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The sufficiently scattered condition

In some prior works (Huang et al., 2014; 2016; 2018), the

sufficiently scattered condition is presented as follows:

Definition 2 (sufficiently scattered [dual cone form].). Let

cone(M)∗ denote the polyhedral cone {x : M⊤x ≥ 0} and

K
∗ denote the elliptical cone {x : ‖x‖ ≤ 1

⊤x}. Matrix M

is sufficiently scattered if

i) cone(M)∗ ⊆ K
∗,

ii) cone(M)∗ ∩ bdK∗
= {αeℓ : α ≥ 0, ℓ = 1, ..., k}.

As for our definition, if we drop the 1
⊤x = 1 constraint, it

can be equivalently written in the following cone form:

Definition 3 (sufficiently scattered [primal cone form].).

Let cone(M) denote the polyhedral cone {Mβ : β ≥ 0}
and K denote the elliptical cone {x ∈ R

k : ‖x‖ ≤ 1√
k−1

1
⊤x}.

Matrix M is sufficiently scattered if

i) cone(M) ⊇ K,

ii) bd cone(M) ∩K = {α(1 − eℓ) : α ≥ 0, ℓ = 1, ..., k}.

To understand the equivalence of Definitions 2 and 3, it is

essential to invoke the concept of the dual cone, denoted

with a superscript ∗

C
∗
= {x : y⊤x ≥ 0, ∀ y ∈ C}.

One can verify that cone(M) and cone(M)∗ are indeed dual

to each other, and so are K and K
∗.

We now prove that Definitions 2 and 3 are indeed primal-

dual representations of the same condition. For two convex

cones C1 and C2, if C1 ⊆ C2, then C
∗
1
⊇ C

∗
2
. It clearly shows

the equivalence of the first requirements in Definitions 2 and

3. As for the second requirement, we claim the following:

• Requirement ii) in Definition 2 asks that all extreme rays

of cone(M)∗ lie strictly inside K
∗, except for the coordi-

nate directions αeℓ’s, which lie on the boundary of K∗;
• Requirement ii) in Definition 3 asks that all facets of

cone(M) lie strictly outside K, except for the facets

spanned by k − 1 coordinate vectors, which touch the

boundary of K at α(1 − eℓ).

There is a one-to-one correspondence between extreme rays

of cone(M)∗ and facets of cone(M), which are both defined

by k − 1 columns of M . Let v denote an extreme ray of

cone(M)∗, then M⊤v ≥ 0 and k − 1 of them holds as equali-

ties; those k − 1 columns defines a facet of cone(M), and

any point x in that facet satisfies that x⊤v = 0.

Now if v is not a coordinate direction, Definition 2 asks that

‖v‖ < 1
⊤v. It can be rearranged as

1
⊤v

‖1‖‖v‖ >
1
√

k
,

(a) Pure node (b) Sufficiently scattered (c) Not identifiable

Figure 5. Same illustration as in Figure 3 with dual cones added

(in dash).

which means the angle between v and 1 is less than

arccos(1/
√

k). Therefore the angle between 1 and any point

on the corresponding facet is greater than π−arccos(1/
√

k),
or equivalently

1
⊤x

‖1‖‖x‖ <
√

k − 1

k
⇐⇒ ‖x‖ > 1

√
k − 1

1
⊤x,

meaning all points on that facet lie strictly outside K.

The other direction is true as well: If the smallest angle

between 1 and any point on the facet is greater than π −
arccos(1/

√
k), then the angle between 1 and v is less than

arccos(1/
√

k), meaning v lie strictly inside K
∗. This shows

the equivalence of the second requirement in Definitions 2

and 3. A geometric illustration with the dual cones shown

is given in Figure 5.

