Appendix

A. Proofs

Proof of Lemma [1:](#page--1-0)

It is straightforward to see that Algorithm [1](#page--1-0) can be implemented in time $\mathcal{O}((k+|C'_0|)|S|)$. We only need to show that it is a 2-approximation algorithm for [\(3\)](#page--1-0).

If $k = 0$, there is nothing to show, so assume that $k \ge 1$ $k \ge 1$. Let $C = \{c_1, \ldots, c_k\}$ be the output of Algorithm 1 and $C^* = \{c_1^*, \ldots, c_k^*\}$ be an optimal solution to [\(3\)](#page--1-0) with objective value r^* . Let $s \in S$ be arbitrary. We need to show that $d(s, \hat{c}) \leq 2r^*$ for some $\hat{c} \in C \cup C'_0$. If $s \in C \cup C'_0$, there is nothing to show. So assume $s \notin C \cup C'_0$. If

$$
C'_0 \cap \underset{c \in C^* \cup C'_0}{\text{argmin}} d(s, c) \neq \emptyset,
$$

there exists $\hat{c} \in C'_0$ with $d(s, \hat{c}) \leq r^*$ and we are done. Otherwise, let $c_i^* \in \operatorname{argmin}_{c \in C^* \cup C'_0} d(s, c)$ and hence $d(s, c_i^*) \leq r^*$. We distinguish two cases:

- $\exists c_j \in C$ with $c_i^* \in \operatorname{argmin}_{c \in C^* \cup C'_0} d(c_j, c)$: We have $d(c_j, c_i^*) \le r^*$ and hence $d(s, c_j) \le d(s, c_i^*) + d(c_i^*, c_j) \le 2r^*$.
- \nexists $c_j \in C$ with $c_i^* \in \text{argmin}_{c \in C^* \cup C'_0} d(c_j, c)$:

There must be $c' \neq c'' \in C \cup C'_0$, where not both c' and c'' can be in C'_0 , and $\hat{c} \in C^* \cup C'_0$ such that

$$
\hat{c} \in \underset{c \in C^* \cup C'_0}{\text{argmin}} d(c', c) \cap \underset{c \in C^* \cup C'_0}{\text{argmin}} d(c'', c).
$$

Since $d(c',\hat{c}) \le r^*$ and $(c'',c^*) \le r^*$, it follows that $d(c',c'') \le d(c',\hat{c}) + d(\hat{c},c'') \le 2r^*$.

Without loss of generality, assume that in the execution of Algorithm [1,](#page--1-0) c'' has been added to the set of centers after c' has been added. In particular, we have $c'' \in C$ and $c'' = c_l$ for some $l \in \{1, ..., k\}$. Due to the greedy choice in Line 5 of the algorithm and since s has not been chosen by the algorithm, we have

$$
2r^* \ge d(c',c'') \ge \min_{c \in \{c_1,\dots,c_{l-1}\} \cup C'_0} d(c'',c) \ge \min_{c \in \{c_1,\dots,c_{l-1}\} \cup C'_0} d(s,c).
$$

 \Box

Proof of Theorem [1:](#page--1-0)

Again it is easy to see that Algorithm [2](#page--1-0) can be implemented in time $\mathcal{O}((k + |C_0|)|S|)$. We need to prove that it is a 5-approximation algorithm, but not a $(5 - \varepsilon)$ -approximation algorithm for any $\varepsilon > 0$:

1. Algorithm [2](#page--1-0) is a 5-approximation algorithm:

Let r_{fair}^* be the optimal value of the fair problem [\(2\)](#page--1-0) and r^* be the optimal value of the unfair problem [\(3\)](#page--1-0). Clearly, $r^* \leq r_{\text{fair}}^*$. Let $C_{\text{fair}}^* = \{c_1^{(1)*}, \ldots, c_{k_{S_1}}^{(1)*}, c_1^{(2)*}, \ldots, c_{k_{S_2}}^{(2)*}\}$ with $c_1^{(1)*}, \ldots, c_{k_{S_1}}^{(1)*} \in S_1$ and $c_1^{(2)*}, \ldots, c_{k_{S_2}}^{(2)*} \in S_2$ k_{S_1} , c_1 , ..., $c_{k_{S_2}}$ \int with c_1 , ..., $c_{k_{S_1}}$ \in ω_1 and c_1 , ..., $c_{k_{S_2}}$ be an optimal solution to the fair problem [\(2\)](#page--1-0) with cost r_{fair}^* and $C^A = \{c_1^A, \ldots, c_k^A\}$ be the centers returned by Algorithm [2.](#page--1-0) It is clear that Algorithm [2](#page--1-0) returns k_{S_1} many elements from S_1 and k_{S_2} many elements from S_2 and hence $C^A = \{c_1^{(1)A}, \ldots, c_{k_{S_1}}^{(1)A}$ $k_{S_1}^{(1)A}, c_1^{(2)A}, \ldots, c_{k_{S_2}}^{(2)A}$ ${k_{S_2}}^{(2)A}$ with $c_1^{(1)A}, \ldots, c_{k_{S_1}}^{(1)A}$ $k_{S_1}^{(1)A} \in S_1$ and $c_1^{(2)A}, \ldots, c_{k_{S_2}}^{(2)A}$ $\binom{[2]A}{k_{S_2}} \in S_2$. We need to show that

$$
\min_{c \in C^A \cup C_0} d(s, c) \le 5r^*_{\text{fair}}, \quad s \in S.
$$

Let $\tilde{C}^A = \{\tilde{c}_1^A, \ldots, \tilde{c}_k^A\}$ $\tilde{C}^A = \{\tilde{c}_1^A, \ldots, \tilde{c}_k^A\}$ $\tilde{C}^A = \{\tilde{c}_1^A, \ldots, \tilde{c}_k^A\}$ be the output of Algorithm 1 when called in Line 3 of Algorithm [2.](#page--1-0) Since Algorithm 1 is a 2-approximation algorithm for the unfair problem [\(3\)](#page--1-0) according to Lemma [1,](#page--1-0) we have

$$
\min_{c \in \widetilde{C}^A \cup C_0} d(s, c) \le 2r^* \le 2r_{\text{fair}}^*, \quad s \in S. \tag{6}
$$

