
Molecular Hypergraph Grammar
with Its Application to Molecular Optimization

Hiroshi Kajino 1

Abstract
Molecular optimization aims to discover novel
molecules with desirable properties, and its two
fundamental challenges are: (i) it is not trivial to
generate valid molecules in a controllable way due
to hard chemical constraints such as the valency
conditions, and (ii) it is often costly to evaluate a
property of a novel molecule, and therefore, the
number of property evaluations is limited. These
challenges are to some extent alleviated by a com-
bination of a variational autoencoder (VAE) and
Bayesian optimization (BO), where VAE converts
a molecule into/from its latent continuous vector,
and BO optimizes a latent continuous vector (and
its corresponding molecule) within a limited num-
ber of property evaluations. While the most re-
cent work, for the first time, achieved 100% va-
lidity, its architecture is rather complex due to
auxiliary neural networks other than VAE, mak-
ing it difficult to train. This paper presents a
molecular hypergraph grammar variational au-
toencoder (MHG-VAE), which uses a single VAE
to achieve 100% validity. Our idea is to develop
a graph grammar encoding the hard chemical
constraints, called molecular hypergraph gram-
mar (MHG), which guides VAE to always gener-
ate valid molecules. We also present an algorithm
to construct MHG from a set of molecules.

1. Introduction
Molecular optimization aims to discover a novel molecule
that possesses prescribed properties given by a user. For
example, Gómez-Bombarelli et al. (2016) aim to maximize
the efficiency of an organic light-emitting diode. Letting
M be a set of valid molecules, the molecular optimization

1MIT-IBM Watson AI Lab; IBM Research, Tokyo, Japan. Cor-
respondence to: Hiroshi Kajino <kajino@jp.ibm.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

problem is to obtain m? ∈M such that,

m? = arg max
m∈M

f(m), (1)

where f : M → R is an unknown function that outputs a
chemical property of the input molecule to be maximized.

There are two obstacles to solve Eq. (1). First, the set of fea-
sible solutionsM is discrete, and it is difficult to generate
a candidate m fromM in a controllable way. Second, f is
unknown and costly to evaluate, and only a small sample
{(mn, yn)}Nn=1 ⊂M×R is available, where yn = f(mn).
In fact, the function evaluation often requires wet-lab experi-
ments or day-long simulation based on quantum mechanics.

A recent innovation (Gómez-Bombarelli et al., 2018) fa-
cilitates the optimization by leveraging VAE (Kingma &
Welling, 2014) and BO (Močkus, 1975). The first challenge
is addressed by casting the discrete optimization problem
into continuous with the help of VAE. In specific, they first
train a VAE, a pair of Enc : M→ RD and Dec : RD →M
such that Dec(Enc(m)) ≈ m holds for any m ∈ M, and
they obtain m? as follows:

m? = Dec

(
arg max
z∈RD

f(Dec(z))

)
, (2)

The second challenge is addressed by using BO, which iter-
atively optimizes a black-box function in a limited number
of function evaluations. In specific, at each iteration, the
inner optimization problem in Eq. (2) is solved by BO with
training sample {(Enc(m1), y1), . . . , (Enc(mN), yN)} ⊂
RD×R, and the resultant latent vector xN+1 ∈ RD is added
to the sample with property evaluation f(Dec(xN+1)). This
procedure is iterated for a fixed number of times, and BO
outputs the best molecule found so far.

While they elegantly address the two obstacles, the decoding
sometimes fails, and no molecule is obtained, which we call
the decoding error issue. This is mainly due to the use of
SMILES (Weininger, 1988) to represent a molecule. Let Σ
be a set of symbols used in SMILES, and EncS : M→ Σ∗

be a SMILES encoder. For example, Σ includes atomic
symbols, e.g., C, H ∈ Σ; given a phenol as input, the en-
coder outputs c1c(O)cccc1, where the digits represent

Molecular Hypergraph Grammar with Its Application to Molecular Optimization

Enc
G

Enc
N

Enc
H

Molecular
graph

Molecular
hypergraph

Parse Tree
according to MHG

! ∈ ℝ$

Latent vector

Figure 1. Illustration of our encoder. For a molecular hypergraph, squares represent hyperedges, circles represent nodes, and a circle-square
line indicates that the node is a member of the hyperedge. The decoder is defined by inverting the encoder.

the start and end points of the benzene ring, the parenthe-
ses represent branching, and hydrogen atoms are omitted.
Letting EncS [M] := {EncS(m) | m ∈ M} (Σ∗ be
the set of all valid SMILES strings, a SMILES decoder
DecS : EncS [M]→M can be defined. Notice that the do-
main of DecS is not Σ∗ but EncS [M], the set of strings that
follow SMILES’ grammar, because any string that violates
the grammar cannot be decoded into any molecule.

In their implementation, the encoder is composed as Enc =
EncN ◦ EncS , where EncN : Σ∗ → RD is a neural net-
work encoder, and the decoder is composed as Dec =
DecS ◦DecN , where DecN : RD → Σ∗ is a neural network
decoder, generating symbols one by one. The decoding er-
ror issue occurs when the output of DecN does not belong to
EncS [M], the domain of DecS . For the phenol example, if
DecN fails to output the end digit, c1c(O)cccc, it cannot
be converted into a molecule because the ring cannot be
closed; if DecN generates more than one pair of parenthe-
ses, c1c(O)(O)cccc1, it violates the valence condition
of carbon. Since SMILES’ grammar is a context-sensitive
grammar, it is not straightforward to develop a neural net-
work that always generates a string belonging to EncS [M].

