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Appendix

A. Proofs

Proof of Lemma 1:

It is straightforward to see that Algorithm 1 can be implemented in time O((k + |C ′0|)|S|). We only need to show that it is a
2-approximation algorithm for (3).

If k = 0, there is nothing to show, so assume that k ≥ 1. Let C = {c1, . . . , ck} be the output of Algorithm 1 and
C∗ = {c∗1, . . . , c∗k} be an optimal solution to (3) with objective value r∗. Let s ∈ S be arbitrary. We need to show that
d(s, ĉ) ≤ 2r∗ for some ĉ ∈ C ∪ C ′0. If s ∈ C ∪ C ′0, there is nothing to show. So assume s /∈ C ∪ C ′0. If

C ′0 ∩ argmin
c∈C∗∪C′0

d(s, c) 6= ∅,

there exists ĉ ∈ C ′0 with d(s, ĉ) ≤ r∗ and we are done. Otherwise, let c∗i ∈ argminc∈C∗∪C′0 d(s, c) and hence d(s, c∗i ) ≤ r∗.
We distinguish two cases:

• ∃ cj ∈ C with c∗i ∈ argminc∈C∗∪C′0 d(cj , c):

We have d(cj , c
∗
i ) ≤ r∗ and hence d(s, cj) ≤ d(s, c∗i ) + d(c∗i , cj) ≤ 2r∗.

• @ cj ∈ C with c∗i ∈ argminc∈C∗∪C′0 d(cj , c):

There must be c′ 6= c′′ ∈ C ∪ C ′0, where not both c′ and c′′ can be in C ′0, and ĉ ∈ C∗ ∪ C ′0 such that

ĉ ∈ argmin
c∈C∗∪C′0

d(c′, c) ∩ argmin
c∈C∗∪C′0

d(c′′, c).

Since d(c′, ĉ) ≤ r∗ and (c′′, c∗) ≤ r∗, it follows that d(c′, c′′) ≤ d(c′, ĉ) + d(ĉ, c′′) ≤ 2r∗.

Without loss of generality, assume that in the execution of Algorithm 1, c′′ has been added to the set of centers after
c′ has been added. In particular, we have c′′ ∈ C and c′′ = cl for some l ∈ {1, . . . , k}. Due to the greedy choice in
Line 5 of the algorithm and since s has not been chosen by the algorithm, we have

2r∗ ≥ d(c′, c′′) ≥ min
c∈{c1,...,cl−1}∪C′0

d(c′′, c) ≥ min
c∈{c1,...,cl−1}∪C′0

d(s, c).

�

Proof of Theorem 1:

Again it is easy to see that Algorithm 2 can be implemented in time O((k + |C0|)|S|). We need to prove that it is a
5-approximation algorithm, but not a (5− ε)-approximation algorithm for any ε > 0:

1. Algorithm 2 is a 5-approximation algorithm:

Let r∗fair be the optimal value of the fair problem (2) and r∗ be the optimal value of the unfair problem (3). Clearly,
r∗ ≤ r∗fair. Let C∗fair = {c(1)∗1 , . . . , c

(1)∗
kS1

, c
(2)∗
1 , . . . , c

(2)∗
kS2
} with c

(1)∗
1 , . . . , c

(1)∗
kS1

∈ S1 and c
(2)∗
1 , . . . , c

(2)∗
kS2

∈ S2

be an optimal solution to the fair problem (2) with cost r∗fair and CA = {cA1 , . . . , cAk } be the centers returned by
Algorithm 2. It is clear that Algorithm 2 returns kS1

many elements from S1 and kS2
many elements from S2 and

hence CA = {c(1)A1 , . . . , c
(1)A
kS1

, c
(2)A
1 , . . . , c

(2)A
kS2
} with c(1)A1 , . . . , c

(1)A
kS1
∈ S1 and c(2)A1 , . . . , c

(2)A
kS2
∈ S2. We need to

show that
min

c∈CA∪C0

d(s, c) ≤ 5r∗fair, s ∈ S.
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Let C̃A = {c̃A1 , . . . , c̃Ak } be the output of Algorithm 1 when called in Line 3 of Algorithm 2. Since Algorithm 1 is a
2-approximation algorithm for the unfair problem (3) according to Lemma 1, we have

min
c∈C̃A∪C0

d(s, c) ≤ 2r∗ ≤ 2r∗fair, s ∈ S. (6)