If Algorithm [2](#page--1-0) returns \tilde{C}^A in Line 6, that is $C^A = \tilde{C}^A$, we are done. Otherwise assume, as in the algorithm, that $|\tilde{C}^A \cap S_1| > k_{S_1}$. Let $\tilde{c}_i^A \in S_1$ be a center of cluster L_i that we replace with $y \in L_i \cap S_2$ and let \hat{y} be an arbitrary element in L_i . Because of (6), we have $d(\tilde{c}_i^A, y) \le 2r_{\text{fair}}^*$ and $d(\tilde{c}_i^A, \hat{y}) \le 2r_{\text{fair}}^*$, and hence $d(y, \hat{y}) \le d(y, \tilde{c}_i^A) + d(\tilde{c}_i^A, \hat{y}) \le 4r_{\text{fair}}^*$
due to the triangle inequality. Consequently, after the smaller to the center of its cluster. In particular, we have

$$
\min_{c \in \widetilde{C}^A \cup C_0} d(s, c) \le 4r_{\text{fair}}^*, \quad s \in S,
$$

and if Algorithm [2](#page--1-0) returns \tilde{C}^A in Line 13, we are done. Otherwise, we still have $|\tilde{C}^A \cap S_1| > k_{S_1}$ after exchanging centers in the while-loop in Line 9. Let $S' = \bigcup_{i \in [k]: \tilde{c}_i^A \in S_1} L_i$, that is the union of clusters with a center $\tilde{c}_i^A \in S_1$. Since there is no more center in S_1 that we can exchange for an element in S_2 , we have $S' \subseteq S_1$. Let $S'' = \cup_{i \in [k]: \tilde{c}_i^A \in S_2} L_i$ be the union of clusters with a center $\tilde{c}_i^A \in S_2$ and $S_{C_0} = L'_1 \cup \ldots \cup L'_{|C_0|}$ be the union of clusters with a center in C_0 . Then we have $S = S' \cup S'' \cup S_{C_0}$. We have $\widetilde{C}^A \cap S_2 \subseteq C^A$ and

$$
\min_{c \in C^A \cup C_0} d(s, c) \le \min_{c \in (\widetilde{C}^A \cap S_2) \cup C_0} d(s, c) \le 4r_{\text{fair}}^*, \quad s \in S'' \cup S_{C_0}.\tag{7}
$$

Hence we only need to show that $\min_{c \in C^A \cup C_0} d(s, c) \le 5r_{\text{fair}}^*$ for every $s \in S'$. We split S' into two subsets $S' = S'_a \dot{\cup} S'_b$, where

$$
S'_a = \left\{ s \in S' : \underset{c \in C^*_{\text{fair}} \cup C_0}{\text{argmin}} d(s, c) \cap (C_0 \cup S_2) \neq \emptyset \right\}
$$

and $S'_b = S' \setminus S'_a$. For every $s \in S'_a$ there is $c \in (C_0 \cup S_2) \subseteq (S'' \cup S_{C_0})$ with $d(s, c) \leq r^*_{\text{fair}}$ and it follows from (7) and the triangle inequality that

$$
\min_{c \in C^A \cup C_0} d(s, c) \le \min_{c \in (\widetilde{C}^A \cap S_2) \cup C_0} d(s, c) \le 5r_{\text{fair}}^*, \quad s \in S'_a. \tag{8}
$$

It remains to show that $\min_{c \in C^A \cup C_0} d(s, c) \le 5r_{\text{fair}}^*$ for every $s \in S'_b$. For every $s \in S'_b$ there exists $c \in \{c_1^{(1)*}, \ldots, c_{k_{S_1}}^{(1)*}$ $\{f^{(1)*}_{k_{S_1}}\}$ with $d(s, c) \leq r^*_{\text{fair}}$. We can write $S'_b = \bigcup_{j=1}^{k_{S_1}} \{s \in S'_b : d(s, c_j^{(1)*}) \leq r^*_{\text{fair}}\}$ (some of the sets in this union might be empty, but that does not matter). Note that for every $j \in \{1, \ldots, k_{S_1}\}$ we have

$$
d(s, s') \le 2r_{\text{fair}}^*, \quad s, s' \in \left\{ s \in S_b' : d(s, c_j^{(1)*}) \le r_{\text{fair}}^* \right\},\tag{9}
$$

due to the triangle inequality. It is

$$
S'=S'_a\cup S'_b=S'_a\cup \bigcup_{j=1}^{k_{S_1}}\left\{s\in S'_b: d(s,c_j^{(1)*})\leq r^*_{\text{fair}}\right\}
$$

and when, in Line 15 of Algorithm [2,](#page--1-0) we run Algorithm [1](#page--1-0) on $S' \cup C'_0$ with $k = k_{S_1}$ and initial centers C'_0 = $C_0 \cup (\tilde{C}^A \cap S_2)$, one of the following three cases has to happen (we denote the centers returned by Algorithm [1](#page--1-0) by $\widehat{C}^{A} = \{c_1^{(1)A}, \ldots, c_{k_{S_1}}^{(1)A}$ $\binom{1}{k_{S_1}}$.