Recently, several studies have been conducted towards ad-
dressing the decoding error issue (Kusner et al., 2017; Dai
et al., 2018; Jin et al., 2018). Among them, Jin et al. (2018)
for the first time report 100% validity, addressing the decod-
ing error issue. Their idea is to represent a molecular graph
as fragments (such as rings and atom branches) connected
in a tree structure. Such a tree representation is preferable
because it is easier to generate a tree than a general graph
with degree constraints. By forcing the decoder to gener-
ate only valid combination of fragments, the decoder can
always generate a valid molecule.

While their tree representation successfully addresses the
decoding error issue, it models only part of molecular prop-
erties, and the rest is left to neural networks. For example,
their representation only specifies fragment-level connec-
tions, and does not specify which atoms in the fragments to
be connected. In addition, since it does not specify atom-

level connections, the stereochemistry information disap-
pears. They instead enumerate all possible configurations
and pick one by training several auxiliary neural networks.

Given this literature, we are interested in addressing the
decoding error issue without the auxiliary neural networks.
Such a simple architecture will facilitate model training, and
it will be easier to achieve high performance with less effort.
Our idea is to develop a (i) context-free graph grammar of a
molecular graph that (ii) never generates an invalid molecule,
and that (iii) can represent the atom-level connection and
stereochemistry information. With such a grammar, we
can use a parse tree as an intermediate representation of
a molecule, which is easy for the decoder to generate (as
guaranteed by the context-freeness (i)). Combined with (ii)
and (iii), our decoder can always output a valid molecule
with stereochemistry information, using a single VAE only.

Our technical highlight is a molecular hypergraph gram-
mar (MHG) along with an algorithm to infer MHG from a
set of molecules. MHG is designed to satisfy all of the re-
quirements mentioned above, We also develop a molecular
hypergraph grammar variational autoencoder (MHG-VAE),
which combines MHG and VAE to obtain an autoencoder
for a molecule. Figure 1 illustrates our encoder, where the
first two encoders, EncH and EncG, and their correspond-
ing decoders DecH and DecG, are our main contributions,
while we use a standard seq2seq VAE for (EncN ,DecN).

In details, we develop MHG by tailoring a hyperedge re-
placement grammar (HRG) (Drewes et al., 1997) for a
molecular hypergraph (thus, MHG is a special case of HRG).
A molecular hypergraph models an atom by a hyperedge
and a bond by a node. HRG is a context-free graph gram-
mar generating a hypergraph by replacing a non-terminal
hyperedge with another hypergraph; it achieves atom-level
connections when combined with a molecular hypergraph,
and stereochemistry can also be encoded into the grammar.
It also preserves the number of nodes belonging to each
hyperedge, which coincides with the valency of an atom
in our case. Therefore, these two ideas allow us to always
generate valid molecules using a single VAE.

Molecular Hypergraph Grammar with Its Application to Molecular Optimization

1C

2

H

H1N

2

N

N

NS

Figure 2. Part of production rules extracted from the hypergraph
in Fig. 1, illustrated as A → R. Filled squares represent non-
terminals, and unfilled ones terminals. The numbered nodes are
external nodes, where the numbers indicate the correspondence
between the nodes in A and R when A is replaced with R.

Our MHG inference algorithm extends the existing HRG
inference algorithm (Aguiñaga et al., 2016) so that the re-
sultant HRG always generates a molecular hypergraph. The
existing one infers HRG by extracting a set of production
rules from a tree decomposition of each hypergraph, which
is equivalent to a parse tree. Our finding is that, while the
inferred HRG preserves the valence condition, it sometimes
generates a hypergraph that cannot be decoded into a molec-
ular graph; the generated hypergraph may contain a node
that is shared by more than two hyperedges. To address
this issue, we develop an irredundant tree decomposition,
with which HRG is guaranteed to generate a valid molecular
hypergraph, i.e., the inferred HRG is always MHG.

2. Preliminaries
A hypergraph is a pair H = (VH , EH), where VH is a set of
nodes, and EH is a set of non-empty subsets of VH , called
hyperedges. A hypergraph is called k-regular if every node
has degree k.

A tree decomposition of a hypergraph (Def. 1) discovers a
tree-like structure of the hypergraph. Figure 3 illustrates a
tree decomposition of the hypergraph shown in Fig. 1.

Definition 1. A tree decomposition of hypergraph H =
(VH , EH) is tree T = (VT , ET) with two labeling functions
`
(V)
T : VT → 2VH and `(E)

T : VT → 2EH such that:

1. For each vH ∈ VH , there exists at least one node
vT ∈ VT such that vH ∈ `(V)

T (vT).

2. For each eH ∈ EH , there exists exactly one node vT ∈
VT such that eH ⊆ `(V)

T (vT) and eH ∈ `(E)
T (vT).

3. For each vH ∈ VH , a set of nodes {vT ∈ VT | vH ∈
`
(V)
T (vT)} is connected in T .

Let us denote the hypergraph on node vT ∈ VT by
H(vT) := (`

(V)
T (vT), `

(E)
T (vT)).