If Algorithm 2 returns C̃A in Line 6, that is CA = C̃A, we are done. Otherwise assume, as in the algorithm, that
|C̃A∩S1| > kS1 . Let c̃Ai ∈ S1 be a center of clusterLi that we replace with y ∈ Li∩S2 and let ŷ be an arbitrary element
in Li. Because of (6), we have d(c̃Ai , y) ≤ 2r∗fair and d(c̃Ai , ŷ) ≤ 2r∗fair, and hence d(y, ŷ) ≤ d(y, c̃Ai )+d(c̃Ai , ŷ) ≤ 4r∗fair
due to the triangle inequality. Consequently, after the while-loop in Line 9, every s ∈ S is in distance of 4r∗fair or
smaller to the center of its cluster. In particular, we have

min
c∈C̃A∪C0

d(s, c) ≤ 4r∗fair, s ∈ S,

and if Algorithm 2 returns C̃A in Line 13, we are done. Otherwise, we still have |C̃A ∩ S1| > kS1 after exchanging
centers in the while-loop in Line 9. Let S′ = ∪i∈[k]:c̃Ai ∈S1

Li, that is the union of clusters with a center c̃Ai ∈ S1. Since
there is no more center in S1 that we can exchange for an element in S2, we have S′ ⊆ S1. Let S′′ = ∪i∈[k]:c̃Ai ∈S2

Li

be the union of clusters with a center c̃Ai ∈ S2 and SC0
= L′1 ∪ . . . ∪ L′|C0| be the union of clusters with a center in C0.

Then we have S = S′ ∪̇S′′ ∪̇SC0
. We have C̃A ∩ S2 ⊆ CA and

min
c∈CA∪C0

d(s, c) ≤ min
c∈(C̃A∩S2)∪C0

d(s, c) ≤ 4r∗fair, s ∈ S′′ ∪ SC0 . (7)

Hence we only need to show that minc∈CA∪C0
d(s, c) ≤ 5r∗fair for every s ∈ S′. We split S′ into two subsets

S′ = S′a∪̇S′b, where

S′a =

{
s ∈ S′ : argmin

c∈C∗fair∪C0

d(s, c) ∩ (C0 ∪ S2) 6= ∅
}

and S′b = S′ \ S′a. For every s ∈ S′a there is c ∈ (C0 ∪ S2) ⊆ (S′′ ∪ SC0
) with d(s, c) ≤ r∗fair and it follows from (7)

and the triangle inequality that

min
c∈CA∪C0

d(s, c) ≤ min
c∈(C̃A∩S2)∪C0

d(s, c) ≤ 5r∗fair, s ∈ S′a. (8)

It remains to show that minc∈CA∪C0
d(s, c) ≤ 5r∗fair for every s ∈ S′b. For every s ∈ S′b there exists

c ∈ {c(1)∗1 , . . . , c
(1)∗
kS1
} with d(s, c) ≤ r∗fair. We can write S′b = ∪kS1

j=1{s ∈ S′b : d(s, c
(1)∗
j ) ≤ r∗fair} (some of the

sets in this union might be empty, but that does not matter). Note that for every j ∈ {1, . . . , kS1
} we have

d(s, s′) ≤ 2r∗fair, s, s′ ∈
{
s ∈ S′b : d(s, c

(1)∗
j ) ≤ r∗fair

}
, (9)

due to the triangle inequality. It is

S′ = S′a ∪ S′b = S′a ∪
kS1⋃
j=1

{
s ∈ S′b : d(s, c

(1)∗
j ) ≤ r∗fair

}
and when, in Line 15 of Algorithm 2, we run Algorithm 1 on S′ ∪ C ′0 with k = kS1 and initial centers C ′0 =

