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Supplementary Material
A. Proof of Lemma 1
Proof. Let 1i∈S = 1 if i ∈ S and 1i∈S = 0 otherwise. Likewise, let 1i,j∈S = 1 if i, j ∈ S and 1i,j∈S = 0 otherwise. Note
that E [1i∈S ] = pi and E [1i,j∈S ] = pij . Next, let us compute the mean of X :=

∑
i∈S

ζi
npi

:

E [X] = E

[∑
i∈S

ζi
npi

]
= E

[
n∑
i=1

ζi
npi

1i∈S

]
=

n∑
i=1

ζi
npi

E [1i∈S ] =
1

n

n∑
i=1

ζi = ζ̄. (11)

Let A = [a1, . . . , an] ∈ Rd×n, where ai = ζi
pi

, and let e be the vector of all ones in Rn. We now write the variance of X in
a form which will be convenient to establish a bound:

E
[
‖X − E [X]‖2

]
= E

[
‖X‖2

]
− ‖E [X] ‖2

= E

∥∥∥∥∥∑
i∈S

ζi
npi

∥∥∥∥∥
2
− ‖ζ̄‖2

= E

∑
i,j

ζ>i
npi

ζj
npj

1i,j∈S

− ‖ζ̄‖2
=

∑
i,j

pij
ζ>i
npi

ζj
npj
−
∑
i,j

ζ>i
n

ζj
n

=
1

n2

∑
i,j

(pij − pipj)a>i aj

=
1

n2
e>
((
P− pp>

)
◦A>A

)
e. (12)

Since by assumption we have P− pp> � Diag (p ◦ v), we can further bound

e>
((
P− pp>

)
◦A>A

)
e ≤ e>

(
Diag (p ◦ v) ◦A>A

)
e =

n∑
i=1

pivi‖ai‖2.

To obtain (5), it remains to combine this with (12).

Inequality (6) follows by comparing the diagonal elements of the two matrices in (4). Let us now verify the formulas for v.

• Since P− pp> is positive semidefinite (Richtárik and Takáč, 2016b), we can bound P− pp> � nDiag
(
P− pp>

)
=

Diag (p ◦ v), where vi = n(1− pi).

• It was shown by Qu and Richtárik (2016, Theorem 4.1) that P � dDiag (p) provided that |S| ≤ d with probability 1.
Hence, P− pp> � P � dDiag (p), which means that vi = d for all i.

• Consider now the independent sampling. Clearly,

P− pp> =


p1(1− p1) 0 . . . 0

0 p2(1− p2) . . . 0
...

...
. . .

...
0 0 . . . pn(1− pn)

 = Diag (p1v1, . . . , pnvn) ,

where vi = 1− pi.
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• Consider the b–nice sampling (standard uniform minibatch sampling). Direct computation shows that the probability
matrix is given by

P =


b
n

b(b−1)
n(n−1) . . . b(b−1)

n(n−1)
b(b−1)
n(n−1)

b
n . . . b(b−1)

n(n−1)

...
...

. . .
...

b(b−1)
n(n−1)

b(b−1)
n(n−1) . . . b

n

 ,
as claimed in (3). Therefore,

P− pp> =


b
n −

b2

n2

b(b−1)
n(n−1) . . . b(b−1)

n(n−1)
b(b−1)
n(n−1)

b
n . . . b(b−1)

n(n−1)

...
...

. . .
...

b(b−1)
n(n−1)

b(b−1)
n(n−1) . . . b

n

 ,

• Letting t = (a−1)k
a(k−1) and s = 1− t = k−a

a(k−1) the probability matrix of the approximate independent sampling satisfies

P− pp> =



p1(1− p1) (t− 1)p1p2 . . . (t− 1)p1pk 0 . . . 0
(t− 1)p2p1 p2(1− p2) . . . (t− 1)p2pk 0 . . . 0

...
...

. . .
... 0 . . . 0

(t− 1)pnp1 (t− 1)pnp2 . . . pk(1− pk) 0 . . . 0
0 0 . . . 0 0 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . 0


= Diag (p1(1− p1(1− s)), . . . , pk(1− pk(1− s)), 0, . . . , 0)− spkp>k
� Diag (p1(1− p1(1− s)), . . . , pn(1− pn(1− s)), 0, . . . , 0) ,

where pk = (p1, . . . , pk, 0, . . . , 0)>. Therefore, vi = 1− pi(1− s) for i ≤ k and vi = 0 otherwise works.

• Finally, as remarked in the introduction, the standard uniform minibatch sampling (b–nice sampling) arises as a special
case of the approximate independent sampling for the choice pi = b/n. Thus k = n, a = b and hence s = n−b

b(n−1) .
Based on the previous result, vi = 1− b

n (1− n−b
b(n−1) ) = n−b

n−1 works.

B. Proof of Theorem 2
We first establish a lemma we will need in order to prove Theorem 2.
Lemma 6. Let 0 < L1 ≤ L2 ≤ · · · ≤ Ln be positive real numbers, 0 < b ≤ n, and consider the optimization problem

minimizep∈Rn Ω(p) :=

n∑
i=1

L2
i

pi

subject to
n∑
i=1

pi = b, (13)

0 ≤ pi ≤ 1, i = 1, 2, . . . , n.

Let be the largest integer for which 0 < b+ k − n ≤
∑k
i=1 Li
Lk

(note that the inequality holds for k = n− b+ 1). Then (13)
has the following solution:

pi =

{
(b+ k − n) Li∑k

j=1 Lj
, if i ≤ k,

1, if i > k.
(14)
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Proof. The Lagrangian of the problem is

L(p, y, λ1, .., λn, u1, ..., un) =

n∑
i=1

L2
i

pi
−

n∑
i=1

λipi −
n∑
i=1

ui(1− pi) + y

(
n∑
i=1

pi − b

)
.

Th constraints are linear and hence KKT conditions hold. The result can be deduced from the KKT conditions.

We can now proceed with the proof. Since n, b and L̄ are constants, the problem is equivalent to

minimizeS ψ(S) :=

n∑
i=1

viL
2
i

pi

subject to vi satisfies (4).

In view of (6),

ψ(S)
(6)
≥

n∑
i=1

(1− pi)L2
i

pi
=

n∑
i=1

L2
i

pi
−

n∑
i=1

L2
i = Ω(p)−

n∑
i=1

L2
i ,

where function Ω(p) was defined in Lemma 6. Since b = E [|S|] =
∑
i pi, and 0 ≤ pi ≤ 1 for all i, then in view of

Lemma 6 we have

Ψ(S) ≥ Ω(p∗)−
n∑
i=1

L2
i ,

where p∗ is defined by (8).

On the other hand, from Lemma 1 we know that the independent sampling S = S∗ with probability vector p∗ defined in (8)
satisfies inequality (4) with vi = 1− pi, and hence

Ψ(S∗) = Ω(p∗)−
n∑
i=1

L2
i .

Hence, it is optimal.

C. Improvements
Let us compute α for uniform sampling.

α
(7)
=

(
b

n2

n∑
i=1

viL
2
i

pi

)
/L̄2

Lemma 1
=

(
(n− b)

(n− 1)n

n∑
i=1

L2
i

)
/L̄2

= n
(n− b)
(n− 1)

n∑
i=1

L2
i /

(
n∑
i=1

Li

)2

It is easy to see that Lmax ≥ L̄. To prove that we have improved current best known rates, we need to show that L̄α ≤ Lmax

and L̄2α ≤ (n−b)
(n−1)L

2
max

Proof.

L̄α = n
(n− b)
(n− 1)

∑n
i=1 L

2
i

(
∑n
i=1 Li)

2 L̄ ≤
∑n
i=1 L

2
i

(
∑n
i=1 Li)

=

∑n
i=1 LmaxLi

(
∑n
i=1 Li)

= Lmax,

L̄2α = n
(n− b)
(n− 1)

∑n
i=1 L

2
i

(
∑n
i=1 Li)

2 L̄
2 =

(n− b)
(n− 1)

1

n

n∑
i=1

L2
i ≤

(n− b)
(n− 1)

1

n

n∑
i=1

L2
max =

(n− b)
(n− 1)

L2
max,
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Let’s take b = 1. If Ln � Li,∀i ∈ [n], then Lmax ≈ nL̄ and αS∗ ≤ 1 and αSu ≈ n, which essentially means, that we can
have in theory speedup by factor of n.