• For every $j \in \{1, \ldots, k_{S_1}\}\$ there exists $j' \in \{1, \ldots, k_{S_1}\}\$ such that $c_{j'}^{(1)A}$ $j_j^{(1)A}\in \{s\in S_{b}':d(s,c_j^{(1)*})\leq r_{\text{fair}}^*\}.$ In this case it immediately follows from (9) that

$$
\min_{c \in C^A \cup C_0} d(s, c) \le \min_{c \in \widehat{C}^A} d(s, c) \le 2r_{\text{fair}}^*, \quad s \in S'_b.
$$

Figure 7. An example showing that Algorithm [2](#page--1-0) is not a $(5 - \varepsilon)$ -approximation algorithm for any $\varepsilon > 0$.

• There exists $j' \in \{1, \ldots, k_{S_1}\}\$ such that $c_{j'}^{(1)A}$ $j'_{j'}^{(1)A} \in S'_a$ $j'_{j'}^{(1)A} \in S'_a$ $j'_{j'}^{(1)A} \in S'_a$. When Algorithm 1 picks $c_{j'}^{(1)A}$ j' , any other element in S' cannot be at a larger minimum distance from a center in $(\tilde{C}^A \cap S_2) \cup C_0$ or a previously chosen center in \tilde{C}^A than $c_{i'}^{(1)A}$ $j'_{j'}$. It follows from [\(8\)](#page-1-0) that

$$
\min_{c\in C^A\cup C_0} d(s,c) \leq 5r^*_{\textup{fair}}, \quad s\in S'.
$$

• There exist $j \in \{1, ..., k_{S_1}\}$ and $j' \neq j'' \in \{1, ..., k_{S_1}\}$ such that $c_{j'}^{(1)}$ ^A $c_{j'}^{(1)A}, c_{j''}^{(1)A}$ $j'' \in \{ s \in S_b' : d(s, c_j^{(1)*}) \leq r_{\text{fair}}^* \}.$ Assume that Algorithm [1](#page--1-0) picks $c_{i'}^{(1)A}$ j' before $c_{j''}^{(1)A}$ j'' . When Algorithm [1](#page--1-0) picks $c_{j''}^{(1)A}$ j'' , any other element in S' cannot be at a larger minimum distance from a center in $(\widetilde{C}^A \cap S_2) \cup C_0$ or a previously chosen center in \widehat{C}^A than $c_{j''}^{(1)}$ j'' . Because of $d(c_{i'}^{(1)A})$ $c_{j'}^{(1)A}, c_{j''}^{(1)A}$ $j''^{(1)A}_{j''}) \leq 2r_{\text{fair}}^*$ according to [\(9\)](#page-1-0), it follows that

$$
\min_{c\in C^A\cup C_0} d(s,c) \le 2r^*_{\text{fair}}, \quad s\in S'.
$$

In all cases we have

$$
\min_{c \in C^A \cup C_0} d(s, c) \le 5r_{\text{fair}}^*, \quad s \in S'_b,
$$

which completes the proof of the claim that Algorithm [2](#page--1-0) is a 5-approximation algorithm.

[2](#page--1-0). Algorithm 2 is not a $(5 - \varepsilon)$ -approximation algorithm for any $\varepsilon > 0$:

Consider the example given by the weighted graph shown in Figure 7, where $0 < \delta < \frac{1}{10}$. We have $S = S_1 \dot{\cup} S_2$ with $S_1 = \{f_1, f_2, f_3, f_4, f_5\}$ and $S_2 = \{m_1, m_2, m_3, m_4, m_5, m_6\}$. All distances are shortest-path-distances. Let $k_{S_1} = 1$ $k_{S_1} = 1$ $k_{S_1} = 1$, $k_{S_2} = 3$ $k_{S_2} = 3$ $k_{S_2} = 3$, and $C_0 = \emptyset$. We assume that Algorithm 1 in Line 3 of Algorithm 2 picks f_5 as first center. It then chooses f_2 as second center, f_3 as third center and f_1 as fourth center. Hence, $\tilde{C}^A = \{f_5, f_2, f_3, f_1\}$ and $|\tilde{C}^A \cap S_1| > k_{S_1}$. The clusters corresponding to \tilde{C}^A are $\{f_5\}$, $\{f_2, f_4\}$, $\{f_3, m_3, m_4, m_5, m_6\}$ and $\{f_1, m_1, m_2\}$. Assume we replace f_3 with m_4 and f_1 with m_2 in Line 10 of Algorithm [2.](#page--1-0) Then it is still $|\tilde{C}^A \cap S_1| > k_{S_1}$, and in Line 15 of Algorithm [2](#page--1-0) we run Algorithm [1](#page--1-0) on $\{f_2, f_4, f_5\} \cup \{m_2, m_4\}$ with $k = 1$ and initially given centers $C'_0 = \{m_2, m_4\}$. Algorithm [1](#page--1-0) returns $\hat{C}^A = \{f_5\}$. Finally, assume that m_5 is chosen as arbitrary third center from S_2 in Line 16 of Algorithm [2.](#page--1-0) So the centers returned by Algorithm [2](#page--1-0) are $C^A = \{f_5, m_2, m_4, m_5\}$ with a cost of $5 - \frac{5}{2}$ (incurred for f_4). However, the optimal solution $C_{\text{fair}}^* = \{f_5, m_1, m_3, m_6\}$ has cost only $1 + \delta$. Choosing δ sufficiently small shows that Algorithm [2](#page--1-0) is not a $(5 - \varepsilon)$ -approximation algorithm for any $\varepsilon > 0$.