Proof of Theorem 1

Denote an optimal solution of (8) as (Ξ⋆,M⋆), then clearly

| detΞ⋆ | ≤ | det Ξ̃ ♮ | ⇔ | detΞ−1
⋆ Ξ̃

♮ | ≥ 1. (13)

Furthermore, since both (Ξ⋆,M⋆) and (Ξ̃ ♮
,M

♮
2
) are feasi-

ble, we have

Ξ⋆M⋆ = Ξ̃
♮
M

♮
2
,M⋆ ≥ 0

⇒ Ξ−1
⋆ Ξ̃

♮
M

♮
2
≥ 0 (14)

e⊤
k
Ξ⋆ = 1

⊤
, e⊤

k
Ξ̃

♮
= 1

⊤
,

⇒ 1
⊤Ξ−1

⋆ Ξ̃
♮
= 1

⊤
. (15)

Denote V = Ξ−1
⋆ Ξ̃

♮
with ℓ-th row denoted as v⊤

ℓ
. Then

(14) means vℓ’s lie in cone(M ♮
2
); since M

♮
2

is sufficiently

scattered, vℓ ∈ K
∗, meaning

‖vℓ ‖ ≤ 1
⊤vℓ .

Using Hadamard’s inequality,

| det B | ≤
k∏

ℓ=1

‖vℓ ‖,
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and we further have that

k∏

ℓ=1

‖vℓ ‖ ≤
k∏

ℓ=1

1
⊤vℓ (16a)

≤
(∑

k

ℓ=1 1
⊤vℓ

k

)k
(16b)

=

(
1
⊤V1

k

)k
= 1, (16c)

where (16a) stems from vℓ ∈ K
∗, (16b) is due to arithmetic-

geometric mean inequality, and (16c) is due to (15). This

means

| detΞ−1
⋆ Ξ̃

♮ | ≤ 1. (17)

Combining (17) and (13), we conclude that

| detΞ−1
⋆ Ξ̃

♮ | = 1.

Furthermore, all inequalities in (16) hold as equalities,

which means vℓ’s lie on the boundary of K∗. The second

requirement of sufficiently scattered (dual form Definition

2) imply that vℓ’s can only take coordinate vectors, meaning

V is a permutation matrix Π , and we have

M
♮
2
= ΠM⋆, Ξ̃

♮
= Ξ⋆Π

⊤
.

Q.E.D.

Proof of Theorem 2

Define a vector f̃ ∈ R
k for a specific X with the m-th

element equal to

f̃m = (−1)ℓ+m det Xℓm,

then the co-factor expansion tells us

det X = x⊤ℓ f̃ ,

where x⊤
ℓ

is the ℓ-th row of X . Therefore, at a particular

point X , and we look at problem (10) at the ℓ-th row of X ,

the subproblem is

maximize
z

( f̃⊤z)2

subject to z⊤Ỹ ≥ 0, z⊤Ỹ1 = 1.

The objective is a convex quadratic, so if we take a linear

approximation at xℓ it defines a global lowerbound to the

objective

(x⊤ℓ f̃ ) f̃
⊤
z = (det X) f̃⊤z,

with equality holds when z = xℓ . This is where the linear

programming sub-problem (12) comes from.

Cyclically solving (12) with respect to each row of X falls

into the framework of BSUM, proposed by Razaviyayn

et al. (2013). Specifically, we have that the constraint set

decouples over the rows of X , and the objective is a tight

lowerbound (det X)2 when restricted to the ℓ-th row of

X . Because (det X) is a smooth function, it automatically

satisfies that the directional derivative of f⊤z is equal to

that of (det X)2 at everywhere. Furthermore, it is easy to

see that the constraint set is a compact set. According to

Razaviyayn et al. (2013), the proposed iterative algorithm is

guaranteed to converge to a stationary point as long as each

of the LP sub-problems (12) has a unique solution.

Regarding the uniqueness of argmax(12), we note that

for any LP, the constraint set defines a polyhedron, and a

solution always exists on a vertex. A solution is not unique if

the objective direction f happens to be normal to one of the

edges of the constraint polyhedron. This means there exists

a set of k − 1 columns in Ỹ such that f lies in their range.

As long as columns of Ỹ appears somewhat incoherent, this

will happen with a very small probability. Q.E.D.