D. Stochastic gradients evaluation complexity
D.1. SVRG

For SVRG, each outer loop costs n+mb evaluations of stochastic gradient. If we want to obtain ε-solution, following must
hold (Theorem 3)

αL̄n(2/3)(f(x0)− f(x∗))

bMmν2
≤ ε

Combining these two equations with definition from Theorem 3, we get total complexity in terms of stochastic gradients
evaluation

µ2L̄n
(2/3)(f(x0)− f(x∗))

εν2
(1 +

α

3µ2
)

D.2. SAGA

For SAGA, each loop costs d+ b evaluations of stochastic gradient. If we want to obtain ε-solution, following must hold
(Theorem 4)

αL̄n(2/3)(f(x0)− f(x∗))

bTν2
≤ ε

Combining these two equations with definition from Theorem 4, we get total complexity in terms of stochastic gradients
evaluation

n+
L̄n(2/3)(f(x0)− f(x∗))

εν3
(1 + α),

because of evaluation of full gradient on the start.

D.3. SARAH

For SARAH with one outer loot, each inner loop costs 2b evaluations of stochastic gradient. If we want to obtain ε-solution,
following must hold (Theorem 5)

2L̄(f(x0)− f(x∗))
(√

1 + 4mα
b

)
m

≤ ε

Solving this equation for m, we get

m ≤ 16αL̄2(f(x0)− f(x∗))2 +
√

162α2L̄4(f(x0)− f(x∗))4 + 16ε2L̄2(f(x0)− f(x∗))2b2

2bε2

Combining thise equation with complexity off each inner loop we obtain total complexity in terms of stochastic gradients
evaluation

16αL̄2(f(x0)− f(x∗))2 +
√

162α2L̄4(f(x0)− f(x∗))4 + 16ε2L̄2(f(x0)− f(x∗))2b2

2ε2
.
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E. Proofs for SVRG
Lemma 7. For ct, ct+1, β > 0, suppose we have

ct = ct+1(1 + ηβ + 2η2K) +Kη2L̄.

Let η, β and ct+1 be chosen such that Γt > 0 (in Theorem (17)). The iterate xs+1
t in Algorithm 5 satisfy the bound:

E
[
‖∇f(xs+1

t )‖2
]
≤
Rs+1
t −Rs+1

t+1

Γt
,

where Rs+1
t := E

[
f(xs+1

t ) + ct‖xs+1
t − x̃s‖2

]
for 0 ≤ s ≤ S − 1.

Proof. Since fi is Li-smooth we have

E
[
fi(x

s+1
t+1 )

]
≤ E

[
fi(x

s+1
t ) + 〈∇fi(xs+1

t ), xs+1
t+1 − x

s+1
t 〉+ Li

2 ‖x
s+1
t+1 − x

s+1
t ‖2

]
.

Summing through all i and dividing by n we obtain

E
[
f(xs+1

t+1 )
]
≤ E

[
f(xs+1

t ) + 〈∇f(xs+1
t ), xs+1

t+1 − x
s+1
t 〉+ L̄

2 ‖x
s+1
t+1 − x

s+1
t ‖2

]
.

Using the SVRG update in Algorithm 5 and its unbiasedness (E [it] v
s+1
t = ∇f(xs+1

t )), the right hand side above is further
upper bounded by

E
[
f(xs+1

t )− η‖∇f(xs+1
t )‖2 + L̄η2

2 ‖v
s+1
t ‖2

]
. (15)

Consider now the Lyapunov function

Rs+1
t := E

[
f(xs+1

t ) + ct‖xs+1
t − x̃s‖2

]
.

For bounding it we will require the following:

E
[
‖xs+1

t+1 − x̃s‖2
]

= E
[
‖xs+1

t+1 − x
s+1
t + xs+1

t − x̃s‖2
]

= E
[
‖xs+1

t+1 − x
s+1
t ‖2 + ‖xs+1

t − x̃s‖2
]

+2〈xs+1
t+1 − x

s+1
t , xs+1

t − x̃s〉]
= E

[
η2‖vs+1

t ‖2 + ‖xs+1
t − x̃s‖2

]
−2ηE

[
〈∇f(xs+1

t ), xs+1
t − x̃s〉

]
(54),(55)
≤ E

[
η2‖vs+1

t ‖2 + ‖xs+1
t − x̃s‖2

]
+2ηE

[
1

2β ‖∇f(xs+1
t )‖2 + 1

2β‖x
s+1
t − x̃s‖2

]
. (16)

The second equality follows from the unbiasedness of the update of SVRG. Plugging Equation (15) and Equation (16) into
Rs+1
t+1 , we obtain the following bound:

Rs+1
t+1 ≤ E

[
f(xs+1

t )− η‖∇f(xs+1
t )‖2 + L̄η2

2 ‖v
s+1
t ‖2

]
+E

[
ct+1η

2‖vs+1
t ‖2 + ct+1‖xs+1

t − x̃s‖2
]

+2ct+1ηE
[

1
2β ‖∇f(xs+1

t )‖2 + 1
2β‖x

s+1
t − x̃s‖2

]
≤ E

[
f(xs+1

t )−
(
η − ct+1η

β

)
‖∇f(xs+1

t )‖2
]

+
(
L̄η2

2 + ct+1η
2
)

E
[
‖vs+1
t ‖2

]
+ (ct+1 + ct+1ηβ) E

[
‖xs+1

t − x̃s‖2
]
. (17)
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To further bound this quantity, we use Lemma 10 to bound E
[
‖vs+1
t ‖2

]
, so that upon substituting it in Equation (17), we

see that

Rs+1
t+1

(29)
≤ E

[
f(xs+1

t )
]
−
(
η − ct+1η

β − η2L̄− 2ct+1η
2
)

E
[
‖∇f(xs+1

t )‖2
]

+
[
ct+1

(
1 + ηβ + 2η2K

)
+ η2KL̄

]
E
[
‖xs+1

t − x̃s‖2
]

≤ Rs+1
t −

(
η − ct+1η

β − η2L̄− 2ct+1η
2
)
E
[
‖∇f(xs+1

t )‖2
]
. (18)

The second inequality follows from the definition of ct and Rs+1
t , thus concluding the proof.

PROOF OF LEMMA 7 AND THEOREM 17

Proof. Using Lemma 7 and telescoping the sum, we obtain

m−1∑
t=0

E
[
‖∇f(xs+1

t )‖2
]
≤ Rs+1

0 −Rs+1
m

γn
. (19)

This inequality in turn implies that

m−1∑
t=0

E
[
‖∇f(xs+1

t )‖2
]
≤

E
[
f(x̃s)− f(x̃s+1)

]
γn

, (20)

where we used that Rs+1
m = E

[
f(xs+1

m )
]

= E
[
f(x̃s+1)

]
(since cm = 0), and that Rs+1

0 = E [f(x̃s)] (since xs+1
0 = x̃s).

Now sum over all epochs to obtain

1

T

S−1∑
s=0

m−1∑
t=0

E
[
‖∇f(xs+1

t )‖2
]
≤ f(x0)− f(x∗)

Tγn
. (21)

The above inequality used the fact that x̃0 = x0. Using the above inequality and the definition of xa in Algorithm 5, we
obtain the desired result.