A hyperedge replacement grammar (HRG) (Drewes et al.,
1997) is a context-free grammar generating hypergraphs
with labeled nodes and hyperedges (Def. 2, Fig. 2). It starts

from the starting symbol S and repeatedly replaces a non-
terminal symbol A in the hypergraph with a hypergraph R,
which may have both terminal and non-terminal symbols.

Definition 2. A hyperedge replacement grammar is a tu-
ple HRG = (N,T, S, P), where,

1. N is a set of non-terminal hyperedge labels.

2. T is a set of terminal hyperedge labels.

3. S ∈ N is the starting non-terminal hyperedge.

4. P is a set of production rules where,

• p = (A,R) ∈ P is a production rule,
• A ∈ N is a non-terminal symbol, and
• R is a hypergraph with hyperedge labels T ∪N

and has |A| external nodes.

We define a parse tree according to HRG as follows. Each
node of the parse tree is labeled by a production rule. The
production rules of the leaves of the parse tree must not
contain non-terminals in their Rs. If the production rule p is
a starting rule, the node has Np ordered children, where Np

denotes the number of non-terminals in R, and the edges
are ordered by the orders of the non-terminals. Otherwise,
the node has one parent and Np ordered children, where the
corresponding non-terminal in the parental production rule
must coincide with A of the production rule.

Given a parse tree, we can construct a hypergraph by se-
quentially applying the production rules. Such sequential
applications of production rules are equivalent to the parse
tree, and we call it a parse sequence.

3. Molecular Graph and Hypergraph
This section introduces our definitions of a molecular graph
and a molecular hypergraph. We also present a pair of
encoder and decoder between them, (EncH ,DecH).

3.1. Molecular Graph

A molecular graph (Def. 3) represents the structural formula
of a molecule using a graph, where atoms are modeled as
labeled nodes and bonds as labeled edges. Typically, the
node label is defined by the atom’s symbol (e.g., H, C) and
its formal charge, and the edge label by the bond type (e.g.,
single, double). The graph must satisfy the valency condi-
tion; the degree of each atom is specified by its label (e.g.,
the degree of C must equal four). Let G(L

(V)
G , L

(E)
G , d(V))

be the set of all possible molecular graphs, given the sets of
node and edge labels and the degree constraint function.

Definition 3. Let L(V)
G and L(E)

G be sets of node and edge
labels. Let d(V) : L

(V)
G → N be a degree constraint function.

Molecular Hypergraph Grammar with Its Application to Molecular Optimization

Let G = (VG, EG, `
(V)
G , `

(E)
G) be a node and edge-labeled

graph, where VG is a set of nodes, EG is a set of undirected
edges, `(V)

G : VG → L
(V)
G is a node-labeling function, and

`
(E)
G : EG → L

(E)
G is an edge-labeling function. A molecu-

lar graph G is a node and edge-labeled graph that satisfies
d(v) = d(V)(`

(V)
G (v)) for all v ∈ VG, where d(v) indicates

the degree of node v.

There are two types of important properties that influence
the chemical properties of a molecule. The first one is the
aromaticity of a ring (e.g., benzene derivatives). The bonds
in an aromatic ring are different from a single or double
bond, and are known to be more stable. We do not explic-
itly encode any information related to the aromaticity, and
instead, employ the Kekulé structure, where an aromatic
ring is represented by alternating single and double bonds.
This does not lose generality because we can infer the aro-
maticity from the Kekulé representation. The second one
is the stereochemistry, which specifies 2D or 3D configura-
tion of atoms. We deal with the configuration at a double
bond and tetrahedral carbon. The double bond configuration
is encoded by an E-Z configuration label assigned on the
edge label. Given the label and the whole structure of the
molecule, the Cahn–Ingold–Prelog priority rules can specify
the double bond direction. For the tetrahedral chirality infor-
mation, we assign a chirality tag in the node label, following
the implementation of RDKit.

In summary, we employ the graph representation (Def. 3),
where the node label contains the atom symbol, formal
charge, and the tetrahedral chirality tag, and the edge label
contains the bond type and the E-Z configuration.

3.2. Molecular Hypergraph

As an intermediate representation, we use a molecular hyper-
graph (Def. 4), where an atom is modeled by a hyperedge
and a bond between two atoms by a node shared by the
corresponding two hyperedges. LetH(L

(V)
H , L

(E)
H , c(E)) be

the set of all molecular hypergraphs, given the sets of node
and hyperedge labels and the cardinality constraint function.

Definition 4. Let L(E)
H and L(V)

H be sets of hyperedge and
node labels. Let c(E) : L

(E)
H → N be a cardinality con-

straint function. Let H = (VH , EH , `
(E)
H , `

(V)
H) be a node

and hyperedge-labeled hypergraph, where VH is a set of
nodes, EH is a set of hyperedges, `(V)

H : VH → L
(V)
H is

a node-labeling function, and `
(E)
H : EH → L

(E)
H is a

hyperedge-labeling function. A molecular hypergraph H is
a node and hyperedge-labeled hypergraph that satisfies the
followings:
1. (Regularity) H is 2-regular.
2. (Cardinality) for each e ∈ EH , |e| = c(E)(`

(E)
H (e))

holds, where |e| is the cardinality of hyperedge e.

Note that the regularity condition in Def. 4 assures that any
molecular hypergraph can be decoded into a graph.