C0 ∪ (C̃A ∩ S2), one of the following three cases has to happen (we denote the centers returned by Algorithm 1 by
ĈA = {c(1)A1 , . . . , c

(1)A
kS1
}):

• For every j ∈ {1, . . . , kS1} there exists j′ ∈ {1, . . . , kS1} such that c(1)Aj′ ∈ {s ∈ S′b : d(s, c
(1)∗
j ) ≤ r∗fair}. In this

case it immediately follows from (9) that

min
c∈CA∪C0

d(s, c) ≤ min
c∈ĈA

d(s, c) ≤ 2r∗fair, s ∈ S′b.
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Figure 7. An example showing that Algorithm 2 is not a (5− ε)-approximation algorithm for any ε > 0.

• There exists j′ ∈ {1, . . . , kS1} such that c(1)Aj′ ∈ S′a. When Algorithm 1 picks c(1)Aj′ , any other element in S′

cannot be at a larger minimum distance from a center in (C̃A ∩ S2) ∪ C0 or a previously chosen center in ĈA

than c(1)Aj′ . It follows from (8) that

min
c∈CA∪C0

d(s, c) ≤ 5r∗fair, s ∈ S′.

• There exist j ∈ {1, . . . , kS1
} and j′ 6= j′′ ∈ {1, . . . , kS1

} such that c(1)Aj′ , c
(1)A
j′′ ∈ {s ∈ S′b : d(s, c

(1)∗
j ) ≤ r∗fair}.

Assume that Algorithm 1 picks c(1)Aj′ before c(1)Aj′′ . When Algorithm 1 picks c(1)Aj′′ , any other element in S′ cannot

be at a larger minimum distance from a center in (C̃A ∩ S2) ∪ C0 or a previously chosen center in ĈA than c(1)Aj′′ .

Because of d(c
(1)A
j′ , c

(1)A
j′′ ) ≤ 2r∗fair according to (9), it follows that

min
c∈CA∪C0

d(s, c) ≤ 2r∗fair, s ∈ S′.

In all cases we have
min

c∈CA∪C0

d(s, c) ≤ 5r∗fair, s ∈ S′b,

which completes the proof of the claim that Algorithm 2 is a 5-approximation algorithm.

2. Algorithm 2 is not a (5− ε)-approximation algorithm for any ε > 0:

Consider the example given by the weighted graph shown in Figure 7, where 0 < δ < 1
10 . We have S = S1∪̇S2

with S1 = {f1, f2, f3, f4, f5} and S2 = {m1,m2,m3,m4,m5,m6}. All distances are shortest-path-distances. Let
kS1

= 1, kS2
= 3, and C0 = ∅. We assume that Algorithm 1 in Line 3 of Algorithm 2 picks f5 as first center.

It then chooses f2 as second center, f3 as third center and f1 as fourth center. Hence, C̃A = {f5, f2, f3, f1} and
|C̃A ∩ S1| > kS1

. The clusters corresponding to C̃A are {f5}, {f2, f4}, {f3,m3,m4,m5,m6} and {f1,m1,m2}.
Assume we replace f3 with m4 and f1 with m2 in Line 10 of Algorithm 2. Then it is still |C̃A ∩ S1| > kS1 , and
in Line 15 of Algorithm 2 we run Algorithm 1 on {f2, f4, f5} ∪ {m2,m4} with k = 1 and initially given centers
C ′0 = {m2,m4}. Algorithm 1 returns ĈA = {f5}. Finally, assume that m5 is chosen as arbitrary third center from S2

in Line 16 of Algorithm 2. So the centers returned by Algorithm 2 are CA = {f5,m2,m4,m5} with a cost of 5− δ
2

(incurred for f4). However, the optimal solution C∗fair = {f5,m1,m3,m6} has cost only 1 + δ. Choosing δ sufficiently
small shows that Algorithm 2 is not a (5− ε)-approximation algorithm for any ε > 0.