Proof of Lemma [2:](#page--1-0)

We want to show three things:

1. Algorithm [3](#page--1-0) is well-defined:

If the condition of the while-loop in Line 7 is true, there exists a shortest path $P = S_{v_0} S_{v_1} \cdots S_{v_w}$ with $S_{v_0} = S_r$, $S_{vw} = S_s$ that connects S_r to S_s in G. Since P is a shortest path, all S_{v_i} are distinct. By the definition of G, for every $l = 0, \ldots, w - 1$ there exists L_t with center $\tilde{c}_t^A \in S_{v_l}$ and $y \in L_t \cap S_{v_{l+1}}$. Hence, the for-loop in Line 8 is well defined.

2. Algorithm [3](#page--1-0) terminates:

Let, at the beginning of the execution of Algorithm [3](#page--1-0) in Line 3, $H_1 = \{S_j \in \{S_1, \ldots, S_m\} : \tilde{k}_{S_j} = k_{S_j}\},\$ $H_2 = \{S_j \in \{S_1, \ldots, S_m\} : \tilde{k}_{S_j} > k_{S_j}\}$ and $H_3 = \{S_j \in \{S_1, \ldots, S_m\} : \tilde{k}_{S_j} < k_{S_j}\}$. For $S_j \in H_1$, \tilde{k}_{S_j} never changes during the execution of the algorithm. For $S_j \in H_2$, \tilde{k}_{S_j} never increases during the execution of the algorithm and decreases at most until it equals k_{S_j} . For $S_j \in H_3$, \tilde{k}_{S_j} never decreases during the execution of the algorithm and increases at most until it equals k_{S_j} . In every iteration of the while-loop, there is $S_j \in H_3$ for which \tilde{k}_{S_j} increases by one. It follows that the number of iterations of the while-loop is upper-bounded by k .

[3](#page--1-0). Algorithm 3 exchanges centers in such a way that the set G that it returns satisfies $G \subsetneq \{S_1, \ldots, S_m\}$ and properties [\(4\)](#page--1-0) and [\(5\)](#page--1-0):

Note that throughout the execution of Algorithm [3](#page--1-0) we have $\tilde{k}_{S_j} = \sum_{i=1}^{k} \mathbb{1}\left\{ \tilde{c}_i^A \in S_j \right\}$ for the current centers $\tilde{c}_1^A, \ldots, \tilde{c}_k^A$. If the condition of the if-statement in Line 13 is true, then $\mathcal{G} = \emptyset$ and [\(4\)](#page--1-0) and [\(5\)](#page--1-0) are satisfied.

Assume that the condition of the if-statement in Line 1[3](#page--1-0) is not true. Clearly, the set G returned by Algorithm 3 satisfies [\(5\)](#page--1-0). Since the condition of the if-statement in Line 13 is not true, there exist S_j with $\tilde{k}_{S_j} > k_{S_j}$ and S_i with $\tilde{k}_{S_i} < k_{S_i}$. We have $S_j \in \mathcal{G}$, but since the condition of the while-loop in Line 7 is not true, we cannot have $S_i \in \mathcal{G}$. This shows that $G \subsetneq \{S_1, \ldots, S_m\}$. We need to show that [\(4\)](#page--1-0) holds. Let L_h be a cluster with center $\tilde{c}_h^A \in S_f$ for some $S_f \in \mathcal{G}$ and assume it contained an element $o \in S_{f'}$ with $S_{f'} \notin \mathcal{G}$. But then we had a path from S_f to $S_{f'}$ in G . If $S_f \in \mathcal{G}'$, this is an immediate contradiction to $S_{f'} \notin \mathcal{G}$. If $S_f \notin \mathcal{G}'$, since $S_f \in \mathcal{G}$, there exists $S_g \in \mathcal{G}'$ such that there is a path from S_g to S_f . But then there is also a path from S_g to $S_{f'}$, which is a contradiction to $S_{f'} \notin \mathcal{G}$.

Proof of Theorem [2:](#page--1-0)

For showing that Algorithm [4](#page--1-0) is a $(3 \cdot 2^{m-1} - 1)$ -approximation algorithm let r_{fair}^* be the optimal value of problem [\(2\)](#page--1-0) and C_{fair}^* be an optimal solution with cost r_{fair}^* . Let C^A be the centers returned by Algorithm [4.](#page--1-0) A simple proof by induction over m shows that C^A actually comprises k_{S_i} many elements from every group S_i . We need to show that

$$
\min_{c \in C^{A} \cup C_{0}} d(s, c) \leq (3 \cdot 2^{m-1} - 1) r_{\text{fair}}^{*}, \quad s \in S. \tag{10}
$$