PROOF OF THEOREM 18

Proof. For our analysis, we will require an upper bound on c0. Let m = bKn/(3L̄2cµ0), η = µ0L̄/(Kn
2/3). We observe

that c0 =
µ2

0L̄
3

Kn4/3

(1+θ)m−1
θ where θ = 2Kη2 + ηβ. This is obtained using the relation ct = ct+1(1 + ηβ + 2Kη2) + η2KL̄

and the fact that cm = 0. Using the specified values of β and η we have

θ = 2Kη2 + ηβ =
2µ2

0L̄
2

Kn4/3
+
µ0L̄

2

Kn
≤ 3µ0L̄

2

Kn
. (22)

The above inequality follows since µ0 ≤ 1 and n ≥ 1. Using the above bound on θ, we get

c0 =
µ2

0L̄
3

n2K

(1 + θ)m − 1

θ
=
µ0L̄((1 + θ)m − 1)

2µ0 + n
1
3

≤
µ0L̄((1 + 3µ0L̄

2

nK )bKn/3µ0L̄
2c − 1)

2µ0 + n
1
3

≤ n−
1
3 (µ0L̄(e− 1)), (23)

wherein the second inequality follows upon noting that (1 + 1
l )
l is increasing for l > 0 and liml→∞(1 + 1

l )
l = e (here e is

the Euler’s number). Now we can lower bound γn, as

γn = mint
(
η − ct+1η

β − η2L̄− 2ct+1η
2
)

(24)

≥
(
η − c0η

β − η
2L̄− 2c0η

2
)
≥ νL̄

Kn
2
3

,
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where ν is a constant independent of n. The first inequality holds since ct decreases with t. The second inequality holds since
(a) c0/β is upper bounded by a constant independent of n as c0/β ≤ µ0(e−1) (follows from Equation (23)), (b) η2L̄ ≤ µ0η
and (c) 2c0η

2 ≤ 2µ2
0(e − 1)η (follows from Equation (23)). By choosing µ0 (independent of n) appropriately, one can

ensure that γn ≥ νL̄/(Kn
2
3 ) for some universal constant ν. For example, choosing µ0 = 1/4, we have γn ≥ νL̄/(Kn

2
3 )

with ν = 1/40. Substituting the above lower bound in Equation (21), we obtain the desired result.

F. Minibatch SVRG
PROOF OF THEOREM 3

The proofs essentially follow along the lines of Lemma 7, Theorem 17 and Theorem 18 with the added complexity of
mini-batch. We first prove few intermediate results before proceeding to the proof of Theorem 3.
Lemma 8. Suppose we have

R
s+1

t := E
[
f(xs+1

t ) + ct‖xs+1
t − x̃s‖2

]
, (25)

ct = ct+1(1 + ηβ + 2Kη2

b ) + Kη2L̄
b ,

for 0 ≤ s ≤ S − 1 and 0 ≤ t ≤ m− 1 and the parameters η, β and ct+1 are chosen such that(
η − ct+1η

β
− η2L̄− 2ct+1η

2

)
≥ 0.

Then the iterates xs+1
t in the mini-batch version of Algorithm 5 i.e., Algorithm 1 with expected mini-batch size b satisfy the

bound:

E
[
‖∇f(xs+1

t )‖2
]
≤

R
s+1

t −Rs+1

t+1(
η − ct+1η

β − η2L̄− 2ct+1η2
) ,

Proof. Using essentially the same argument as the proof of Lemma 7 until Equation (17), we have

R
s+1

t+1 ≤ E
[
(xs+1
t )

]
−
(
η − ct+1η

β

)
‖∇f(xs+1

t )‖2 +
(
L̄η2

2 + ct+1η
2
)

E
[
‖vs+1
t ‖2

]
+ (ct+1 + ct+1ηβ) E

[
‖xs+1

t − x̃s‖2
]
. (26)

We use Lemma 11 in order to bound E
[
‖vs+1
t ‖2

]
in the above inequality. Substituting it in Equation (26), we see that

R
s+1

t+1

(30)
≤ E

[
f(xs+1

t )
]
−
(
η − ct+1η

β − η2L̄− 2ct+1η
2
)

E
[
‖∇f(xs+1

t )‖2
]

+
[
ct+1

(
1 + ηβ + 2Kη2

b

)
+ Kη2L̄

b

]
E
[
‖xs+1

t − x̃s‖2
]

(25)
≤ R

s+1

t −
(
η − ct+1η

β − η2L̄− 2ct+1η
2
)
E
[
‖∇f(xs+1

t )‖2
]
. (27)

The second inequality follows from the definition of ct and R
s+1

t , thus concluding the proof.

The following theorem provides convergence rate of mini-batchSVRG.
Theorem 9. Let γn denote the following quantity:

γn := min
0≤t≤m−1

(
η − ct+1η

β − η2L̄− 2ct+1η
2
)
.

Suppose cm = 0, ct = ct+1(1 + ηβ + 2Kη2

b ) + Kη2L̄
b for t ∈ {0, . . . ,m − 1} and γn > 0. Then for the output xa of

mini-batch version of Algorithm 5 with mini-batch size b, we have

E
[
‖∇f(xa)‖2

]
≤ f(x0)− f(x∗)

Tγn
,

where x∗ is an optimal solution to (1).
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Proof. Using Lemma 8 and telescoping the sum, we obtain

m−1∑
t=0

E
[
‖∇f(xs+1

t )‖2
]
≤ R

s+1

0 −Rs+1

m

γn
.

This inequality in turn implies that

m−1∑
t=0

E
[
‖∇f(xs+1

t )‖2
]
≤

E
[
f(x̃s)− f(x̃s+1)

]
γn

,

where we used that R
s+1

m = E
[
f(xs+1

m )
]

= E
[
f(x̃s+1)

]
(since cm = 0), and that R

s+1

0 = E [f(x̃s)]. Now sum over all
epochs and using the fact that x̃0 = x0, we get the desired result.

We now present the proof of Theorem 3 using the above results.

Proof of Theorem 3. We first observe that using the specified values of β = L̄/n1/3, η = µ2bL̄/(Kn
2/3) and η =

bnK/(bL̄2µ2)cwe obtain

θ :=
2Kη2

b
+ ηβ =

2µ2
2bL̄

2

Kn4/3
+
L̄2µ2b

Kn
≤ 3µ2L̄

2b

Kn
.

The above inequality follows since µ2 ≤ 1 and n ≥ 1. For our analysis, we will require the following bound on c0:

c0 =
µ2

2b
2L̄3

Kbn4/3

(1 + θ)m − 1

θ
=
µ2bL̄((1 + θ)m − 1)

2bµ2 + bn1/3

≤ n−1/3(µ2L̄(e− 1)), (28)

wherein the first equality holds due to the relation ct = ct+1(1 + ηβ + 2Kη2

b ) + Kη2L̄
b , and the inequality follows upon

again noting that (1 + 1/l)l is increasing for l > 0 and liml→∞(1 + 1
l )
l = e. Now we can lower bound γn, as

γn = min
t

(
η − ct+1η

β − η2L̄− 2ct+1η
2
)

≥
(
η − c0η

β − η
2L̄− 2c0η

2
)
≥ bL̄ν2

Kn2/3
,

where ν2 is a constant independent of n. The first inequality holds since ct decreases with t. The second one holds since
(a) c0/β is upper bounded by a constant independent of n as c0/β ≤ µ2(e − 1) (due to Equation(28)), (b) η2L̄ ≤ µ2η
(as b ≤ K/L̄2n2/3) and (c) 2c0η

2 ≤ 2µ2
2(e− 1)η (again due to Equation (28) and the fact b ≤ K/L̄2n2/3). By choosing an

appropriately small constant µ2 (independent of n), one can ensure that γn ≥ L̄bν2/(Kn
2/3) for some universal constant

ν2. For example, choosing µ2 = 1/4, we have γn ≥ L̄bν2/(Kn
2/3) with ν2 = 1/40. Substituting the above lower bound

in Theorem 9, we obtain the desired result.

LEMMAS

Lemma 10. For the intermediate iterates vs+1
t computed by Algorithm 5, we have the following:

E
[
‖vs+1
t ‖2

]
≤ 2E

[
‖∇f(xs+1

t )‖2
]

+ 2KE
[
‖xs+1

t − x̃s‖2
]
. (29)

Proof. The proof simply follows from the proof of Lemma 11 with St = {it}.