�
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Proof of Lemma 2:

We want to show three things:

1. Algorithm 3 is well-defined:

If the condition of the while-loop in Line 7 is true, there exists a shortest path P = Sv0Sv1 · · ·Svw with Sv0 = Sr,
Svw = Ss that connects Sr to Ss in G. Since P is a shortest path, all Svi are distinct. By the definition of G, for
every l = 0, . . . , w − 1 there exists Lt with center c̃At ∈ Svl and y ∈ Lt ∩ Svl+1

. Hence, the for-loop in Line 8 is well
defined.

2. Algorithm 3 terminates:

Let, at the beginning of the execution of Algorithm 3 in Line 3, H1 = {Sj ∈ {S1, . . . , Sm} : k̃Sj = kSj},
H2 = {Sj ∈ {S1, . . . , Sm} : k̃Sj

> kSj
} and H3 = {Sj ∈ {S1, . . . , Sm} : k̃Sj

< kSj
}. For Sj ∈ H1, k̃Sj

never
changes during the execution of the algorithm. For Sj ∈ H2, k̃Sj

never increases during the execution of the algorithm
and decreases at most until it equals kSj

. For Sj ∈ H3, k̃Sj
never decreases during the execution of the algorithm and

increases at most until it equals kSj
. In every iteration of the while-loop, there is Sj ∈ H3 for which k̃Sj

increases by
one. It follows that the number of iterations of the while-loop is upper-bounded by k.

3. Algorithm 3 exchanges centers in such a way that the set G that it returns satisfies G ( {S1, . . . , Sm} and properties (4)
and (5):

Note that throughout the execution of Algorithm 3 we have k̃Sj =
∑k
i=1 1

{
c̃Ai ∈ Sj

}
for the current centers c̃A1 , . . . , c̃

A
k .

If the condition of the if-statement in Line 13 is true, then G = ∅ and (4) and (5) are satisfied.

Assume that the condition of the if-statement in Line 13 is not true. Clearly, the set G returned by Algorithm 3
satisfies (5). Since the condition of the if-statement in Line 13 is not true, there exist Sj with k̃Sj

> kSj
and Si with

k̃Si
< kSi

. We have Sj ∈ G, but since the condition of the while-loop in Line 7 is not true, we cannot have Si ∈ G.
This shows that G ( {S1, . . . , Sm}. We need to show that (4) holds. Let Lh be a cluster with center c̃Ah ∈ Sf for some
Sf ∈ G and assume it contained an element o ∈ Sf ′ with Sf ′ /∈ G. But then we had a path from Sf to Sf ′ in G. If
Sf ∈ G′, this is an immediate contradiction to Sf ′ /∈ G. If Sf /∈ G′, since Sf ∈ G, there exists Sg ∈ G′ such that there
is a path from Sg to Sf . But then there is also a path from Sg to Sf ′ , which is a contradiction to Sf ′ /∈ G.

�

Proof of Theorem 2:

For showing that Algorithm 4 is a (3 · 2m−1 − 1)-approximation algorithm let r∗fair be the optimal value of problem (2) and
C∗fair be an optimal solution with cost r∗fair. Let CA be the centers returned by Algorithm 4. A simple proof by induction
over m shows that CA actually comprises kSi

many elements from every group Si. We need to show that

min
c∈CA∪C0

d(s, c) ≤ (3 · 2m−1 − 1)r∗fair, s ∈ S. (10)