3.3. Encoder and Decoder

Finally, we present the encoder and decoder be-
tween a molecular graph and a molecular hypergraph,
(EncH ,DecH). They can be derived easily by swapping
nodes-hyperedges and edges-nodes. The regularity condi-
tion in Def. 4 assures the swap to work. This equivalence
immediately yields the following:

Theorem 1. If L(V)
G = L

(E)
H , L(E)

G = L
(V)
H , and d(V)(l) =

c(E)(l) for all l ∈ L(V)
G hold, then the followings hold:

H(L
(V)
H , L

(E)
H , c(E)) = EncH [G(L

(V)
G , L

(E)
G , d(V))],

G(L
(V)
G , L

(E)
G , d(V)) = DecH [H(L

(V)
H , L

(E)
H , c(E))],

G = DecH(EncH(G)) (∀G ∈ G(L
(V)
G , L

(E)
G , d(V))).

4. Molecular Hypergraph Grammar
A molecular hypergraph grammar (MHG) is defined as an
HRG that always generates molecular hypergraphs. Given
MHG, we can define (EncG,DecG) that leverages MHG to
represent a molecular hypergraph as a parse sequence.

Let MHG = (N,T, S, P) be a molecular hypergraph gram-
mar, and LMHG be its language, i.e., the set of molecular
hypergraphs that can be generated by MHG. The encoder
EncG : LMHG → P ∗ maps a molecular hypergraph into the
corresponding parse sequence. The decoder maps a parse
sequence into a molecular hypergraph by sequentially apply-
ing the production rules. It accepts a sequence of production
rules obtained from LMHG only, because other sequences
cannot generate a molecular hypergraph. Thus, the domain
of the decoder is defined as DecG : EncG[LMHG]→ LMHG.
Clearly, for any H ∈ LMHG, H = DecG(EncG(H)) holds.

5. MHG Inference Algorithm
We present an algorithm to infer MHG from a set of molec-
ular hypergraphs. Our algorithm (Sec. 5.2) extends an ex-
isting HRG inference algorithm (Sec. 5.1), which extracts a
set of production rules from tree decompositions of hyper-
graphs. We need to tailor a novel inference algorithm for
MHG because HRG inferred by applying the existing one to
molecular hypergraphs is not MHG. The inferred HRG does
not necessarily generate a molecular hypergraph because it
sometimes violates the regularity condition in Def. 4.

5.1. Existing HRG Inference Algorithm

Aguiñaga et al. (2016) propose an algorithm to infer HRG
from a set of hypergraphs. Their key observation is that
tree decompositions of hypergraphs yield HRG whose as-

Molecular Hypergraph Grammar with Its Application to Molecular Optimization

1

3

2

1

3

4

3C

4

H

H

3 C

2

H

H

1C

4

H

H 1 C

2

H

H

Figure 3. Irredundant tree decomposition of the hypergraph in
Fig 1.

sociated language includes the whole input hypergraphs.
Assume that we have a tree decomposition T of hypergraph
H . We arbitrarily choose one node from T as the root node.
For node vT ∈ VT , let pa(vT) be the parent of vT and
ch(vT) be a set of children of vT . They first notice that
connecting each pair (vT ,pa(vT)) by their common nodes
yields the original hypergraph (e.g., connecting such pairs in
Fig. 3 yields the hypergraph in Fig. 1). In other words, a tree
decomposition with an arbitrary root node is equivalent to a
parse tree. Given this observation, their algorithm extracts a
production rule from a triplet (pa(vT), vT , ch(vT)) so that
the production rule can paste H(vT) on H(pa(vT)) with
non-terminals left for applying the following production
rules obtained from the children. Note that the algorithm
outputs not only HRG but also parse sequences of input
hypergraphs. For more details, see Appendix A.

5.2. Our MHG Inference Algorithm

We find that the existing algorithm cannot infer MHG, i.e.,
the inferred HRG sometimes violates the regularity condi-
tion. We develop an irredundant tree decomposition so that
the violation does not occur, and substitute it for a generic
tree decomposition to derive our MHG inference algorithm.

Irredundant Tree Decomposition. We introduce a key
property of a tree decomposition called irredundancy, which
is necessary to guarantee the regularity. Intuitively, a tree
decomposition is irredundant if each node of the tree does
not contain redundant nodes of the original hypergraph. Fig-
ures 3 and 4 illustrate both irredundant and redundant tree
decompositions. The formal definition appears in Def. 5.

Definition 5. Let H = (VH , EH) be a hypergraph, and
(T, `

(V)
T , `

(E)
T) be its tree decomposition. Let VT (vH) =

{vT ∈ VT | vH ∈ `(V)
T (vT)} be a set of nodes in T that

contain vH ∈ VH . A tree decomposition is irredundant if,

∀vH ∈ VH , ∀vT ∈ VT (vH)

`
(E)
T (vT) 6= ∅ ⇔ vT is a leaf in T [VT (vH)], (3)

where T [VT (vH)] is the subgraph induced by VT (vH).

!"!#∗ ∈ &#

'[&#(!")]

,",. ,",/

,",/
,",.

Figure 4. Redundant tree decomposition T . The upper-right shows
a subhypergraph of H , whose tree decomposition induced by
VT (vH) is shown in the lower-left. It is necessary to remove vH
from v∗T to transform it to be irredundant.