We now present a result to bound the variance of mini-batch SVRG.

Lemma 11. Let vs+1
t be computed by the mini-batch version of Algorithm 5 i.e., Algorithm 1 with sampling S. Then,

E
[
‖vs+1
t ‖2

]
≤ 2E

[
‖∇f(xs+1

t )‖2
]

+ 2K
b E

[
‖xs+1

t − x̃s‖2
]
. (30)
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Proof. For the simplification, we use the following notation:

ζs+1
t =

∑
it∈St

1

npit

(
∇fit(xs+1

t )−∇fit(x̃s)
)
.

We use the definition of vs+1
t to get

E
[
‖vs+1
t ‖2

]
= E

[
‖ζs+1
t +∇f(x̃s)‖2

]
= E

[
‖ζs+1
t +∇f(x̃s)−∇f(xs+1

t ) +∇f(xs+1
t )‖2

]
≤ 2E

[
‖∇f(xs+1

t )‖2
]

+ 2E
[
‖ζs+1
t − E

[
ζs+1
t

]
‖2
]

= 2E
[
‖∇f(xs+1

t )‖2
]

+2E

∥∥∥∥∥∑
it∈St

(
1

npit

(
∇fit(xs+1

t )−∇fit(x̃s)
)
− E

[
ζs+1
t

])∥∥∥∥∥
2
 .

The first inequality follows from fact that ‖x+ y‖2 ≤ 2‖x‖2 + 2‖y‖2 and the fact that E
[
ζs+1
t

]
= ∇f(xs+1

t )−∇f(x̃s).
From the above inequality, we get

E
[
‖vs+1
t ‖2

] (1)
≤ 2E

[
‖∇f(xs+1

t )‖2
]

+ 2

n∑
i=1

vipi
n2p2

i

∥∥(∇fi(xs+1
t )−∇fi(x̃s)

)∥∥2

(52),(7)
≤ 2E

[
‖∇f(xs+1

t )‖2
]

+
2K

b
E
[
‖xs+1

t − x̃s‖2
]
.
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G. Proofs for SAGA
Lemma 12. For ct, ct+1, β > 0, suppose we have

ct = ct+1(1− d
n + ηβ + 2

Kη2

b
) +

Kη2L̄

b
.

Also let η, β and ct+1 be chosen such that Γt > 0. Then, the iterates {xt} of Algorithm 6 satisfy the bound

E
[
‖∇f(xt)‖2

]
≤ Rt −Rt+1

Γt
,

where Rt := E [f(xt)] + ct maxi∈[n] E
[
‖xt − αti‖2

]
.

Proof. Since f is L̄-smooth we have

E
[
f(xt+1)

]
≤ E

[
f(xt) + 〈∇f(xt), xt+1 − xt〉+ L̄

2 ‖x
t+1 − xt‖2

]
.

We first note that the update in Algorithm 6 is unbiased i.e., E [vt] = ∇f(xt). By using this property of the update on the
right hand side of the inequality above, we get the following:

E
[
f(xt+1)

]
≤ E

[
f(xt)− η‖∇f(xt)‖2 + L̄η2

2 ‖v
t‖2
]
. (31)

Here we used the fact that xt+1 − xt = −ηvt (see Algorithm 2). Consider now the Lyapunov function

Rt := E
[
f(xt)

]
+ ct max

i∈[n]
E
[
‖xt − αti‖2

]
.

For bounding Rt+1 we need the following:

E
[
‖xt+1 − αt+1

i ‖
2
]

=
d

n
E
[
‖xt+1 − xt‖2

]
+
n− d
n

E
[
‖xt+1 − αti‖2

]︸ ︷︷ ︸
T1

, (32)

The above equality follows from the definition of αt+1
i and the definition of randomness of index jt in Algorithm 6 and

Algorithm 2. The term T1 in (32) can be bounded as follows

T1 = E
[
‖xt+1 − xt + xt − αti‖2

]
= E

[
‖xt+1 − xt‖2 + ‖xt − αti‖2

]
+ 2〈xt+1 − xt, xt − αti〉]

= E
[
‖xt+1 − xt‖2 + ‖xt − αti‖2

]
− 2ηE

[
〈∇f(xt), xt − αti〉

]
(54),(55)
≤ E

[
‖xt+1 − xt‖2 + ‖xt − αti‖2

]
+ 2ηE

[
1

2β ‖∇f(xt)‖2 + 1
2β‖x

t − αti‖2
]

≤ E
[
‖xt+1 − xt‖2

]
+ max
i∈[n]

E
[
‖xt − αti‖2

]
+ 2ηE

[
1

2β ‖∇f(xt)‖2
]

+ ηβmax
i∈[n]

E
[
‖xt − αti‖2

]
. (33)

The second equality again follows from the unbiasedness of the update of SAGA. The last inequality follows from a simple
application of Cauchy-Schwarz and Young’s inequality. Plugging (31) and (33) into Rt+1, we obtain the following bound:

Rt+1 ≤ E
[
f(xt)− η‖∇f(xt)‖2 + L̄η2

2 ‖v
t‖2
]

+E
[
ct+1‖xt+1 − xt‖2

]
+ ct+1

n− d
n

max
i∈[n]

E
[
‖xt − αti‖2

]
+

2(n− 1)ct+1η

n
E
[

1
2β ‖∇f(xt)‖2

]
+ 1

2βmax
i∈[n]

E
[
‖xt − αti‖2

]
≤ E

[
f(xt)−

(
η − ct+1η

β

)
‖∇f(xt)‖2

]
+
(
L̄η2

2 + ct+1η
2
)

E
[
‖vt‖2

]
+

(
n− d
n

ct+1 + ct+1ηβ

)
max
i∈[n]

E
[
‖xt − αti‖2

]
, (34)
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where we use that ‖xt − αtimax
‖2 ≤ maxi∈[n] ‖xt − αti‖2 To further bound the quantity in (34), we use Lemma 13 to bound

E
[
‖vt‖2

]
, so that upon substituting it into (34), we obtain

Rt+1
(36)
≤ E

[
f(xt)

]
−
(
η − ct+1η

β
− η2L̄− 2ct+1η

2

)
E
[
‖∇f(xt)‖2

]
+

[
ct+1

(
1− d

n
+ ηβ + 2

Kη2

b

)
+
Kη2L̄

b

]
max
i∈[n]

E
[
‖xt − αti‖2

]
≤ Rt −

(
η − ct+1η

β − η2L̄− 2ct+1η
2
)
E
[
‖∇f(xt)‖2

]
. (35)

The second inequality follows from the definition of ct i.e., ct = ct+1

(
1− d

n + ηβ + 2Kη
2

b

)
+ Kη2L̄

b and Rt specified in
the statement, thus concluding the proof.

The following lemma provides a bound on the variance of the update used in Minibatch SAGA algorithm. More specifically,
it bounds the quantity E

[
‖vt‖2

]
.

Lemma 13. Let vt be computed by Algorithm 2. Then,

E
[
‖vt‖2

]
≤ 2E

[
‖∇f(xt)‖2

]
+

2K

b
max
i∈[n]

E
[
‖xt − αti‖2

]
. (36)

Proof. For ease of exposition, we use the notation

ζti :=
1

npi

(
∇fi(xt)−∇fi(αti)

)
.

Using the convexity of ‖·‖2 and the definition of vt we get

E
[
‖vt‖2

]
= E

[
‖
∑
i∈St

ζti + 1
n

n∑
i=1

∇f(αti)‖2
]

= E

[
‖
∑
i∈St

ζti + 1
n

n∑
i=1

∇f(αti)−∇f(xt) +∇f(xt)‖2
]

≤ 2E
[
‖∇f(xt)‖2

]
+ 2E

[
‖
∑
i∈St

ζti − E
[
ζt
]
‖2
]

(1)
≤ 2E

[
‖∇f(xt)‖2

]
+ 2

n∑
i=1

E
[
pit‖ζtit‖

2
]
.