Let T be the total number of calls of Algorithm 4, that is we have one initial call and T − 1 recursive calls. Since with
each recursive call the number of groups is decreased by at least one, we have T ≤ m. For 1 ≤ j ≤ T , let S(j) be the data
set in the j-th call of Algorithm 4. We additionally set S(T+1) = ∅. We have S(1) = S and S(j) ⊇ S(j+1), 1 ≤ j ≤ T .
For 1 ≤ j < T , let G(j) be the set of groups in G returned by Algorithm 3 in Line 8 in the j-th call of Algorithm 4. If
in the T -th call of Algorithm 4 the algorithm terminates from Line 10 (note that in this case we must have T < m), we
also let G(T ) = ∅ be the set of groups in G returned by Algorithm 3 in the T -th call. Otherwise we leave G(T ) undefined.
Setting G(0) = {S1, . . . , Sm}, we have G(j) ) G(j+1) for all j such that G(j+1) is defined. For 1 ≤ j < T , let Cj be
the set of centers returned by Algorithm 3 in Line 8 in the j-th call of Algorithm 4 that belong to a group not in G(j) (in
Algorithm 4, the set of these centers is denoted by C ′). We analogously define CT if in the T -th call of Algorithm 4 the
algorithm terminates from Line 10. Note that the centers in Cj are comprised in the final output CA of Algorithm 4, that is
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Cj ⊆ CA for 1 ≤ j < T or 1 ≤ j ≤ T . As always, C0 denotes the set of centers that are given initially (for the initial call
of Algorithm 4). Note that in the j-th call of Algorithm 4 the set of initially given centers is C0 ∪

⋃j−1
l=1 Cl.

We first prove by induction that for all j ≥ 1 such that G(j) is defined, that is 1 ≤ j < T or 1 ≤ j ≤ T , we have

min
c∈C0∪

⋃j
l=1 Cl

d(s, c) ≤ (2j+1 + 2j − 2)r∗fair, s ∈
(
S(j) \ S(j+1)

)
∪
(
C0 ∪

j⋃
l=1

Cl

)
. (11)

Base case j = 1: In the first call of Algorithm 4, Algorithm 1, when called in Line 3 of Algorithm 4, returns an approximate
solution to the unfair problem (3). Let r∗ ≤ r∗fair be the optimal cost of (3). Since Algorithm 1 is a 2-approximation
algorithm for (3) according to Lemma 1, after Line 3 of Algorithm 4 we have

min
c∈C̃A∪C0

d(s, c) ≤ 2r∗ ≤ 2r∗fair, s ∈ S.

Let c̃Ai ∈ C̃A be a center and s1, s2 ∈ Li be two points in its cluster. It follows from the triangle inequality that
d(s1, s2) ≤ d(s1, c̃

A
i ) + d(c̃Ai , s2) ≤ 4r∗fair. Hence, after running Algorithm 3 in Line 8 of Algorithm 4 and exchanging

some of the centers in C̃A, we have d(s, c(s)) ≤ 4r∗fair for every s ∈ S, where c(s) denotes the center of its cluster. In
particular,

min
c∈C0∪C1

d(s, c) ≤ (21+1 + 21 − 2)r∗fair = 4r∗fair

for all s ∈ S for which its center c(s) is in C0 or in a group not in G(1), that is for s ∈ (S(1) \ S(2)) ∪ (C0 ∪ C1).

Inductive step j 7→ j + 1: Recall property (4) of a set G returned by Algorithm 3. Consequently, S(j+1) only comprises
items in a group in G(j) and, additionally, the given centers C0 ∪

⋃j
l=1 Cl.

