we obtain that∑
h∈H,h is not good

cost(P ∗h , C) ≤ 143

500
· cost(P,C).

So
∑
h∈H,h is good cost(P ∗h , C) ≥ 23

500 · cost(P,C). The
lemma follows.

Now we show that whenever a cluster has high cost wrt. C,
it suffices to consider the points close to the optimal center to
get an approximation of the cost of the cluster. We will then
use this fact to argue that we sample with good probability
a point close to the center. In the following lemma it will be
helpful to think of Q as being a (good) cluster in the optimal
solution and C being the centers of the current solution.

Lemma 6. Let Q ⊆ Rd be a point set and let C ⊆ Rd
be a set of k centers and let α ≥ 9. If cost(Q,C) ≥ α ·
cost(Q, {µ(Q)}) then

cost(R,C) ≥
(
α− 1

8

)
· cost(Q, {µ(Q)}),

where R ⊆ Q is the subset of Q at squared distance at most
2
|Q| · cost(Q, {µ(Q)}) from µ(Q).

Proof. We know that the closest center in C to µ(Q) has
squared distance at least α−1|Q| ·cost(Q, {µ(Q)}) as otherwise
cost(Q,C) < α ·cost(Q, {µ(Q)}) by Lemma 1. Hence, the
squared distance of every point in R to C is at least

(
√
α− 1−

√
2)2 · cost(Q, {µ(Q)})/|Q| ≥

(α− 1)/4 · cost(Q, {µ(Q)})/|Q|,

where we use that α ≥ 9 and so
√
α− 1 ≥ 2

√
2. Further-

more, by averaging we get |R| ≥ |Q|/2, which together
with the inequality above implies the result.

Now we can argue that sampling according to sum of
squared distances will provide us with constant probabil-
ity with a good center. Consider any index h ∈ H with h
being good. We will apply Lemma 6 with Q = P ∗h and
α = cost(Q,C)/cost(Q,µ(Q)). Note that by the defini-
tion of good, we have that α ≥ 9. Now let us defineR∗h to be
the set R guaranteed by Lemma 6. We have cost(R∗h, C) ≥
α−1
8 cost(P ∗h , {c∗h}) = α−1

8α cost(P ∗h , C) ≥ 1
9cost(P ∗h , C)

by our choice of α (observe that c∗h equals µ(P ∗h )). Since
the sum of squared distances of points in good clusters
is at least 1/25cost(P,C) by Lemma 5, we conclude that∑
h∈H,h is good cost(R∗h, C) ≥ 1

9·25cost(P,C). Thus, the
probability to sample a point from ∪h∈H,h is goodcost(R∗h, C)
is more than 1/1000. By the definition of good, if we sample
such a point c ∈ R∗h we can swap it with ch to get a new clus-
tering of cost at most cost(P,C\{ch}∪{c}) ≤ cost(P,C)−
cost(P ∗h , C) + reassign(P,C, {ch}) + cost(P ∗h , {c}). By
Lemma 1 we know that cost(P ∗h , {c}) ≤ 9cost(P ∗h , {c∗h}).
Hence, with probability at least 1/1000 the new clustering
has cost at most

cost(P,C)− (cost(P ∗h , C)− reassign(P,H, ch)

−9cost(P ∗h , {c∗h})

≤ (1− 1

100k
) · cost(P,C).

This proves our lemma in the first case.

In the second case, we have
∑
h∈H cost(P ∗h , C) <

1/3cost(P,C). Now let R = {1, . . . , k} \ H , so we
get
∑
r∈R cost(P ∗r , C) ≥ 2/3cost(P,C). Observe that R

equals the index set of optimal cluster centers that were
captured by centers that capture more than one optimal cen-
ter. This is because every optimal center is captured by one
center and R does not include H . In this case, if the index
of a center of our current solution is in R \ L we cannot
easily move the cluster center without having impact on
other clusters. What we do instead is to use the centers in L
as candidate centers for a swap. Similar to the case above
we will argue that we can swap a center from L with a point
that is close to an optimal center of a cluster P ∗r for some
r ∈ R.

Recall that we have already bounded the cost of reassigning
a center in L so we just need to argue that the probability of
sampling a good center is high enough.

In particular, we focus on the centers r ∈ R and swap an
arbitrary center ` ∈ L with an arbitrary point close to one of
the centers in R to improve the cost of the solution. Slightly
overloading notation, we call such cluster centers good and
make this notion precise in the following definition.
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Definition 3. A cluster index i ∈ {1, . . . , k} is called good,
if there exists a center ` ∈ L such that

cost(P ∗i , C)− reassign(P,C, `)− 9cost(P ∗i , {c∗i }) >
1

100k
· cost(P,C).

The above definition estimates the cost of removing ` and
inserting a new cluster center close to the center of P ∗i by
considering a clustering that reassigns the points in P ∗i and
assigns all points in P ∗i to the new center. In the following
we will now argue that the sum of cost of good clusters
is large, this will be useful to show that the probability of
sampling such a cluster is high enough.
Lemma 7. If 3

∑
h∈H cost(P ∗h , C) ≤ cost(P,C) and

cost(P,C) ≥ 500Optk we have∑
r∈R,r is good

cost(P ∗r , C) ≥ 1

20
cost(P,C).