The first inequality follows from the fact that ‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2) and that E [ζt] = ∇f(xt)− 1
n

∑n
i=1∇f(αti).v

E
[
‖vt‖2

]
≤ 2E

[
‖∇f(xt)‖2

]
+ 2

n∑
i=1

E

[
pi
n2p2

i

‖∇fi(xt)−∇fi(αti)‖2
]

(52),(5)
≤ 2E

[
‖∇f(xt)‖2

]
+ 2

n∑
i=1

E

[
viL

2
i

n2pi
‖xt − αti‖2

]
(7)
≤ 2E

[
‖∇f(xt)‖2

]
+

2K

b
max
i∈[n]

E
[
‖xt − αti‖2

]
. (37)

The last inequality follows from Li-smoothness of fi and using properties of S sampling, thus concluding the proof.



Nonconvex Variance Reduced Optimization with Arbitrary Sampling

PROOF OF THEOREM 19

Proof. We apply telescoping sums to the result of Lemma 12 to obtain

γn

T−1∑
t=0

E
[
‖∇f(xt)‖2

]
≤
∑T−1
t=0 ΓtE

[
‖∇f(xt)‖2

]
≤ R0 −RT . (38)

The first inequality follows from the definition of γn. This inequality in turn implies the bound

T−1∑
t=0

E
[
‖∇f(xt)‖2

]
≤

E
[
f(x0)− f(xT )

]
γn

, (39)

where we used that RT = E
[
f(xT )

]
(since cT = 0), and that R0 = E

[
f(x0)

]
(since α0

i = x0 for i ∈ [n]). Using
inequality (39), the optimality of x∗, and the definition of xa in Algorithm 6, we obtain the desired result.

PROOF OF THEOREM 20 AND THEOREM 4

Proof. With the values of µ3 = 1/3, ν3 = 12 η = bL̄/(3Kn2/3), d = bL̄2/K and β = L̄/n1/3, let us first establish an
upper bound on ct. Let θ denote L̄2b

Kn − ηβ− 2Kη2/b. Observe that θ < 1 and θ ≥ 4L̄2b/(9Kn). This is due to the specific
values of η and β and lower bound of K. Also, we have ct = ct+1(1− θ) +Kη2L̄/b. Using this relationship, it is easy to
see that ct = Kη2L̄ 1−(1−θ)T−t

bθ . Therefore, we obtain the bound

ct = Kη2L̄
1− (1− θ)T−t

bθ
≤ Kη2L̄

bθ
≤ L̄

4n1/3
, (40)

for all 0 ≤ t ≤ T , where the inequality follows from the definition of η and the fact that θ ≥ 4L̄2b/(9Kn). Using the above
upper bound on ct we can conclude that

γn = min
t

(
η − ct+1η

β
− η2L̄− 2ct+1η

2

)
≥ L̄b

12Kn2/3
,

upon using the following inequalities: (i) ct+1η/β ≤ η/4, (ii) η2L ≤ η/3 and (iii) 2ct+1η
2 ≤ η/6, which hold due to

the upper bound on ct in (40) and if b ≤ K/L̄2n2/3. Substituting this bound on γn in Theorem 19, we obtain the desired
result.

Theorem 20 is special case with b = 1 and d = 1.

SARAH-non-convex

This lemmas are modification of lemmas appeared in (Nguyen et al., 2017b) for importance sampling with mini-batch.
Lemma 14. Consider SARAH, then we have

m∑
t=0

E
[
‖∇f(xt)‖2

]
≤ 2

η
[f(x0)− f(x∗)] +

m∑
t=0

E
[
‖∇f(xt)− vt‖2

]
−(1− L̄η)

m∑
t=0

E
[
‖vt‖2

]
, (41)

where x∗ is an optimal solution of (1).

Proof. By L̄-smoothness of f and xt+1 = xt − ηvt, we have

E
[
f(xt+1)

]
≤ E

[
f(xt)

]
− ηE

[
∇f(xt)>vt

]
+
L̄η2

2
E
[
‖vt‖2

]
= E

[
f(xt)

]
− η

2
E
[
‖∇f(xt)‖2

]
+
η

2
E
[
‖∇f(xt)− vt‖2

]
−
(
η

2
− L̄η2

2

)
E
[
‖vt‖2

]
,
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where the last equality follows from the fact r>q = 1
2

[
‖r‖2 + ‖q‖2 − ‖r − q‖2

]
, for any r, q ∈ Rd.

By summing over t = 0, . . . ,m, we have

E
[
f(xm+1)

]
≤ E

[
f(x0)

]
− η

2

m∑
t=0

E
[
‖∇f(xt)‖2

]
+
η

2

m∑
t=0

E
[
‖∇f(xt)− vt‖2

]
−
(
η

2
− Lη2

2

) m∑
t=0

E
[
‖vt‖2

]
,

which is equivalent to (η > 0):

m∑
t=0

E
[
‖∇f(xt)‖2

]
≤ 2

η
E
[
f(x0)− f(xm+1)

]
+

m∑
t=0

E
[
‖∇f(xt)− vt‖2

]
−(1− L̄η)

m∑
t=0

E
[
‖vt‖2

]
≤ 2

η
[f(x0)− f(x∗)] +

m∑
t=0

E
[
‖∇f(xt)− vt‖2

]
−(1− L̄η)

m∑
t=0

E
[
‖vt‖2

]
,

where the last inequality follows since x∗ is an optimal solution of (1). (Note that x0 is given.)

Lemma 15. Consider vt defined in SARAH, then for any t ≥ 1,

E
[
‖∇f(xt)− vt‖2

]
=

t∑
j=1

E
[
‖vj − vj−1‖2

]
−

t∑
j=1

E
[
‖∇f(xj)−∇f(xj−1)‖2

]
.

Proof. Let Fj = σ(x0, i1, i2, . . . , ij−1) be the σ-algebra generated by x0, i1, i2, . . . , ij−1; F0 = F1 = σ(x0). Note that
Fj also contains all the information of x0, . . . , xj as well as v0, . . . , vj−1. For j ≥ 1, we have

E
[
‖∇f(xj)− vj‖2|Fj ]

]
= E

[
‖[∇f(xj−1)− vj−1

]
+ [∇f(xj)−∇f(xj−1)]

−[vj − vj−1]‖2|Fj ]
= ‖∇f(xj−1)− vj−1‖2 + ‖∇f(xj)−∇f(xj−1)‖2

+E
[
‖vj − vj−1‖2|Fj

]
+2(∇f(xj−1)− vj−1)>(∇f(xj)−∇f(xj−1))

−2(∇f(xj−1)− vj−1)>E
[
vj − vj−1|Fj

]
−2(∇f(xj)−∇f(xj−1))>E

[
vj − vj−1|Fj

]
= ‖∇f(xj−1)− vj−1‖2 − ‖∇f(xj)−∇f(xj−1)‖2

+E
[
‖vj − vj−1‖2|Fj

]
,

where the last equality follows from

E
[
vj − vj−1|Fj

]
= E

∑
i∈Ij

1

npi
∇fi(xj)−∇fi(xj−1)]

∣∣∣Fj


=

n∑
i=1

pi
npi

[∇fi(xj)−∇fi(xj−1)] = ∇f(xj)−∇f(xj−1).
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By taking expectation for the above equation, we have

E
[
‖∇f(xj)− vj‖2

]
= E

[
‖∇f(xj−1)− vj−1‖2

]
− E

[
‖∇f(xj)−∇f(xj−1)‖2

]
+E

[
‖vj − vj−1‖2

]
.

Note that ‖∇f(x0)− v0‖2 = 0. By summing over j = 1, . . . , t (t ≥ 1), we have

E
[
‖∇f(xt)− vt‖2

]
=

t∑
j=1

E
[
‖vj − vj−1‖2

]
−

t∑
j=1

E
[
‖∇f(xj)−∇f(xj−1)‖2

]
.

With the above Lemmas, we can derive the following upper bound for E
[
‖∇f(xt)− vt‖2

]
.