We can make any tree decomposition to be irredundant in
polynomial time; for each vH , if it does not satisfy the con-
dition (3), remove vH from each `(E)

T (vT) (vT ∈ VT (vH)).

Implementation. We tailor a tree decomposition algorithm
for a molecular hypergraph. It starts from a one-node tree
whose node contains the input hypergraph, and updates the
tree by applying the following two steps.

The first step is to find a node such that the input hypergraph
becomes disjoint when divided at the node, and to divide
the hypergraph into two. When dividing a hypergraph at a
node, the node is duplicated so that the two hyperedges that
the node belonged to still contain the node. This operation
is repeatedly applied to the subhypergraphs until there does
not exist such a node. As a result, the input hypergraph is
divided into (i) hypergraphs containing exactly one hyper-
edge and (ii) hypergraphs that contain rings. The type-(i)
hypergraphs are obtained from branching structures of the
input hypergraph, and the type-(ii) ones from rings.

The second step rips off the hyperedges from the type-(ii)
hypergraphs; we divide a tree node containing a ring into
one tree node containing all of the nodes and other tree
nodes each of which contains each of the hyperedges and
their nodes. This operation is helpful to reduce the number
of production rules. The inferred grammar can generate a
ring structure by first generating a skeleton of a ring, where
all of the hyperedges are non-terminal, and then replacing
the non-terminals in an arbitrary way. Without the second
step, since the number of possible atom configurations of
a ring is enormous, that of production rules also greatly
increases.

Theoretical Result. Theorem 2 summarizes the properties
of our algorithm. It suggests that (i) HRG inferred by our
algorithm can generate the whole input hypergraphs and (ii)
the inferred HRG always generates a molecular hypergraph,
i.e., the HRG is MHG. See Appendix B for its proof.

Theorem 2. LetH(L
(V)
H , L

(E)
H , c(E)) be a set of all molec-

ular hypergraphs and Ĥ be its finite subset. Let LHRG(Ĥ)

Molecular Hypergraph Grammar with Its Application to Molecular Optimization

Algorithm 1 Latent Representation Inference
In: Mols and targets, G0 = {gn}Nn=1, Y0 = {yn}Nn=1.

1: Obtain molecular hypergraphs: H0 ← EncH(G0)
2: Obtain an MHG as well as parse sequences:

DecG,MHG,S0 ← MHG-INF(H0).
3: Train NNs using (S0,Y0) to obtain (EncN ,DecN), f̂ .
4: Obtain latent vectors, Z0 ← E[EncN [S0]].

return latent vectors Z0, DecG, DecN , f̂ .

be the language generated by HRG inferred by applying our
algorithm to Ĥ. Then, LHRG(Ĥ) satisfies

Ĥ ⊆ LHRG(Ĥ) ⊆ H(L
(V)
H , L

(E)
H , c(E)).

6. Application to Molecular Optimization
We have presented (EncH ,DecH) , a pair of encoder and
decoder between a molecular graph and a molecular hy-
pergraph (Sec. 3.3), and (EncG,DecG), that between a
molecular hypergraph and a parse sequence according to
MHG (Sec. 4). We have also provided an algorithm to obtain
(EncG,DecG) from a set of molecular hypergraphs (Sec. 5).
In this section, we finally present an application of our en-
coders and decoders to molecular optimization, which aims
to search a molecule with desirable properties.

6.1. Our Model

Our model consists of encoder and decoder, (Enc,Dec),
and optionally, a predictive model from the latent space to a
target value. Our encoder and decoder are composed as:

Enc = EncN ◦ EncG ◦ EncH ,
Dec = DecH ◦ DecG ◦ DecN ,

where (EncN ,DecN) is a seq2seq GVAE (Kusner et al.,
2017). Since GVAE can output a parse sequence that fol-
lows a context-free grammar, DecN is guaranteed to output
a valid parse sequence that belongs to EncG[LMHG], the
domain of the following decoder DecG. Our model configu-
ration appears in Appendix C.

6.2. Molecular Optimization Algorithm

Global molecular optimization (Eq. (2)) aims to find novel
molecules with desirable properties from the entire molecu-
lar space. It consists of two steps. Algorithm 1 summarizes
the former step to obtain latent representations of the in-
put molecules. Note that this algorithm does not outputs
encoders, because molecular optimization algorithms re-
quire Dec only. Algorithm 2 describes the latter step, which
optimizes a molecule in the latent space using BO.

Algorithm 2 Global Molecular Optimization
In: Z0, Y0, Dec, #iterations K, #candidates M .

1: D1 ← {(zn, yn)}Nn=1

2: for k = 1, . . . ,K do
3: Fit GP using Dk.
4: Obtain candidates Zk = {zm ∈ RD}Mm=1 from BO.
5: Obtain molecular graphs as Gk ← Dec[Zk].
6: Obtain target values as Yk ← f [Gk].
7: Dk+1 ← Dk ∪ {(zk,m, yk,m) ∈ Zk × Yk}Mm=1.

return novel molecules {gk,m}M,K
m=1,k=1.

7. Related Work
Molecular optimization has a longstanding history espe-
cially in drug discovery, and mostly, combinatorial methods
have been used to find novel molecules (Jorgensen, 2009).
The paper by Gómez-Bombarelli et al. (2018), for the first
time, applies modern machine learning techniques to this
problem, and since then, growing number of papers have
been tackling this problem.