We split S(j+1) into two subsets S(j+1) = S
(j+1)
a ∪̇S(j+1)

b , where

S(j+1)
a =

s ∈ S(j+1) : argmin
c∈C∗fair∪C0

d(s, c) ∩

C0 ∪
⋃

W∈{S1,...,Sm}\G(j)

W

 6= ∅


and S(j+1)
b = S(j+1) \ S(j+1)

a . For every s ∈ S(j+1)
a there exists

c ∈ C0 ∪
⋃

W∈{S1,...,Sm}\G(j)

W ⊆
(
S \ S(j+1)

)
∪
(
C0 ∪

j⋃
l=1

Cl

)

with d(s, c) ≤ r∗fair. It follows from the inductive hypothesis that there exists c′ ∈ C0 ∪
⋃j
l=1 Cl with d(c, c′) ≤

(2j+1 + 2j − 2)r∗fair and consequently

d(s, c′) ≤ d(s, c) + d(c, c′) ≤ r∗fair + (2j+1 + 2j − 2)r∗fair = (2j+1 + 2j − 1)r∗fair.

Hence,

min
c∈C0∪

⋃j
l=1 Cl

d(s, c) ≤ (2j+1 + 2j − 1)r∗fair, s ∈ S(j+1)
a . (12)

For every s ∈ S(j+1)
b there exists c ∈ C∗fair ∩

⋃
W∈G(j) W with d(s, c) ≤ r∗fair. Let C∗fair ∩

⋃
W∈G(j) W = {c̃∗1, . . . , c̃∗k̃} with

k̃ =
∑
W∈G(j) kW , where kW is the number of requested centers from group W . We can write

S
(j+1)
b =

k̃⋃
l=1

{
s ∈ S(j+1)

b : d(s, c̃∗l ) ≤ r∗fair

}
,
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where some of the sets in this union might be empty, but that does not matter. Note that for every l = 1, . . . , k̃ we have

d(s, s′) ≤ 2r∗fair, s, s′ ∈
{
s ∈ S(j+1)

b : d(s, c̃∗l ) ≤ r∗fair

}
(13)

due to the triangle inequality. It is

S(j+1) = S(j+1)
a ∪ S(j+1)

b = S(j+1)
a ∪

k̃⋃
l=1

{
s ∈ S(j+1)

b : d(s, c̃∗l ) ≤ r∗fair

}
and when, in Line 3 of Algorithm 4, we run Algorithm 1 on S(j+1) with k = k̃ and initial centers C0 ∪

⋃j
l=1 Cl, one of the

following three cases has to happen (we denote the centers returned by Algorithm 1 in this (j + 1)-th call of Algorithm 4 by
F̃A = {f̃A1 , . . . , f̃Ak̃ } and assume that for 1 ≤ l < l′ ≤ k̃ Algorithm 1 has chosen f̃Al before f̃Al′ ):

• For every l ∈ {1, . . . , k̃} there exists l′ ∈ {1, . . . , k̃} such that f̃Al′ ∈ {s ∈ S
(j+1)
b : d(s, c̃∗l ) ≤ r∗fair}. In this case it

immediately follows that

min
c∈F̃A

d(s, c) ≤ 2r∗fair, s ∈ S(j+1)
b ,

and using (12) we obtain

min
c∈C0∪

⋃j
l=1 Cl∪F̃A

d(s, c) ≤ (2j+1 + 2j − 1)r∗fair, s ∈ S(j+1).

• There exists l′ ∈ {1, . . . , k̃} such that f̃Al′ ∈ S
(j+1)
a . When Algorithm 1 picks f̃Al′ , any other element in S(j+1) cannot

be at a larger minimum distance from a center in C0 ∪
⋃j
l=1 Cl or an already chosen center in {f̃Al′ , . . . , f̃Al′−1} than

f̃Al′ . It follows from (12) that

min
c∈C0∪

⋃j
l=1 Cl∪F̃A

d(s, c) ≤ (2j+1 + 2j − 1)r∗fair, s ∈ S(j+1).

• There exist l ∈ {1, . . . , k̃} and l′, l′′ ∈ {1, . . . , k̃} with l′ < l′′ such that f̃Al′ , f̃
A
l′′ ∈ {s ∈ S

(j+1)
b : d(s, c̃∗l ) ≤ r∗fair}.