Let T be the total number of calls of Algorithm [4,](#page--1-0) that is we have one initial call and $T - 1$ recursive calls. Since with each recursive call the number of groups is decreased by at least one, we have $T \leq m$. For $1 \leq j \leq T$, let $S^{(j)}$ be the data set in the j-th call of Algorithm [4.](#page--1-0) We additionally set $S^{(T+1)} = \emptyset$. We have $S^{(1)} = S$ and $S^{(j)} \supseteq S^{(j+1)}$, $1 \leq j \leq T$. For $1 \le j < T$, let $\mathcal{G}^{(j)}$ be the set of groups in $\mathcal G$ returned by Algorithm [3](#page--1-0) in Line 8 in the j-th call of Algorithm [4.](#page--1-0) If in the T-th call of Algorithm [4](#page--1-0) the algorithm terminates from Line 10 (note that in this case we must have $T < m$), we also let $\mathcal{G}^{(T)} = \emptyset$ be the set of groups in \mathcal{G} returned by Algorithm [3](#page--1-0) in the T-th call. Otherwise we leave $\mathcal{G}^{(T)}$ undefined. Setting $\mathcal{G}^{(0)} = \{S_1, \ldots, S_m\}$, we have $\mathcal{G}^{(j)} \supsetneq \mathcal{G}^{(j+1)}$ for all j such that $\mathcal{G}^{(j+1)}$ is defined. For $1 \leq j < T$, let C_j be the set of centers returned by Algorithm [3](#page--1-0) in Line 8 in the j-th call of Algorithm [4](#page--1-0) that belong to a group not in $\mathcal{G}^{(j)}$ (in Algorithm [4,](#page--1-0) the set of these centers is denoted by C'). We analogously define C_T if in the T-th call of Algorithm [4](#page--1-0) the algorithm terminates from Line 10. Note that the centers in C_j are comprised in the final output C^A of Algorithm [4,](#page--1-0) that is

 $C_j \subseteq C^A$ for $1 \le j < T$ or $1 \le j \le T$. As always, C_0 denotes the set of centers that are given initially (for the initial call of Algorithm [4\)](#page--1-0). Note that in the j-th call of Algorithm [4](#page--1-0) the set of initially given centers is $C_0 \cup \bigcup_{l=1}^{j-1} C_l$.

We first prove by induction that for all $j \ge 1$ such that $\mathcal{G}^{(j)}$ is defined, that is $1 \le j < T$ or $1 \le j \le T$, we have

$$
\min_{c \in C_0 \cup \bigcup_{l=1}^j C_l} d(s, c) \le (2^{j+1} + 2^j - 2)r_{\text{fair}}^*, \quad s \in \left(S^{(j)} \setminus S^{(j+1)}\right) \cup \left(C_0 \cup \bigcup_{l=1}^j C_l\right). \tag{11}
$$

Base case $j = 1$: In the first call of Algorithm [4,](#page--1-0) Algorithm [1,](#page--1-0) when called in Line 3 of Algorithm 4, returns an approximate solution to the unfair problem [\(3\)](#page--1-0). Let $r^* \leq r_{\text{fair}}^*$ be the optimal cost of (3). Since Algorithm [1](#page--1-0) is a 2-approximation algorithm for [\(3\)](#page--1-0) according to Lemma [1,](#page--1-0) after Line 3 of Algorithm [4](#page--1-0) we have

$$
\min_{c \in \widetilde{C}^A \cup C_0} d(s, c) \le 2r^* \le 2r_{\text{fair}}^*, \quad s \in S.
$$

Let $\tilde{c}_i^A \in \tilde{C}^A$ be a center and $s_1, s_2 \in L_i$ be two points in its cluster. It follows from the triangle inequality that $d(s_1, s_2) \leq d(s_1, \tilde{c}_i^A) + d(\tilde{c}_i^A, s_2) \leq 4r_{\text{fair}}^*$ $d(s_1, s_2) \leq d(s_1, \tilde{c}_i^A) + d(\tilde{c}_i^A, s_2) \leq 4r_{\text{fair}}^*$ $d(s_1, s_2) \leq d(s_1, \tilde{c}_i^A) + d(\tilde{c}_i^A, s_2) \leq 4r_{\text{fair}}^*$. Hence, after running Algorithm [3](#page--1-0) in Line 8 of Algorithm 4 and exchanging some of the centers in \tilde{C}^A , we have $d(s, c(s)) \le 4r_{\text{fair}}^*$ for every $s \in S$, where $c(s)$ denotes the center of its cluster. In particular,

$$
\min_{c \in C_0 \cup C_1} d(s, c) \le (2^{1+1} + 2^1 - 2)r_{\text{fair}}^* = 4r_{\text{fair}}^*
$$

for all $s \in S$ for which its center $c(s)$ is in C_0 or in a group not in $\mathcal{G}^{(1)}$, that is for $s \in (S^{(1)} \setminus S^{(2)}) \cup (C_0 \cup C_1)$.

Inductive step $j \mapsto j + 1$: Recall property [\(4\)](#page--1-0) of a set G returned by Algorithm [3.](#page--1-0) Consequently, $S^{(j+1)}$ only comprises items in a group in $\mathcal{G}^{(j)}$ and, additionally, the given centers $C_0 \cup \bigcup_{l=1}^{j} C_l$.

We split $S^{(j+1)}$ into two subsets $S^{(j+1)} = S_a^{(j+1)} \dot{\cup} S_b^{(j+1)}$ $b^{(J+1)}$, where

$$
S_a^{(j+1)} = \left\{ s \in S^{(j+1)} : \underset{c \in C_{\text{fair}}^* \cup C_0}{\operatorname{argmin}} d(s, c) \cap \left(C_0 \cup \bigcup_{W \in \{S_1, \dots, S_m\} \setminus \mathcal{G}^{(j)}} W \right) \neq \emptyset \right\}
$$

and $S_b^{(j+1)} = S^{(j+1)} \setminus S_a^{(j+1)}$. For every $s \in S_a^{(j+1)}$ there exists

$$
c \in C_0 \cup \bigcup_{W \in \{S_1, \dots, S_m\} \backslash \mathcal{G}^{(j)}} W \subseteq \left(S \setminus S^{(j+1)} \right) \cup \left(C_0 \cup \bigcup_{l=1}^j C_l \right)
$$

with $d(s, c) \leq r_{\text{fair}}^*$. It follows from the inductive hypothesis that there exists $c' \in C_0 \cup \bigcup_{l=1}^j C_l$ with $d(c, c') \leq$ $(2^{j+1} + 2^j - 2)r_{\text{fair}}^*$ and consequently

$$
d(s, c') \le d(s, c) + d(c, c') \le r_{\text{fair}}^* + (2^{j+1} + 2^j - 2)r_{\text{fair}}^* = (2^{j+1} + 2^j - 1)r_{\text{fair}}^*.
$$