There are two complementary approaches to molecular op-
timization. One is the combination of VAE and Bayesian
optimization, originally developed by Gómez-Bombarelli
et al. (2018), and the other is reinforcement learning, where
the construction of a molecule is modeled as a Markov deci-
sion process (Guimaraes et al., 2017; You et al., 2018; Zhou
et al., 2018). These two approaches cover complementary
application areas, and therefore, they are not conflicting
with each other. The key difference is the assumption on
function evaluation cost. The former assumes that the cost
is so high that the number of function evaluations should be
kept at a minimum, while the latter assumes that the cost
is negligible and a number of trial-and-errors are allowed.
Therefore, the former is more favorable when the evaluation
requires wet-lab experiments or computationally heavy first-
principles calculation, and the latter is more favorable when
the evaluation can be carried out by light-weight computer
simulation. Since our paper focuses on the former setting,
in the following, we will discuss its literature.

As stated in the introduction, the decoding error issue has
been one of the critical issues, and therefore, this section
focuses on a series of studies alleviating it. There are mainly
two approaches to address it. One approach is to devise
the decoding network to generate as valid SMILES strings
as possible. For example, Kusner et al. (2017) leverage
SMILES’ grammar to force the decoder to align the gram-
mar. This approach is limited because they assume a context-
free grammar (CFG), while SMILES’ grammar is not totally
context-free. Dai et al. (2018) propose to use an attribute
grammar, which enhances CFG by introducing attributes
and rules. This enhancement allows us to enforce semantic
constraints to the decoder. However, they deal only with the

Molecular Hypergraph Grammar with Its Application to Molecular Optimization

ring-bond matching and valence conditions, and therefore,
their decoder sometimes fails to generate valid molecules.

Another approach is to substitute another molecular repre-
sentation for SMILES so that the output is guaranteed to
be valid. As far as we know, only the very recent paper
by Jin et al. (2018) takes this approach. They represent a
molecule by fragments connected in a tree structure. While
their work for the first time reports 100% validity of decoded
molecules, their method requires multiple neural networks
other than VAE and the predictor. Our work further pushes
along this direction by formalizing the tree representation
in terms of HRG. This formalization allows us to model
atom-level connections between fragments along with the
stereochemistry information, and we realize 100% validity
using VAE and the predictor only.

8. Empirical Studies
We evaluate the effectiveness of MHG in the molecular
optimization domain. In particular, we are interested in
the case when unlabeled molecules are abundant but the
number of function evaluations is limited due to its cost. We
basically follow Jin et al.’s experimental procedures1, and
the baseline results are copied from the existing papers (Jin
et al., 2018; You et al., 2018) when appropriate.

Purposes and Baselines. As explained in Section 7, there
are two complementary approaches to molecular optimiza-
tion: VAE-based and RL-based ones. The purposes of the
empirical studies are to answer the following research ques-
tions: (Q1) Do RL-based approaches perform better than
VAE-based ones when the number of function evaluations
is not limited (as reported in You et al.’s paper)? (Q2) Do
VAE-based approaches generally work better than RL-based
ones when the number of function evaluations is limited?
(Q3) Does MHG-VAE outperform the existing VAE-based
methods? (Q2) and (Q3) are our primary concerns. To
this end, as baseline methods, we employ CVAE (Gómez-
Bombarelli et al., 2018), GVAE (Kusner et al., 2017), SD-
VAE (Dai et al., 2018), and JT-VAE (Jin et al., 2018) as
VAE-based approaches, and GCPN (You et al., 2018) as an
RL-based approach.2 For their details, see Section 7.

Dataset. We use the ZINC dataset following the existing
work. This dataset is extracted from the ZINC database (Ir-
win et al., 2012) and contains 220,011 molecules for train-
ing, 24,445 for validation, and 5,000 for testing. For basic
statistics of MHG inferred using this dataset, please refer to

1Concurrently with our work, some researchers propose to stan-
dardize the benchmark (Brown et al., 2019) to ease comparative
studies. We would like to test our method on it as future work.

2The algorithm by Zhou et al. (2018) is not used because the
open-sourced program consumed more than 96GB memory and
was unable to reproduce the result in our environment.

Appendix D. For the target chemical property to be maxi-
mized, we employ a standardized penalized logP following
the existing work:

f(m) = ̂logP(m)− ŜA(m)− ĉycle(m), (4)

where logP is the octanol-water partition coefficient, SA is
the synthetic accessibility score, and cycle is the size of the
longest ring subtracted by six (if its size is less than six, the
function returns 0), and the hat represents that the function
is standardized using the values calculated on the training
set. For example, letting µlogP and σlogP be the sample
mean and standard deviation of logP calculated using the
training set, ̂logP(m) = (logP(m)− µlogP)/σlogP.

8.1. Reconstruction Rate

We first investigate the quality of Enc and Dec of the VAE-
based methods, which has much influence on the perfor-
mance of molecular optimization.

Protocol. For each molecular graph m in the test set, we
obtain its reconstruction as m′ = Dec(Enc(m)). If m and
m′ are isomorphic, we regard the reconstruction succeeds.
We repeat the above procedure using all of the test molecules
100 times, and report the mean reconstruction success rate.