Lemma 16. Consider vt defined in SARAH. Then for any t ≥ 1,

E
[
‖∇f(xt)− vt‖2

]
≤ 1

b
Kη2

t∑
j=1

E
[
‖vj−1‖2

]
.

Proof. Let

ξt =
1

npi

(
∇ft(xj)−∇ft(xj−1)

)
(42)

We have

E
[
‖vj − vj−1‖2|Fj

]
− ‖∇f(xj)−∇f(xj−1)‖2

= E

∥∥∥∑
i∈Ij

1

npi
[∇fi(xj)−∇fi(xj−1)]

∥∥∥2∣∣∣Fj
− ∥∥∥ 1

n

n∑
i=1

[∇fi(xj)−∇fi(xj−1)]
∥∥∥2

= E

∥∥∥∑
i∈Ij

ξi

∥∥∥2∣∣∣Fj
− ∥∥∥ 1

n

n∑
i=1

ξi

∥∥∥2

(1)
≤

n∑
i=1

vipi‖ξi‖2

=

n∑
i=1

vipi
p2
in

2
‖∇fi(xj)−∇fi(xj−1)‖2

(52),(7)
≤ 1

b
Kη2‖vj−1‖2.

Hence, by taking expectation, we have

E
[
‖vj − vj−1‖2

]
− E

[
‖∇f(xj)−∇f(xj−1)‖2

]
≤ 1

b
Kη2E

[
[‖vj−1‖2

]
.

By Lemma 15, for t ≥ 1,

E
[
‖∇f(xt)− vt‖2

]
=

t∑
j=1

E
[
‖vj − vj−1‖2

]
−

t∑
j=1

E
[
‖∇f(xj)−∇f(xj−1)‖2

]
≤ 1

b
Kη2

t∑
j=1

E
[
‖vj−1‖2

]
.

This completes the proof.
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PROOF OF THEOREM 5

Proof. By Lemma 16, we have

E
[
‖∇f(xt)− vt‖2

]
≤ 1

b
Kη2

t∑
j=1

E
[
‖vj−1‖2

]
.

Note that ‖∇f(x0)− v0‖2 = 0. Hence, by summing over t = 0, . . . ,m (m ≥ 1), we have

m∑
t=0

E
[
‖vt −∇f(xt)‖2

]
≤ 1

b
Kη2

[
mE

[
‖v0‖2

]
+(m− 1)E

[
‖v1‖2

]
+ · · ·+ E

[
‖vm−1‖2

] ]
. (43)

We have

m∑
t=0

E
[
‖∇f(xt)− vt‖2

]
− (1− L̄η)

m∑
t=0

E
[
‖vt‖2

]
≤ 1

b
Kη2

[
mE

[
‖v0‖2

]
+ (m− 1)E

[
‖v1‖2

]
+ · · ·+ E

[
‖vm−1‖2

] ]
−(1− L̄η)

[
E
[
‖v0‖2

]
+ E

[
‖v1‖2

]
+ · · ·+ E

[
‖vm‖2

] ]
≤
[1

b
Kη2m− (1− L̄η)

] m∑
t=1

E
[
‖vt−1‖2

] (10)
≤ 0 (44)

since

η =
2

L̄
(√

1 + 4Km
L̄2b

+ 1
)

is a root of equation

1

b
Kη2m− (1− L̄η) = 0.

Therefore, by Lemma 14, we have

m∑
t=0

E
[
‖∇f(xt)‖2

]
≤ 2

η
[f(x0)− f(x∗)] +

m∑
t=0

E
[
‖∇f(xt)− vt‖2

]
−(1− L̄η)

m∑
t=0

E
[
‖vt‖2

]
(44)
≤ 2

η [f(x0)− f(x∗)].

If xa is chosen uniformly at random from {xt}mt=0, then

E
[
‖∇f(xa)‖2

]
=

1

m+ 1

m∑
t=0

E

[
‖∇f(xt)‖2] ≤ 2

η(m+ 1)
[f(x0)− f(x∗)

]
.

This concludes the proof.
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H. One Sample Importance Sampling
H.1. SVRG

In this section, we introduce SVRG algorithm with batch size equal to 1.

Theorem 17. Let cm = 0, η = η > 0, β = β > 0, and ct = ct+1(1 + ηβ + 2Kη2) + Kη2L̄ such that Γt > 0 for
0 ≤ t ≤ m− 1. Define the quantity γn := mint Γt. Further, let T be a multiple of m. Then for the output xa of Algorithm 5
we have

E
[
‖∇f(xa)‖2

]
≤ f(x0)− f(x∗)

Tγn
, (45)

where x∗ is an optimal solution to (1) and Γt =
(
η − ct+1η

β − η2L̄− 2ct+1η
2
)
.

Theorem 18. Let η = L̄µ0/(Kn
2
3 ) (0 < µ0 < 1), β = L̄/n

1
3 , m = bKn/(3L̄2µ0)c and T is some multiple of m. Then

there exists universal constants µ0, ν > 0 such that we have the following: γn ≥ L̄ν
K n

2
3 in Theorem 17 and

E
[
‖∇f(xa)‖2

]
≤ Kn

2
3 [f(x0)−f(x∗)]

L̄Tν
, (46)

where x∗ is an optimal solution to the problem in (1) and xa is the output of Algorithm 5.

Comparing Theorem 17 to the previous result in (Reddi et al., 2016a), we can see improvement in constant, if we assume
different Li-smooth constants for different functions. If the all Li’s are the same then our result is the same as previous
result for uniform sampling, because then α = n−1

n−1 = 1.

H.2. SAGA

Here, we provide similar analysis as for SVRG with the same result. We provide more generalized improved form of
theorems which appeared in (Reddi et al., 2016b).

Theorem 19. Let cT = 0, β > 0, and ct = ct+1(1− 1
n + ηβ + 2Kη2) +Kη2L̄ be such that Γt > 0 for 0 ≤ t ≤ T − 1.

Define the quantity γn := min0≤t≤T−1 Γt. Then the output xa of Algorithm 6 satisfies the bound

E
[
‖∇f(xa)‖2

]
≤ f(x0)− f(x∗)

Tγn
,

where x∗ is an optimal solution to (1) and Γt =
(
η − ct+1η

β − η2L̄− 2ct+1η
2
)
.

Theorem 20. Let η = L̄/(3Kn2/3) and β = L̄/n1/3. Then, γn ≥ L̄
12Kn2/3 and we have the bound

E
[
‖∇f(xa)‖2

]
≤ 12Kn2/3[f(x0)−f(x∗)]

L̄T
,

where x∗ is an optimal solution to the problem in (1) and xa is the output of Algorithm 6.

We can see that exactly same conclusions apply here as for SVRG and results can be interpreted in the same way.

Algorithm 5 SVRG
(
x0, T,m, {pi}ni=0, η

)
1: Input: x̃0 = x0m = x0 ∈ Rd, epoch length m, step sizes {ηi > 0}m−1

i=0 , S = dT/me
2: for s = 0 to S − 1 do
3: xs+1

0 = xsm
4: gs+1 = 1

n

∑n
i=1∇fi(x̃

s)
5: for t = 0 to m− 1 do
6: With {pi}ni=0 randomly pick it from {1, . . . , n}
7: vs+1

t = 1
npit

(∇fit(xs+1
t )−∇fit(x̃s)) + gs+1

8: xs+1
t+1 = xs+1

t − ηvs+1
t

9: end for
10: x̃s+1 = xs+1

m

11: end for
12: Output: Iterate xa chosen uniformly random from {{xs+1

t }mt=0}Ss=0.
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Algorithm 6 SAGA
(
x0, T, {pi}ni=0, η

)
1: Input: x0 ∈ Rd, α0

i = x0 for i ∈ [n], number of iterations T , step size η > 0
2: g0 = 1

n

∑n
i=1∇fi(α

0
i )

3: for t = 0 to T − 1 do
4: Randomly pick it from [n] with {pi}ni=0

5: Randomly uniformly pick it from [n]
6: vt = 1

npit
(∇fit(xt)−∇fit(αt

it)) + gt

7: xt+1 = xt − ηvt
8: αt+1

jt
= xt and αt+1

j = αt
j for j 6= jt

9: gt+1 = gt − 1
n
(∇fjt(αt

jt)−∇fjt(α
t+1
jt

))
10: end for
11: Output: Iterate xa chosen uniformly random from {xt}Tt=0.