Hence,

$$
\min_{c \in C_0 \cup \bigcup_{l=1}^j C_l} d(s, c) \le (2^{j+1} + 2^j - 1)r_{\text{fair}}^*, \quad s \in S_a^{(j+1)}.
$$
\n(12)

For every $s \in S_b^{(j+1)}$ $\sum_{b}^{(j+1)}$ there exists $c \in C_{\text{fair}}^* \cap \bigcup_{W \in \mathcal{G}^{(j)}} W$ with $d(s, c) \leq r_{\text{fair}}^*$. Let $C_{\text{fair}}^* \cap \bigcup_{W \in \mathcal{G}^{(j)}} W = \{\tilde{c}_1^*, \dots, \tilde{c}_{\tilde{k}}^*\}$ with $\tilde{k} = \sum_{W \in \mathcal{G}^{(j)}} k_W$, where k_W is the number of requested centers from group W. We can write

$$
S_b^{(j+1)} = \bigcup_{l=1}^{\tilde{k}} \left\{ s \in S_b^{(j+1)} : d(s, \tilde{c}_l^*) \le r_{\text{fair}}^* \right\},\,
$$

where some of the sets in this union might be empty, but that does not matter. Note that for every $l = 1, \ldots, \tilde{k}$ we have

$$
d(s, s') \le 2r_{\text{fair}}^*, \quad s, s' \in \left\{ s \in S_b^{(j+1)} : d(s, \tilde{c}_l^*) \le r_{\text{fair}}^* \right\}
$$
 (13)

due to the triangle inequality. It is

$$
S^{(j+1)} = S_a^{(j+1)} \cup S_b^{(j+1)} = S_a^{(j+1)} \cup \bigcup_{l=1}^{\tilde{k}} \left\{ s \in S_b^{(j+1)} : d(s, \tilde{c}_l^*) \le r_{\text{fair}}^* \right\}
$$

and when, in Line 3 of Algorithm [4,](#page--1-0) we run Algorithm [1](#page--1-0) on $S^{(j+1)}$ with $k = \tilde{k}$ and initial centers $C_0 \cup \bigcup_{l=1}^{j} C_l$, one of the following three cases has to happen (we denote the centers returned by Algorithm [1](#page--1-0) in this $(j + 1)$ -th call of Algorithm [4](#page--1-0) by $\widetilde{F}^A = \{\widetilde{f}_1^A, \ldots, \widetilde{f}_{\widetilde{k}}^A\}$ $\widetilde{F}^A = \{\widetilde{f}_1^A, \ldots, \widetilde{f}_{\widetilde{k}}^A\}$ $\widetilde{F}^A = \{\widetilde{f}_1^A, \ldots, \widetilde{f}_{\widetilde{k}}^A\}$ and assume that for $1 \le l < l' \le \widetilde{k}$ Algorithm 1 has chosen \widetilde{f}_l^A before $\widetilde{f}_{l'}^A$):

• For every $l \in \{1, ..., \tilde{k}\}$ there exists $l' \in \{1, ..., \tilde{k}\}$ such that $\tilde{f}_{l'}^A \in \{s \in S_b^{(j+1)}\}$ $b_i^{(j+1)}$: $d(s, \tilde{c}_i^*) \leq r_{\text{fair}}^*$. In this case it immediately follows that

$$
\min_{c \in \widetilde{F}^A} d(s, c) \le 2r_{\text{fair}}^*, \quad s \in S_b^{(j+1)},
$$

and using [\(12\)](#page-4-0) we obtain

$$
\min_{c \in C_0 \cup \bigcup_{l=1}^j C_l \cup \widetilde{F}^A} d(s, c) \le (2^{j+1} + 2^j - 1) r_{\text{fair}}^*, \quad s \in S^{(j+1)}.
$$

• There exists $l' \in \{1, \ldots, \tilde{k}\}$ $l' \in \{1, \ldots, \tilde{k}\}$ $l' \in \{1, \ldots, \tilde{k}\}$ such that $\tilde{f}_{l'}^A \in S_a^{(j+1)}$. When Algorithm 1 picks $\tilde{f}_{l'}^A$, any other element in $S^{(j+1)}$ cannot be at a larger minimum distance from a center in $C_0 \cup \bigcup_{l=1}^j C_l$ or an already chosen center in $\{\tilde{f}_{l'}^A, \ldots, \tilde{f}_{l'-1}^A\}$ than $\tilde{f}_{l'}^A$. It follows from [\(12\)](#page-4-0) that

$$
\min_{c \in C_0 \cup \bigcup_{l=1}^j C_l \cup \widetilde{F}^A} d(s, c) \le (2^{j+1} + 2^j - 1)r_{\text{fair}}^*, \quad s \in S^{(j+1)}.
$$