To investigate the quality of the latent space, we evaluate the
success rate of decoding random latent vectors. We sample
z from N (0, I) and decode it to obtain m = Dec(z). If
m is valid, we regard the decode succeeds. We repeat this
procedure 1,000 times and report the success rate.

Result. According to Table 1 (left), our method clearly im-
proves the reconstruction rate, which justifies our molecular
modeling approach.

8.2. Global Molecular Optimization

We then investigate the performance on global molecular op-
timization using two scenarios. The first scenario assumes
that the function evaluation cost is negligible and the algo-
rithms can query an arbitrary number of target properties,
which is used to answer (Q1) and (Q3). This scenario is
dubbed as the unlimited oracle case. All of the existing
studies assume this scenario. The second one assumes that
it is expensive and only a limited number of oracle calls
are allowed, which is used to answer (Q2) and (Q3). This
scenario is dubbed as the limited oracle case. Since our prob-
lem setting assumes the expensive case, the second scenario
is of primary interest, and the first scenario is examined for
completeness.

Protocol 1 (unlimited oracle case). For our method, we
first obtain latent representations by Algorithm 1. Then, we
apply PCA to the latent vectors to obtain 40-dimensional
latent representations. Then, we run Algorithm 2 with M =

Molecular Hypergraph Grammar with Its Application to Molecular Optimization

Table 1. Reconstruction rate, predictive performance, and global molecular optimization with the unlimited oracle. GCPN, the RL-based
method, outperforms VAE-based ones when the target evaluation cost is negligible (though, which is not our focus).

Method % Reconst. Valid prior Log likelihood RMSE Unlimited oracle case
1st 2nd 3rd 50th Top 50 Avg.

CVAE 44.6% 0.7% −1.812± 0.004 1.504± 0.006 1.98 1.42 1.19 – –
GVAE 53.7% 7.2% −1.739± 0.004 1.404± 0.006 2.94 2.89 2.80 – –

SD-VAE 76.2% 43.5% −1.697± 0.015 1.366± 0.023 4.04 3.50 2.96 – –
JT-VAE 76.7% 100% −1.658± 0.023 1.290± 0.026 5.30 4.93 4.49 3.48 3.93
GCPN – – – – 7.98 7.85 7.80 – –

Ours 94.8% 100% −1.323± 0.003 0.959± 0.002 5.56 5.40 5.34 4.12 4.49

Table 2. Global molecular optimization with the limited oracle.
Our method outperforms the others including GCPN.

Method Limited oracle case
1st 2nd 3rd 50th Top 50 Avg.

JT-VAE 1.69 1.68 1.60 -9.93 -1.33
GCPN 2.77 2.73 2.34 0.91 1.36

Ours 5.24 5.06 4.91 4.25 4.53

50, K = 5. As a result, we obtain 250 novel molecules.
We repeat this procedure ten times, resulting in 2,500 novel
molecules. We report the log-likelihood and root mean-
squared error (RMSE) of GP evaluated on the test set, top
three molecule property scores out of 2,500, and the mean
of top 50 target properties. Since BO is a highly random
procedure, examining only top three molecules could lead
to unfair comparison, and we suggest to examine statistics
of top-K molecules.

For the baseline methods, we simply copied the results from
You et al.’s paper, where the VAE-based methods use the
same protocol as ours. Note that the number of queries by
GCPN, the RL-based method, is larger than those of VAE-
based methods. In fact, the default configuration of GCPN
requires 5× 107 steps.

Protocol 2 (limited oracle case). In this scenario, we com-
pare all of the methods under the same number of queries.
For our method and JT-VAE, we initialize GP withN = 250
labeled molecules randomly selected from the training set,
and run Algorithm 2 with M = 1, K = 250. We use
GPyOpt (The GPyOpt authors, 2016) as the BO module.
For GCPN, we run the algorithm and regard the first 500
molecules as the output. For each method, this procedure is
repeated ten times, and obtain 2,500 novel molecules for the
VAE-based methods and 5,000 novel molecules for GCPN.
We report top three molecule property scores out of the
novel molecules and statistics of top 50 target properties.

Result (the unlimited oracle case). Table 1 (mid) shows
the predictive performance of GP. Our method achieves
better scores than the others, indicating that our latent space
well encodes features necessary to predict the property.

Table 1 (right) reports the top three target properties as well
as the minimum and average scores of top 50 molecules ob-
tained via Protocol 1. Ours achieves the best scores among
the VAE-based methods, and GCPN reports molecules with
the highest target properties, which answers (Q1) and (Q3)
in the affirmative. Furthermore, when we focus on statistics
of top 50 molecules, ours achieves better scores than JT-
VAE. These results suggest that our method is more likely
to discover better molecules than the other VAE-based ones,
which also supports us to answer (Q3) in the affirmative.

Result (limited oracle case). Table 2 shows the result ob-
tained via Protocol 2. Our method clearly outperforms the
other methods including GCPN, answering (Q2) in the af-
firmative. It is notable that our method in the limited oracle
case performs almost comparably to our method in the un-
limited oracle case. This result supports the effectiveness of
our method especially in the limited oracle case.