I. SARAH: Convex Case
I.1. Main result

Consider Algorithm 7, which is an arbitrary sampling variant of the SARAH method..

Algorithm 7 SARAH
1: Parameters: the learning rate η > 0 and the inner loop size m.
2: Initialize: x̃0

3: Iterate:
4: for s = 1, 2, . . . do
5: x0 = x̃s−1

6: v0 = 1
n

∑n
i=1∇fi(x0)

7: x1 = x0 − ηv0

8: Iterate:
9: for t = 1, . . . ,m− 1 do

10: Sample it at random from [n] with probability {pi}ni=1

11: vt = 1
npi

(∇fit(xt)−∇fit(xt−1)) + vt−1

12: xt+1 = xt − ηvt
13: end for
14: Set x̃s = xt with t chosen uniformly at random from {0, 1, . . . ,m}
15: end for

Note, that only 10-th and 11-th row are changed comparing to classic SARAH algorithm presented in (Nguyen et al., 2017a).
We do not sample uniformly anymore and also in the 11-th row of Algorithm 7, where we use factor 1

npi
in order to stay

unbiased in outer cycle.

Then using similar analysis used in (Nguyen et al., 2017a) and additional lemmas we can prove following theorems with pi
in Algorithm 7 to be Li∑n

j=1 Li

Theorem 21. Suppose that fi(x) are Li-smooth and convex, f(x) is µ strongly convex. Consider vt defined in SARAH
(Algorithm 7) with η < 2/L̄, where L̄ = 1

n

∑n
j=1 Li. Then, for any t ≥ 1,

E
[
‖vt‖2

]
≤

[
1−

(
2
ηL̄
− 1
)
µ2η2

]
E
[
‖vt−1‖2

]
≤

[
1−

(
2
ηL̄
− 1
)
µ2η2

]t
E
[
‖∇f(x0)‖2

]
.

By choosing η = O(1/L̄), we obtain the linear convergence of ‖vt‖2 in expectation with the rate (1− 1/κ2), where κ = L̄
µ

is condition number, This is improvement over previous result in (Nguyen et al., 2017a), because of L̄µ ≤
Lmax

µ . Below we
show that a better convergence rate could be obtained under a stronger convexity assumption for each single fi(x).
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Theorem 22. Suppose that fi(x) are Li-smooth and µ strongly convex. Consider vt defined by in SARAH (Algorithm 7)
with η ≤ 2/(µ+ L̄). Then the following bound holds, ∀ t ≥ 1,

E
[
‖vt‖2

]
≤

(
1− 2µL̄η

µ+L̄

)
E
[
‖vt−1‖2

]
≤

(
1− 2µL̄η

µ+L̄

)t
E
[
‖∇f(x0)‖2

]
.

By setting η = O(1/L̄), we derive the linear convergence with the rate of (1−1/κ), where κ̂ = L̄
µ which is an improvement

over the previous result of (Nguyen et al., 2017a), because if we take the optimal stepsize ν = 2
µ+L̄

than we can easily prove

that 2µL̄η
µ+L̄

is greater than 2µLmaxη
µ+Lmax

, with optimal step size, where Lmax = maxi{Li}.

I.2. Lemmas

We start with modification of lemmas in (Nguyen et al., 2017a), which we later use in the proofs of Theorem 22 and
Theorem 21. The first Lemma 23 bounds the sum of expected values of ‖∇f(xt)‖2. The second, Lemma 24, bounds
E
[
‖∇f(xt)− vt‖2

]
.

Lemma 23. Suppose that fi(x)’s are Li-smooth. Consider SARAH (Algorithm 7). Then, we have

m∑
t=0

E
[
‖∇f(xt)‖2

]
≤ 2

η
E
[
f(x0)− f(x∗)

]
+

m∑
t=0

E
[
‖∇f(xt)− vt‖2

]
− (1− L̄η)

m∑
t=0

E
[
‖vt‖2

]
. (47)

Lemma 24. Suppose that fi(x)’s are Li-smooth. Consider SARAH (Algorithm 7). Then for any t ≥ 1,

E
[
‖∇f(xt)− vt‖2

]
=

t∑
j=1

E
[
‖vj − vj−1‖2

]
−

t∑
j=1

E
[
‖∇f(xj)−∇f(xj−1)‖2

]
.

Lemma 25. Suppose that fi(x)’s are Li-smooth and convex. Consider SARAH (Algorithm 7) with η < 2/L̄. Then we have
that for any t ≥ 1,

E
[
‖∇f(xt)− vt‖2

]
≤ ηL̄

2− ηL̄

[
E
[
‖v0‖2

]
− E

[
‖vt‖2

] ]
≤ ηL̄

2− ηL̄
E
[
‖v0‖2

]
,

where L̄ = 1
n

∑n
i=1 Li.

PROOF OF LEMMA 23

Proof. By Lemma 26 and xt+1 = xt − ηvt, we have

E
[
f(xt+1)

]
≤ E

[
f(xt)

]
− ηE

[
∇f(xt)>vt

]
+
L̄η2

2
E
[
‖vt‖2

]
= E

[
f(xt)

]
− η

2
E
[
‖∇f(xt)‖2

]
+
η

2
E
[
‖∇f(xt)− vt‖2

]
−
(
η

2
− L̄η2

2

)
E
[
‖vt‖2

]
,

where the last equality follows from the fact a>b = 1
2

[
‖a‖2 + ‖b‖2 − ‖a− b‖2

]
.
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By summing over t = 0, . . . ,m, we have

E [f(xm+1)] ≤ E
[
f(x0)

]
− η

2

m∑
t=0

E
[
‖∇f(xt)‖2

]
+
η

2

m∑
t=0

E
[
‖∇f(xt)− vt‖2

]
−
(
η

2
− L̄η2

2

) m∑
t=0

E
[
‖vt‖2

]
,

which is equivalent to (η > 0):

m∑
t=0

E
[
‖∇f(xt)‖2

]
≤ 2

η
E
[
f(x0)− f(xm+1)

]
+

m∑
t=0

E
[
‖∇f(xt)− vt‖2

]
− (1− L̄η)

m∑
t=0

E
[
‖vt‖2

]
≤ 2

η
E
[
f(x0)− f(x∗)

]
+

m∑
t=0

E
[
‖∇f(xt)− vt‖2

]
−(1− L̄η)

m∑
t=0

E
[
‖vt‖2

]
,

where the last inequality follows since x∗ is a global minimizer of (1).

PROOF OF LEMMA 24

Proof. Let Fj be σ algebra that contains all the information of x0, . . . , xj as well as v0, . . . , vj−1. For j ≥ 1, we have

E
[
‖∇f(xj)− vj‖2|Fj

]
=

E
[
‖[∇f(xj−1)− vj−1] + [∇f(xj)−∇f(xj−1)]− [vj − vj−1]‖2|Fj

]
= ‖∇f(xj−1)− vj−1‖2 + ‖∇f(xj)−∇f(xj−1)‖2

+E
[
‖vj − vj−1‖2|Fj

]
+2(∇f(xj−1)− vj−1)>(∇f(xj)−∇f(xj−1))

−2(∇f(xj−1)− vj−1)>E
[
vj − vj−1|Fj

]
−2(∇f(xj)−∇f(xj−1))>E

[
vj − vj−1|Fj

]
= ‖∇f(xj−1)− vj−1‖2 − ‖∇f(xj)−∇f(xj−1)‖2

+E
[
‖vj − vj−1‖2|Fj

]
,

where the last equality follows from

E
[
vj − vj−1|Fj

]
= E

[
1

npij

(
∇fij (xj)−∇fij (xj−1)

)
|Fj
]

= ∇f(xj)−∇f(xj−1).