• There exist $l \in \{1, ..., \tilde{k}\}$ and $l', l'' \in \{1, ..., \tilde{k}\}$ with $l' < l''$ such that $\tilde{f}_{l'}^A, \tilde{f}_{l''}^A \in \{s \in S_b^{(j+1)}\}$ $b^{(j+1)}$: $d(s, \tilde{c}_l^*) \leq r_{\text{fair}}^*$. When Algorithm [1](#page--1-0) picks $\tilde{f}_{l''}^A$, any other element in $S^{(j+1)}$ cannot be at a larger minimum distance from a center in $C_0 \cup \bigcup_{l=1}^j C_l$ or an already chosen center in $\{\tilde{f}_{l'}^A, \ldots, \tilde{f}_{l''-1}^A\}$ than $\tilde{f}_{l''}^A$. Because of $d(\tilde{f}_{l'}^A, \tilde{f}_{l''}^A) \leq 2r_{\text{fair}}^*$ according to (13), it follows that

$$
\min_{c \in C_0 \cup \bigcup_{l=1}^j C_l \cup \widetilde{F}^A} d(s, c) \le 2r_{\text{fair}}^* \le (2^{j+1} + 2^j - 1)r_{\text{fair}}^*, \quad s \in S^{(j+1)}.
$$

In any case, we have

$$
\min_{c \in C_0 \cup \bigcup_{l=1}^j C_l \cup \widetilde{F}^A} d(s, c) \le (2^{j+1} + 2^j - 1)r_{\text{fair}}^*, \quad s \in S^{(j+1)}.
$$
\n(14)

Similarly to the base case, it follows from the triangle inequality that after running Algorithm [3](#page--1-0) in Line 8 of Algorithm [4](#page--1-0) and exchanging some of the centers in \widetilde{F}^A , we have

$$
d(s, c(s)) \le 2(2^{j+1} + 2^j - 1)r_{\text{fair}}^* = (2^{j+2} + 2^{j+1} - 2)r_{\text{fair}}^*
$$

for every $s \in S^{(j+1)}$, where $c(s)$ denotes the center of its cluster. In particular, we have

$$
\min_{c \in C_0 \cup \bigcup_{l=1}^{j+1} C_l} d(s,c) \le (2^{j+2} + 2^{j+1} - 2)r_{\text{fair}}^*, \quad s \in \left(S^{(j+1)} \setminus S^{(j+2)}\right) \cup \left(C_0 \cup \bigcup_{l=1}^{j+1} C_l\right),
$$

and this completes the proof of [\(11\)](#page-4-0).

Figure 8. An example showing that Algorithm [4](#page--1-0) is not a $(8 - \varepsilon)$ -approximation algorithm for any $\varepsilon > 0$.

If in the T-th call of Algorithm [4](#page--1-0) the algorithm terminates from Line 10, it follows from [\(11\)](#page-4-0) that

$$
\min_{c \in C_0 \cup \bigcup_{l=1}^T C_l} d(s, c) \le (2^{T+1} + 2^T - 2)r_{\text{fair}}^*, \quad s \in S. \tag{15}
$$

In this case, since $T < m$, we have

$$
2^{T+1} + 2^T - 2 \le 2^m + 2^{m-1} - 2 < 2^m + 2^{m-1} - 1,
$$

and (15) implies (10) . If in the T-th call of Algorithm [4](#page--1-0) the algorithm does not terminate from Line 10, it must terminate from Line 5. It follows from [\(11\)](#page-4-0) that

$$
\min_{c \in C_0 \cup \bigcup_{l=1}^{T-1} C_l} d(s, c) \le (2^T + 2^{T-1} - 2)r_{\text{fair}}^*, \quad s \in \left(S \setminus S^{(T)}\right) \cup \left(C_0 \cup \bigcup_{l=1}^{T-1} C_l\right). \tag{16}
$$

In the same way as we have shown (14) in the inductive step in the proof of (11) , we can show that

$$
\min_{c \in C_0 \cup \bigcup_{l=1}^{T-1} C_l \cup \widetilde{H}^A} d(s, c) \le (2^T + 2^{T-1} - 1)r_{\text{fair}}^* \le (2^m + 2^{m-1} - 1)r_{\text{fair}}^*, \quad s \in S^{(T)},\tag{17}
$$

where \widetilde{H}^A is the set of centers returned by Algorithm [1](#page--1-0) in the T-th call of Algorithm [4.](#page--1-0) Since $\bigcup_{l=1}^{T-1} C_l \cup \widetilde{H}^A$ is contained in the output C^A of Algorithm [4,](#page--1-0) (17) together with (16) implies [\(10\)](#page-3-0).

Since running Algorithm [4](#page--1-0) involves at most m (recursive) calls of the algorithm and the running time of each of these calls is dominated by the running times of Algorithm [1](#page--1-0) and Algorithm [3,](#page--1-0) it follows that the running time of Algorithm [4](#page--1-0) is $\mathcal{O}((|C_0| m + km^2)|S| + km^4)$).