When Algorithm 1 picks f̃Al′′ , any other element in S(j+1) cannot be at a larger minimum distance from a center in
C0 ∪

⋃j
l=1 Cl or an already chosen center in {f̃Al′ , . . . , f̃Al′′−1} than f̃Al′′ . Because of d(f̃Al′ , f̃

A
l′′) ≤ 2r∗fair according to

(13), it follows that

min
c∈C0∪

⋃j
l=1 Cl∪F̃A

d(s, c) ≤ 2r∗fair ≤ (2j+1 + 2j − 1)r∗fair, s ∈ S(j+1).

In any case, we have

min
c∈C0∪

⋃j
l=1 Cl∪F̃A

d(s, c) ≤ (2j+1 + 2j − 1)r∗fair, s ∈ S(j+1). (14)

Similarly to the base case, it follows from the triangle inequality that after running Algorithm 3 in Line 8 of Algorithm 4 and
exchanging some of the centers in F̃A, we have

d(s, c(s)) ≤ 2(2j+1 + 2j − 1)r∗fair = (2j+2 + 2j+1 − 2)r∗fair

for every s ∈ S(j+1), where c(s) denotes the center of its cluster. In particular, we have

min
c∈C0∪

⋃j+1
l=1 Cl

d(s, c) ≤ (2j+2 + 2j+1 − 2)r∗fair, s ∈
(
S(j+1) \ S(j+2)

)
∪
(
C0 ∪

j+1⋃
l=1

Cl

)
,

and this completes the proof of (11).
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Figure 8. An example showing that Algorithm 4 is not a (8− ε)-approximation algorithm for any ε > 0.

If in the T -th call of Algorithm 4 the algorithm terminates from Line 10, it follows from (11) that

min
c∈C0∪

⋃T
l=1 Cl

d(s, c) ≤ (2T+1 + 2T − 2)r∗fair, s ∈ S. (15)

In this case, since T < m, we have

2T+1 + 2T − 2 ≤ 2m + 2m−1 − 2 < 2m + 2m−1 − 1,

and (15) implies (10). If in the T -th call of Algorithm 4 the algorithm does not terminate from Line 10, it must terminate
from Line 5. It follows from (11) that

min
c∈C0∪

⋃T−1
l=1 Cl

d(s, c) ≤ (2T + 2T−1 − 2)r∗fair, s ∈
(
S \ S(T )

)
∪
(
C0 ∪

T−1⋃
l=1

Cl

)
. (16)

In the same way as we have shown (14) in the inductive step in the proof of (11), we can show that

min
c∈C0∪

⋃T−1
l=1 Cl∪H̃A

d(s, c) ≤ (2T + 2T−1 − 1)r∗fair ≤ (2m + 2m−1 − 1)r∗fair, s ∈ S(T ), (17)

where H̃A is the set of centers returned by Algorithm 1 in the T -th call of Algorithm 4. Since
⋃T−1
l=1 Cl ∪ H̃A is contained

in the output CA of Algorithm 4, (17) together with (16) implies (10).

Since running Algorithm 4 involves at most m (recursive) calls of the algorithm and the running time of each of these
calls is dominated by the running times of Algorithm 1 and Algorithm 3, it follows that the running time of Algorithm 4 is
O((|C0|m+ km2)|S|+ km4). �

Proof of Lemma 3:

Consider the example given by the weighted graph shown in Figure 8, where 0 < δ < 1
10 . We have S = S1∪̇S2∪̇S3 with

S1 = {m1,m2,m3,m4,m5,m6}, S2 = {f1, f2, f3, f4} and S3 = {z1, z2}. All distances are shortest-path-distances. Let
kS1