Proof. We have
∑
r∈R cost(P ∗r , C) ≥ 2/3cost(P,C).

Note that |R| ≤ 2|L|. By the definition of good and Lemma
4 ∑
r∈R,r is not good

cost(P ∗r , C)

≤ 2|L|min
`∈L

reassign(P,C, `) + 9Optk

+
1

100
cost(P,C)

≤ 2
∑
`∈L

reassign(P,C, `) + 9Optk

+
1

100
cost(P,C)

≤ 43

100
cost(P,C) + 57Optk.

Using that
∑
i∈{1,...,k} cost(P ∗i , C) ≥ 500Optk we obtain

that ∑
r∈R,r is not good

cost(P ∗r , C) ≤ 11

20
cost(P,C)

Now the bound follows by combining the previous inequal-
ity with

∑
r∈R cost(P ∗r , C) ≥ 2/3cost(P,C).

Note that also in this case we can now argue similarly as in
the other case that sampling according to sum of squared dis-
tances will provide us with constant probability with a good
center using Lemma 6. In fact, since the sum of squared
distances of points in good centers is at least 1/20cost(P,C)
by Lemma 7, it follows together with Lemma 6 that we sam-
ple a point from a good cluster P ∗r that is within distance
two times the average cost of the cluster with probability

1
1000 . By the definition of good, we know that such a point
improves the cost of the current clustering by at least a factor
of (1− 1

100k ). Thus, Lemma 3 follows.

5. Experiments
In this experiment we study the performance of our algo-
rithm in practice. In particular, we have two main goals:

• Study the reduction in the cost that we obtain by run-
ning our local search post-processing after k-means++

• Study the reduction in the cost that we obtain by run-
ning our local search post-processing after k-means++
and then we run the Lloyd’s algorithm on the set of
obtained centers

Algorithms. We compare four different algorithms:

• KM++: the classic k-means++ algorithm (Arthur &
Vassilvitskii, 2007)

• LS++: our algorithm presented in Section 3

• LL-KM++: the classic k-means++ algorithm (Arthur
& Vassilvitskii, 2007) followed by 10 steps of the
Lloyd’s algorithm (Lloyd, 2006)2

• LL-LS++: our algorithm presented in Section 3 fol-
lowed by 10 steps of the Lloyd’s algorithm (Lloyd,
2006)

Datasets. We consider the k-means clustering for k = 25
or 50 on 3 different datasets:

• RNA – 8 features from 488565 RNA input sequence
pairs (Uzilov et al., 2006)

• KDD-BIO – 145751 samples with 74 features mea-
suring the match between a protein and a native se-
quence (KDD)

• KDD-PHY – 100000 samples with 78 features repre-
senting a quantum physic task (KDD)

We run all our experiments 3 times and we report the average
of the results.

Results. In Figure 1 we compare the performance of our
algorithm with the classic k-means++ for k = 50 and k =
25. We note that our algorithm improves substantially the
performance of the classic k-means++ algorithm with a cost
reduction that spans from the 8% to 35%. We also note that
the gain that we obtain with our algorithm is stable across
different datasets.

2We stop the Lloyd’s algorithm when the incremental improve-
ment of an iteration was small. In particular, after 10 steps of
Lloyd’s the improvement that we observed was less 0.4% per iter-
ation for all considered datasets and for all different choices on the
number of centers.
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(a) k=50, KDD-PHY (b) k=50, RNA

(c) k=50, KDD-BIO (d) k=25, KDD-PHY

(e) k=25, RNA (f) k=25, KDD-BIO

Figure 1. Comparison between the cost of KM++ and LS++. The
x axes is the number of local search iterations that we run for
our algorithm. The y axes show the relative cost of the algorithm
compared with the cost of KM++.

In Figure 2 we compare the performance of LL-LS++ with
LL-KM++ for k = 50 and k = 25. We can observe
that the reduction of the cost after Lloyd’s is significantly
reduced and it is between 1% and 18%. We also note that
the reduction is slightly less stable, expecially for k =
25 and that in KDD-bio the gain is reduced substantially
after running Lloyd’s but the algorithm still outperform
the baseline. Nevertheless we note that LL-LS++ almost
always obtain better results than LL-KM++. Confirming
the effectiveness of our seeding procedure.

Finally we observe that our algorithm is very efficient in
practice. In fact, the time spent to run 25 iteration of our
algorithm is smaller than the time spent in a single Lloyd’s
iteration.

6. Conclusions
We propose a simple variation of k-means++ algorithm
based on local search and prove that the algorithm achieves
a constant factor approximation. Furthermore we show
experimentally the impact the effectiveness of our method.

It is an interesting open question to improve our analysis to
reduce the number of local search steps needed in our anal-
ysis to obtain a constant factor approximation. In particular
it would be nice to show that O(k) steps are sufficient.

References
Kdd cup. 2004. Available at

http://osmot.cs.cornell.edu/kddcup/datasets.html.
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