Proof of Lemma [3:](#page--1-0)

Consider the example given by the weighted graph shown in Figure 8, where $0 < \delta < \frac{1}{10}$. We have $S = S_1 \cup S_2 \cup S_3$ with $S_1 = \{m_1, m_2, m_3, m_4, m_5, m_6\}, S_2 = \{f_1, f_2, f_3, f_4\}$ and $S_3 = \{z_1, z_2\}.$ All distances are shortest-path-distances. Let $k_{S_1} = 4$ $k_{S_1} = 4$ $k_{S_1} = 4$ $k_{S_1} = 4$, $k_{S_2} = 1$, $k_{S_3} = 1$ and $C_0 = \emptyset$. We assume that Algorithm 1 in Line 3 of Algorithm 4 picks f_1 as first center. It then chooses f_4 as second center, z_1 as third center, f_3 as fourth center, f_2 as fifth center and z_2 as sixth center. Hence, $C^A = \{f_1, f_4, z_1, f_3, f_2, z_2\}$ and the corresponding clusters are $\{f_1, m_1, m_2, m_5\}, \{f_4, m_3, m_4, m_6\}, \{z_1\}, \{f_3\}, \{f_2\}$ and $\{z_2\}$. When running Algorithm [3](#page--1-0) in Line 8 of Algorithm [4,](#page--1-0) it replaces f_1 with one of m_1 , m_2 or m_5 and it replaces f_4

with one of m_3 m_3 , m_4 or m_6 . Assume that it replaces f_1 with m_2 and f_4 with m_4 . Algorithm 3 then returns $\mathcal{G} = \{S_2, S_3\}$ and when recursively calling Algorithm [4](#page--1-0) in Line 12, we have $S' = \{f_2, f_3, z_1, z_2\}$ and $C' = \{m_2, m_4\}$. In the recursive call, the given centers are C' and Algorithm [1](#page--1-0) chooses f_3 and f_2 . The corresponding clusters are $\{f_3, z_1, z_2\}$, $\{f_2\}$, $\{m_2\}$ and ${m_4}$. When running Algorithm [3](#page--1-0) with clusters ${f_3, z_1, z_2}$ and ${f_2}$, it replaces f_3 with either z_1 or z_2 and returns $\mathcal{G} = \emptyset$, that is afterwards we are done. Assume Algorithm [3](#page--1-0) replaces f_3 with z_2 . Then the centers returned by Algorithm [4](#page--1-0) are z_2 , f_2 , m_2 , m_4 and two arbitrary elements from S_1 , which we assume to be m_5 and m_6 . These centers have a cost of 8 (incurred for z_1). However, an optimal solution such as $C_{\text{fair}}^* = \{m_1, m_2, m_3, m_4, f_3, z_1\}$ has cost only $1 + \frac{3\delta}{2}$. Choosing δ sufficiently small shows that Algorithm [4](#page--1-0) is not a $(8 - \varepsilon)$ -approximation algorithm for any $\varepsilon > 0$.

B. Further Experiments

In Figure 9 we show the costs of the approximate solutions produced by our algorithm (Alg. [4\)](#page--1-0) and the algorithm by [Chen](#page--1-0) [et al.](#page--1-0) [\(2016\)](#page--1-0) (M.C.) in the run-time experiment shown in the right part of Figure [3.](#page--1-0) In Figure 10, Figure [11](#page-8-0) and Figure [12](#page-9-0) we provide similar experiments as shown in Figure [6,](#page--1-0) Figure [2](#page--1-0) and Figure [5,](#page--1-0) respectively.

Figure 9. Cost of the output of our algorithm (Alg. [4\)](#page--1-0) in comparison to the algorithm by [Chen et al.](#page--1-0) (M.C.) in the run-time experiment shown in the right part of Figure [3.](#page--1-0)

Figure 10. Similar experiments on the Adult data set as shown in Figure [6,](#page--1-0) but with different values of k_{S_i} . **1st plot:** $m = 2$, $k_{S_i} = 300$, $k_{S_2} = 100$ (S₁ corresponds to male and S₂ to female). 2nd plot: $m = 2$, $k_{S_1} = k_{S_2} = 25$. 3rd plot: $m = 5$, $k_{S_1} = 214$, $k_{S_2} = 8$, $k_{S_3} = 2$, $k_{S_4} = 2$, $k_{S_5} = 24$ ($S_1 \sim$ White, $S_2 \sim$ Asian-Pac-Islander, $S_3 \sim$ Amer-Indian-Eskimo, $S_4 \sim$ Other, $S_5 \sim$ Black). 4th plot: $m = 5, k_{S_1} = k_{S_2} = k_{S_3} = k_{S_4} = k_{S_5} = 10.$

Figure 11. Similar experiment as shown in Figure [2.](#page--1-0) A data set consisting of 16 images of faces (8 female, 8 male) and six summaries computed by the unfair Algorithm [1,](#page--1-0) our algorithm and the algorithm of [Celis et al.](#page--1-0) [\(2018b\)](#page--1-0). The images are taken from the FEI face database available on https://fei.edu.br/~cet/facedatabase.html. Note that in this experiment (and the one shown in Figure [2\)](#page--1-0) we are dealing with a very small number of images solely for the purpose of easy visual digestion.

Figure 12. Similar experiments on the Adult data set as shown in Figure [5,](#page--1-0) but with different values of k_{Si} . Top left: $m = 2$, $k_{S_1} = 300$, $k_{S_2} = 100$ (S_1 corresponds to male and S_2 to female). Top right: $m = 2$, $k_{S_1} = k_{S_2} = 25$. Bottom left: $m = 5$, $k_{S_1} = 214$, $k_{S_2} = 8$, $k_{S_3} = 2$, $k_{S_4} = 2$, $k_{S_5} = 24$ ($S_1 \sim$ White, $S_2 \sim$ Asian-Pac-Islander, $S_3 \sim$ Amer-Indian-Eskimo, $S_4 \sim$ Other, $S_5 \sim$ Black). **Bottom right:** $m = 5$, $k_{S_1} = k_{S_2} = k_{S_3} = k_{S_4} = k_{S_5} = 10$.