By taking expectation for the above equation, we have

E
[
‖∇f(xj)− vj‖2

]
= E

[
‖∇f(xj−1)− vj−1‖2

]
− E

[
‖∇f(xj)−∇f(xj−1)‖2

]
+E

[
‖vj − vj−1‖2

]
.

Note that ‖∇f(x0)− v0‖2 = 0. By summing over j = 1, . . . , t (t ≥ 1), we have

E
[
‖∇f(xt)− vt‖2

]
=
∑t
j=1 E

[
‖vj − vj−1‖2

]
−
∑t
j=1 E

[
‖∇f(xj)−∇f(xj−1)‖2

]
.
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PROOF OF LEMMA 25

Proof. For j ≥ 1, we have

E
[
‖vj‖2|Fj

]
= E

[
‖vj−1 − 1

npij
(∇fij (xj−1)−∇fij (xj))‖2|Fj

]
= ‖vj−1‖2 + E

[
1

n2p2
ij

‖∇fij (xj−1)−∇fij (xj)‖2|Fj

]
−E

[
2

ηnpij
(∇fij (xj−1)−∇fij (xj))>(xj−1 − xj)|Fj

]
(52)
≤ ‖vj−1‖2 + E

[
1

n2p2
ij

‖∇fij (xj−1)−∇fij (xj)‖2|Fj

]
−E

[
2

Lij ηnpij
‖∇fij (xj−1)−∇fij (xj)‖2|Fj

]
= ‖vj−1‖2 +

(
1− 2

ηL̄

)
E

[∥∥∥∥ 1

npij

(
∇fij (xj−1)−∇fij (xj)

)∥∥∥∥2

|Fj

]
= ‖vj−1‖2 +

(
1− 2

ηL̄

)
E
[
‖vj − vj−1‖2|Fj

]
,

The consequent equality follows from definition of pi’s and the last equality follows from definition of SARAH . Taking
expectation, we get

E
[
‖vj − vj−1‖2

]
≤ ηL̄

2− ηL̄

[
E
[
‖vj−1‖2

]
− E

[
‖vj‖2

] ]
,

when η < 2/L̄.

By summing the above inequality over j = 1, . . . , t (t ≥ 1), we have

t∑
j=1

E
[
‖vj − vj−1‖2

]
≤ ηL̄

2− ηL̄

[
E
[
‖v0‖2

]
− E

[
‖vt‖2

] ]
. (48)

By Lemma 24, we have

E
[
‖∇f(xt)− vt‖2

]
≤
∑t
j=1 E

[
‖vj − vj−1‖2

] (48)
≤ ηL̄

2−ηL̄

[
E
[
‖v0‖2

]
− E

[
‖vt‖2

] ]
.

PROOF OF THEOREM 21

Proof. For t ≥ 1, we have

‖∇f(xt)−∇f(xt−1)‖2 =
∥∥∥ 1

n

n∑
i=1

[∇fi(xt)−∇fi(xt−1)]
∥∥∥2

=
∥∥∥ n∑
i=1

pi
1

npi
[∇fi(xt)−∇fi(xt−1)]

∥∥∥2

(56)
≤

n∑
i=1

pi‖ 1
npi

(
∇fi(xt)−∇fi(xt−1)

)
‖2

= E

[∥∥∥ 1
npi

(
∇fit(xt)−∇fit(xt−1)

)∥∥∥2

|Ft
]
. (49)
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Using the proof of Lemma 25, for t ≥ 1, we have

E
[
‖vt‖2|Ft

]
≤ ‖vt−1‖2 +

(
1− 2

ηL̄

)
E
[
‖∇fit(xt−1)−∇fit(xt)‖2|Ft

]
(49)
≤ ‖vt−1‖2 +

(
1− 2

ηL̄

)
‖∇f(xt)−∇f(xt−1)‖2

≤ ‖vt−1‖2 +
(

1− 2
ηL̄

)
µ2η2‖vt−1‖2.

Note that 1 − 2
ηL̄

< 0 since η < 2/L̄. The last inequality follows by the strong convexity of f , that is, µ‖xt − xt−1‖ ≤
‖∇f(xt)−∇f(xt−1)‖ and the fact that xt = xt−1 − ηvt−1. By taking the expectation and applying recursively, we have

E
[
‖vt‖2

]
≤

[
1−

(
2
ηL̄
− 1
)
µ2η2

]
E
[
‖vt−1‖2

]
≤

[
1−

(
2
ηL̄
− 1
)
µ2η2

]t
E
[
‖v0‖2

]
=

[
1−

(
2
ηL̄
− 1
)
µ2η2

]t
E
[
‖∇f(x0)‖2

]
.

PROOF OF THEOREM 22

Proof. We obviously have E
[
‖v0‖2|F0

]
= ‖∇f(x0)‖2. For t ≥ 1, we have

E
[
‖vt‖2|Ft

]
= E

[
‖vt−1 − 1

npit
(∇fit(xt−1)−∇fit(xt))‖2|Ft

]
= ‖vt−1‖2 + E

[
1

n2p2
it

‖∇fit(xt−1)−∇fit(xt)‖2Ft
]

−E
[

2
ηnpit

(∇fit(xt−1)−∇fit(xt))>(xt−1 − xt)|Ft
]

= ‖vt−1‖2 + E
[
‖ 1
npit

(
∇fit(xt−1)−∇fit(xt)

)
‖2|Ft

]
− 2
η (∇f(xt−1)−∇f(xt))>(xt−1 − xt)

(53),(51)
≤ ‖vt−1‖2 + E

[
‖ 1
npit

(
∇fit(xt−1)−∇fit(xt)

)
‖2|Ft

]
− 2µL̄η
µ+L̄
‖vt−1‖2 − 2

η(µ+L̄)
‖∇fit(xt−1)−∇fit(xt)‖2

≤
(

1− 2µL̄η
µ+L̄

)
‖vt−1‖2

+E
[
‖ 1
npit

(
∇fit(xt−1)−∇fit(xt)

)
‖2|Ft

]
− ‖∇f(xt−1)−∇f(xt)‖2

=
(

1− 2µL̄η
µ+L̄

)
‖vt−1‖2

−E
[
‖ 1
npit

(
∇fit(xt−1)−∇fit(xt)

)
−∇f(xt−1)−∇f(xt)‖2|Ft

]
≤

(
1− 2µL̄η

µ+L̄

)
‖vt−1‖2, (50)

where in the first two equalities, we used definition of SARAH . The first inequality follows from fact that f(x) is L̄-smooth
and µ strongly convex, thus following inequality holds (inequality from (Nesterov, 2013))

(∇f(x)−∇f(x′))>(x− x′) ≥ µL̄

µ+ L̄
‖x− x′‖2 +

1

µ+ L̄
‖∇f(x)−∇f(x′)‖2, (51)

The second one uses assumption that η ≤ 2
µ+L̄

, thus η = 2
µ+L̄

is optimal step size under this analysis. By taking the
expectation and applying recursively, the desired result is achieved.
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J. Technical Lemmas
Lemma 26. Let fi’s be function, which are Li-smooth, then f(x) = 1

n

∑n
i=1 fi(x) is L̄-smooth, where L̄ = 1

n

∑n
i=1 Li.

Proof. For each function fi we have by definition of Li-smoothness, ∀x, y ∈ Rd

fi(x) ≤ fi(y) +∇fi(y)>(x− y) +
Li
2
‖x− y‖2 (52)

Summing through all i’s and dividing by n, we get

f(x) ≤ f(y) +∇f(y)>(x− y) +
L̄

2
‖x− y‖2 (53)

Lemma 27 (Cauchy-Schwarz inequality). For all x, y ∈ Rd we have

|〈x, y〉| ≤ ‖x‖‖y‖. (54)

Lemma 28 (Young’s inequality). For a, b ∈ R and β > 0 we have

ab ≤ a2β

2
+
b2

2β
. (55)

Lemma 29 (Jensen’s inequality). Let X be a random variable and g(x) be a convex function. Then

g(E [X]) ≤ E [g(X)] . (56)