= 4, kS2
= 1, kS3

= 1 and C0 = ∅. We assume that Algorithm 1 in Line 3 of Algorithm 4 picks f1 as first center. It
then chooses f4 as second center, z1 as third center, f3 as fourth center, f2 as fifth center and z2 as sixth center. Hence,
C̃A = {f1, f4, z1, f3, f2, z2} and the corresponding clusters are {f1,m1,m2,m5}, {f4,m3,m4,m6}, {z1}, {f3}, {f2}
and {z2}. When running Algorithm 3 in Line 8 of Algorithm 4, it replaces f1 with one of m1, m2 or m5 and it replaces f4
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with one of m3, m4 or m6. Assume that it replaces f1 with m2 and f4 with m4. Algorithm 3 then returns G = {S2, S3}
and when recursively calling Algorithm 4 in Line 12, we have S′ = {f2, f3, z1, z2} and C ′ = {m2,m4}. In the recursive
call, the given centers are C ′ and Algorithm 1 chooses f3 and f2. The corresponding clusters are {f3, z1, z2}, {f2}, {m2}
and {m4}. When running Algorithm 3 with clusters {f3, z1, z2} and {f2}, it replaces f3 with either z1 or z2 and returns
G = ∅, that is afterwards we are done. Assume Algorithm 3 replaces f3 with z2. Then the centers returned by Algorithm 4
are z2, f2,m2,m4 and two arbitrary elements from S1, which we assume to be m5 and m6. These centers have a cost of 8
(incurred for z1). However, an optimal solution such as C∗fair = {m1,m2,m3,m4, f3, z1} has cost only 1 + 3δ

2 . Choosing δ
sufficiently small shows that Algorithm 4 is not a (8− ε)-approximation algorithm for any ε > 0. �

B. Further Experiments
In Figure 9 we show the costs of the approximate solutions produced by our algorithm (Alg. 4) and the algorithm by Chen
et al. (2016) (M.C.) in the run-time experiment shown in the right part of Figure 3. In Figure 10, Figure 11 and Figure 12 we
provide similar experiments as shown in Figure 6, Figure 2 and Figure 5, respectively.

Figure 9. Cost of the output of our algorithm (Alg. 4) in comparison to the algorithm by Chen et al. (M.C.) in the run-time experiment
shown in the right part of Figure 3.

Figure 10. Similar experiments on the Adult data set as shown in Figure 6, but with different values of kSi . 1st plot: m = 2, kS1 = 300,
kS2 = 100 (S1 corresponds to male and S2 to female). 2nd plot: m = 2, kS1 = kS2 = 25. 3rd plot: m = 5, kS1 = 214, kS2 = 8,
kS3 = 2, kS4 = 2, kS5 = 24 (S1 ∼White, S2 ∼ Asian-Pac-Islander, S3 ∼ Amer-Indian-Eskimo, S4 ∼ Other, S5 ∼ Black). 4th plot:
m = 5, kS1 = kS2 = kS3 = kS4 = kS5 = 10.
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Algorithm 1 Our Algorithm Celis et al. (2018b)

Figure 11. Similar experiment as shown in Figure 2. A data set consisting of 16 images of faces (8 female, 8 male) and six summaries
computed by the unfair Algorithm 1, our algorithm and the algorithm of Celis et al. (2018b). The images are taken from the FEI face
database available on https://fei.edu.br/˜cet/facedatabase.html. Note that in this experiment (and the one shown in
Figure 2) we are dealing with a very small number of images solely for the purpose of easy visual digestion.

https://fei.edu.br/~cet/facedatabase.html
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Figure 12. Similar experiments on the Adult data set as shown in Figure 5, but with different values of kSi . Top left: m = 2, kS1 = 300,
kS2 = 100 (S1 corresponds to male and S2 to female). Top right: m = 2, kS1 = kS2 = 25. Bottom left: m = 5, kS1 = 214,
kS2 = 8, kS3 = 2, kS4 = 2, kS5 = 24 (S1 ∼White, S2 ∼ Asian-Pac-Islander, S3 ∼ Amer-Indian-Eskimo, S4 ∼ Other, S5 ∼ Black).
Bottom right: m = 5, kS1 = kS2 = kS3 = kS4 = kS5 = 10.