Proof of Theorem 3

Suppose Ỹ = Ξ̃M2 where M2 satisfies the separability

assumption. This means all the coordinate vectors e1, ..., ek
exists in its columns. This means columns of Ξ̃ exists in

columns of Ỹ , which corresponds to the coordinate vectors

in the columns of M2. Then z⊤Ξ̃ ≥ 0 implies z⊤Ỹ ≥ 0,

since M2 ≥ 0, which means z⊤Ỹ ≥ 0 consists of a lot of

redundant constraints, and (12) is equivalent to

maximize
z

f⊤z

subject to z⊤Ξ̃ ≥ 0, z⊤b = 1.

Let us denote the dual variable with respect to the inequality

constraint as µ, and the equality constraint as λ, then the

KKT condition implies

λb − f = Ξ̃ µ.

Because we assume Ξ̃ is non-singular, it is equivalent to

λΞ̃
−1
b − Ξ̃

−1
f = µ ≥ 0.

Therefore, λ should be chosen to make λΞ̃
−1
b − Ξ̃

−1
f ≥ 0,

and for a scalar λ, the resulting µ will have only one zero

almost surely. According to complementary slackness, then

z⊤Ξ̃ will have only one nonzero entry. This implies that the

solution to (12) should be a row of Ξ̃
−1

, which is exactly

what we want.

Now after running one iteration of CD-MVSI, we would

obtain k rows of Ξ̃ . If all k rows of them are present, then we

have successfully recovered the ground truth. The only non-

ideal case is if one row of Ξ̃ appear multiple times. However,
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Figure 6. Algorithm performance on synthetic data. Note that the performance of CPD heavily relies on the knowledge of the underlying

Dirichlet parameter α, which may not be practical.

if that is the case, the resulting det X = 0. Suppose we

initialize with a non-singular matrix, say X = Diag(b)−1,

which is feasible, CD-MVSI is guaranteed to monotonically

increase the objective value. Therefore det X is impossible

to be equal to zero, and we indeed manage to recover all k

rows of Ξ̃
−1

. Q.E.D.

Additional synthetic experiments

Here we validate the correctness of various algorithms,

given exact statistics ideal for each method. We start by

generating k-dimensional membership coefficients from

a Dirichlet distribution with parameter (1/k)1. Since the

Dirichlet parameter for all the components are less than one,

it tends to generate points that lie on the boundary of ∆.

However, we note that none of the components will be ex-

actly equal to one, which means the sufficiently scattered

condition will not be satisfied exactly. Nevertheless, since

the points are well spread out, the recovery result is very

close to optimal. On the other hand, the separability / pure-

node will be grossly violated as k goes larger, and we will

see that pure-node-based methods are very vulnerable to

such assumption violation.

We fix the number of nodes to be 1000. For GeoNMF

and SPOC, the entire underlying matrix M⊤BM is given.

For the tensor method, the nodes are divided into three

groups of size 300, 300, and 400, and the corresponding

300 × 300 × 400 moment tensor is given. For the tensor

method we consider two scenarios: one with the correct

Dirichlet parameter (1/k)1 and one with an incorrect Dirich-

let parameter 1. The goal is to test how sensitive is the

method to the accurate knowledge of the prior distribution.

Figure 6 shows the performance of different algorithms

under various scenarios. We show the normalized L1 norm

of the estimation error ‖M̂ − M ♮ ‖1/n. On the left panel,

we fix B = I , and increase k from 5 to 50. As we can see,

CD-MVSI gives acceptable recovery result, even though

the sufficiently scattered condition is not exactly satisfied.

Both GeoNMF and SPOC give much worse performance

compared to CD-MVSI. Tensor method with the correct

Dirichlet parameter gives nearly perfect recovery, thanks

to its nice identifiability guarantees. However, a correct

Dirichlet is absolutely necessary, as an incorrect one gives

the worst performance. On the right panel, we fix k = 10

and let B take nonzero off-diagonal values, and similar

patterns present. We remark that it is relatively easy to

approximately satisfy the sufficiently scattered condition,

whereas knowing exactly the Dirichlet parameter of the prior

is somewhat impractical.