9. Conclusion and Future Work
We have developed the molecular hypergraph grammar vari-
ational autoencoder (MHG-VAE). Our key idea is to employ
MHG to represent a molecular graph as a parse tree, which
is fed into VAE. Since MHG models the atom-level connec-
tions as well as the stereochemistry information, MHG-VAE
can learn a pair of encoder and decoder using a single VAE.
The highlights of our experiments include (i) MHG-VAE
achieves the best performance among VAE-based methods
and (ii) MHG-VAE performs better than the state-of-the-art
RL-based method called GCPN when the number of target
function evaluations is limited.

A future research direction will be to optimize MHG with
respect to some goodness criteria such as the minimum
description length (Jonyer et al., 2004) or a Bayesian crite-
rion (Chen, 1995). Since the resultant MHG depends on tree
decompositions, we can optimize MHG by manipulating
tree decompositions.

Another direction involves retrosynthetic analysis, which
derives a pathway to synthesize the target molecule. With
this capability, we will be able to immediately examine the
property by synthesizing the output molecule.

Molecular Hypergraph Grammar with Its Application to Molecular Optimization

Acknowledgments
This work was supported by JST CREST Grant Number
JPMJCR1304, Japan, and JSPS KAKENHI Grant Num-
bers 15H05711, Japan. The author would like to thank Dr.
Masakazu Ishihata for his helpful discussion.

References
Aguiñaga, S., Palacios, R., Chiang, D., and Weninger, T.

Growing graphs from hyperedge replacement graph gram-
mars. In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management,
pp. 469–478, 2016.

Brown, N., Fiscato, M., Segler, M. H., and Vaucher, A. C.
GuacaMol: Benchmarking models for de novo molecular
design. Journal of Chemical Information and Modeling,
59(3):1096–1108, 2019.

Chen, S. F. Bayesian grammar induction for language mod-
eling. In Proceedings of the 33rd Annual Meeting on
Association for Computational Linguistics, pp. 228–235,
1995.

Dai, H., Tian, Y., Dai, B., Skiena, S., and Song, L. Syntax-
directed variational autoencoder for structured data. In
Proceedings of the Sixth International Conference on
Learning Representations, 2018.

Drewes, F., Kreowski, H.-J., and Habel, A. Hyperedge
replacement graph grammars, volume 1, chapter 2, pp.
95–162. 1997.

Gómez-Bombarelli, R., Aguilera-Iparraguirre, J., Hirzel,
T. D., Duvenaud, D., Maclaurin, D., Blood-Forsythe,
M. A., Chae, H. S., Einzinger, M., Ha, D.-G., Wu, T.,
Markopoulos, G., Jeon, S., Kang, H., Miyazaki, H., Nu-
mata, M., Kim, S., Huang, W., Hong, S. I., Baldo, M.,
Adams, R. P., and Aspuru-Guzik, A. Design of effi-
cient molecular organic light-emitting diodes by a high-
throughput virtual screening and experimental approach.
Nature Materials, 15(10):1120–1127, 2016.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D.,
Hernández-Lobato, J. M., Sánchez-Lengeling, B., She-
berla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams,
R. P., and Aspuru-Guzik, A. Automatic chemical de-
sign using a data-driven continuous representation of
molecules. ACS Central Science, 2018.

Guimaraes, G. L., Sanchez-Lengeling, B., Outeiral, C.,
Farias, P. L. C., and Aspuru-Guzik, A. Objective-
reinforced generative adversarial networks (ORGAN)
for sequence generation models. Technical report,
arXiv1705.10843, 2017.

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S.,
and Coleman, R. G. ZINC: A free tool to discover chem-
istry for biology. Journal of Chemical Information and
Modeling, 52(7):1757–1768, 2012.

Jin, W., Barzilay, R., and Jaakkola, T. Junction tree vari-
ational autoencoder for molecular graph generation. In
Proceedings of the Thirty-fifth International Conference
on Machine Learning, 2018.

Jonyer, I., Holder, L. B., and Cook, D. J. MDL-based
context-free graph grammar induction and applications.
International Journal on Artificial Intelligence Tools, 13
(1):65–79, 2004.

Jorgensen, W. L. Efficient drug lead discovery and optimiza-
tion. Accounts of Chemical Research, 42(6):724–733,
2009.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In Proceedings of the International Conference on
Learning Representations, 2014.

Kusner, M. J., Paige, B., and Hernández-Lobato, J. M.
Grammar variational autoencoder. In Proceedings of
the 35th International Conference on Machine Learning,
2017.

Močkus, J. On Bayesian methods for seeking the extremum.
In Marchuk, G. I. (ed.), Optimization Techniques IFIP
Technical Conference Novosibirsk, July 1–7, 1974, pp.
400–404, 1975.

The GPyOpt authors. GPyOpt: A Bayesian optimiza-
tion framework in Python. http://github.com/
SheffieldML/GPyOpt, 2016.

Weininger, D. SMILES, a chemical language and informa-
tion system. 1. introduction to methodology and encoding
rules. Journal of Chemical Information and Computer
Sciences, 28(1):31–36, 1988.

You, J., Liu, B., Ying, Z., Pande, V., and Leskovec, J. Graph
convolutional policy network for goal-directed molecular
graph generation. In Advances in Neural Information
Processing Systems 31, pp. 6412–6422, 2018.

Zhou, Z., Kearnes, S., Li, L., Zare, R. N., and Riley, P. Op-
timization of molecules via deep reinforcement learning.
Technical report, arXiv1810.08678, 2018.

http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt

