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A Technical appendix

A.1 Preliminaries

Our generic data shall be denoted by z ∈ Z. Let µ denote a probability measure on Z,
equipped with an appropriate σ-field. Data samples shall be assumed independent and iden-
tically distributed (iid), written z1, . . . ,zn. We shall work with loss function l : Rd ×Z → R+
throughout, with l(·; z) assumed differentiable for each z ∈ Z. Write P for a generic probabil-
ity measure, most commonly the product measure induced by the sample. Let f : Z → R be
an measurable function. Expectation is written Eµ f(z) ..=

∫
f dµ, with variance varµ f(z) de-

fined analogously. For d-dimensional Euclidean space Rd, the usual (`2) norm shall be denoted
‖ ·‖ unless otherwise specified. For function F on Rd with partial derivatives defined, write the
gradient as F ′(u) ..= (F ′1(u), . . . , F ′d(u)) where for short, we write F ′j(u) ..= ∂F (u)/∂uj . For
integer k, write [k] ..= {1, . . . , k} for all the positive integers from 1 to k. Risk shall be denoted
R(w) ..= Eµ l(w; z), and its gradient g(w) ..= R′(w). We make a running assumption that we
can differentiate under the integral sign in each coordinate [1, 6], namely that

g(w) =
(

Eµ
∂l(w; z)
∂w1

, . . . ,Eµ
∂l(w; z)
∂wd

)
. (1)

Smoothness and convexity of functions shall also be utilized. For convex function F on
convex set W, say that F is λ-Lipschitz if, for all w1,w2 ∈ W we have |F (w1) − F (w2)| ≤
λ‖w1−w2‖. We say that F is λ-smooth if F ′ is λ-Lipschitz. Finally, F is strongly convex with
parameter κ > 0 if for all w1,w2 ∈ W,

F (w1)− F (w2) ≥ 〈F ′(w2),w1 −w2〉+ κ

2‖w1 −w2‖2

for any norm ‖ · ‖ on W, though we shall be assuming W ⊆ Rd. If there exists w∗ ∈ W such
that F ′(w∗) = 0, then it follows that w∗ is the unique minimum of F on W. Let f : Rd → R
be a continuously differentiable, convex, λ-smooth function. The following basic facts will be
useful: for any choice of u,v ∈ Rd, we have

f(u)− f(v) ≤ λ

2 ‖u− v‖
2 + 〈f ′(v),u− v〉 (2)

1
2λ‖f

′(u)− f ′(v)‖2 ≤ f(u)− f(v)− 〈f ′(v),u− v〉. (3)

Proofs of these results can be found in any standard text on convex optimization, e.g. [5].
We shall leverage a special type of M-estimator here, built using the following convenient

class of functions.
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Definition 1 (Function class for location estimates). Let ρ : R→ [0,∞) be an even function
(ρ(u) = ρ(−u)) with ρ(0) = 0 and the following properties. Denote ψ(u) ..= ρ′(u).

1. ρ(u) = O(u) as u→ ±∞.

2. ρ(u)/(u2/2)→ 1 as u→ 0.

3. ψ′ > 0, and for some C > 0, and all u ∈ R,

− log(1− u+ Cu2) ≤ ψ(u) ≤ log(1 + u+ Cu2).

Of particular importance in the proceeding analysis is the fact that ψ = ρ′ is bounded, mono-
tonically increasing and Lipschitz on R, plus the upper/lower bounds which let us generalize
the technique of Catoni [3].
Example 2 (Valid ρ choices). In addition to the Gudermannian function (section 2 footnote),
functions such as 2(

√
1 + u2/2 − 1) and log cosh(u) are well-known examples that satisfy the

desired criteria. Note that the wide/narrow functions of Catoni do not meet all these criteria,
nor does the classic Huber function.

A.2 Proofs

Proof of Lemma 1 (main text). For cleaner notation, write x1, . . . , xn ∈ R for our iid obser-
vations. Here ρ is assumed to satisfy the conditions of Definition 1. A high-probability con-
centration inequality follows by direct application of the specified properties of ρ and ψ ..= ρ′,
following the general technique laid out by Catoni [2, 3]. For u ∈ R and s > 0, writing
ψs(u) ..= ψ(u/s), and taking expectation over the random draw of the sample,

E exp
(

n∑
i=1

ψs(xi − u)
)
≤
(

1 + 1
s

(Ex− u) + C

s2 E(x2 + u2 − 2xu)
)n

≤ exp
(
n

s
(Ex− u) + Cn

s2 (varx+ (Ex− u)2)
)
.

The inequalities above are due to an application of the upper bound on ψ, and and the
inequality (1 + u) ≤ exp(u). Now, letting

A ..= 1
n

n∑
i=1

ψs(xi − u)

B ..= 1
s

(Ex− u) + C

s2 (varx+ (Ex− u)2)

we have a bound on E exp(nA) ≤ exp(nB). By Chebyshev’s inequality, we then have

P{A > B + ε} = P{exp(nA) > exp(nB + nε)}

≤ E exp(nA)
exp(nB + nε)

≤ exp(−nε).

Setting ε = log(δ−1)/n for confidence level δ ∈ (0, 1), and for convenience writing

b(u) ..= Ex− u+ C

s
(varx+ (Ex− u)2),
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we have with probability no less than 1− δ that

s

n

n∑
i=1

ψs(xi − u) ≤ b(u) + s log(δ−1)
n

. (4)

The right hand side of this inequality, as a function of u, is a polynomial of order 2, and if

1 ≥ D ..= 4
(
C2 varx
s2 + C log(δ−1)

n

)
,

then this polynomial has two real solutions. In the hypothesis, we stated that the result holds
“for large enough n and sj .” By this we mean that we require n and s to satisfy the preceding
inequality (for each j ∈ [d] in the multi-dimensional case). The notation D is for notational
simplicity. The solutions take the form

u = 1
2

(
2 Ex+ s

C
± s

C
(1−D)1/2

)
.

Looking at the smallest of the solutions, noting D ∈ [0, 1] this can be simplified as

u+ ..= Ex+ s

2C
(1−

√
1−D)(1 +

√
1−D)

1 +
√

1−D

= Ex+ s

2C
D

1 +
√

1−D
≤ Ex+ sD/2C, (5)

where the last inequality is via taking the
√

1−D term in the previous denominator as small
as possible. Now, writing x̂ as the M-estimate using s and ρ as in (3, main text), note that x̂
equivalently satisfies

∑n
i=1 ψs(x̂− xi) = 0. Using (4), we have

s

n

n∑
i=1

ψs(xi − u+) ≤ b(u+) + s log(δ−1)
n

= 0,

and since the left-hand side of (4) is a monotonically decreasing function of u, we have imme-
diately that x̂ ≤ u+ on the event that (4) holds, which has probability at least 1 − δ. Then
leveraging (5), it follows that on the same event,

x̂−Ex ≤ sD/2C.

An analogous argument provides a 1 − δ event on which x̂ − Ex ≥ −sD/2C, and thus using
a union bound, one has that

|x̂−Ex| ≤ 2
(
C varx
s

+ s log(δ−1)
n

)
(6)

holds with probability no less than 1 − 2δ. Setting the xi to l′j(w; zi) for j ∈ [d] and some
w ∈ Rd, i ∈ [n], and x̂ to θ̂j corresponds to the special case considered in this Lemma. Dividing
δ by two yields the (1− δ) result.
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Proof of Lemma 3 (main text). For any fixed w and j ∈ [d], note that

|θ̂j − gj(w)| ≤ εj

..= 2
(
C varµ l′j(w; z)

sj
+ sj log(2δ−1)

)
(7)

= 2

√
log(2δ−1)

n

(
C varµ l′j(w; z)

σ̂j
+ σ̂j

)

≤ ε∗ ..= 2

√
V log(2δ−1)

n
c0 (8)

holds with probability no less than 1 − δ. The first inequality holds via direct application of
Lemma 1 (main text), which holds under (10, main text) and using ρ which satisfies (7, main
text). The equality follows immediately from (5, main text). The final inequality follows from
(A4) and (9, main text), along with the definition of c0.

Making the dependence on w explicit with θ̂j = θ̂j(w), an important question to ask is how
sensitive this estimator is to a change in w. Say we perturb w to w̃, so that ‖w− w̃‖ = a > 0.
By (A2), for any sample we have

‖l′(w; zi)− l′(w̃; zi)‖ ≤ λ‖w − w̃‖ = λa, i ∈ [n]

which immediately implies |l′j(w; zi) − l′j(w̃; zi)| ≤ λa for all j ∈ [d] as well. Given a sample
of n ≥ 1 points, the most extreme shift in θ̂j(·) that is feasible would be if, given the a-sized
shift from w to w̃, all data points moved the maximum amount (namely λa) in the same
direction. Since θ̂j(w̃) is defined by balancing the distance between points to its left and right,
the most it could conceivably shift is thus equal to λa. That is, smoothness of the loss function
immediately implies a Lipschitz property of the estimator,

|θ̂j(w)− θ̂j(w̃)| ≤ λ‖w − w̃‖.

Considering the vector of estimates θ̂(w) ..= (θ̂1(w), . . . , θ̂d(w)), we then have

‖θ̂(w)− θ̂(w̃)‖ ≤
√
dλ‖w − w̃‖. (9)

This will be useful for proving uniform bounds on the estimation error shortly.
First, let’s use these one-dimensional results for statements about the vector estimator of

interest. In d dimensions, using θ̂(w) just defined for any pre-fixed w, then for any ε > 0 we
have

P
{
‖θ̂(w)− g(w)‖ > ε

}
= P

{
‖θ̂(w)− g(w)‖2 > ε2

}
≤

d∑
j=1

P
{
|θ̂j(w)− gj(w)| > ε√

d

}
.

Using the notation of εj and ε∗ from (7), filling in ε =
√
dε∗, we thus have

P
{
‖θ̂(w)− g(w)‖ >

√
dε∗
}
≤

d∑
j=1

P
{
|θ̂j(w)− gj(w)| > ε∗

}

≤
d∑
j=1

P
{
|θ̂j(w)− gj(w)| > εj

}
≤ dδ.
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The second inequality is because εj ≤ ε∗ for all j ∈ [d]. It follows that the event

E(w) ..=

‖θ̂(w)− g(w)‖ > 2

√
dV log(2dδ−1)

n
c0


has probability P E(w) ≤ δ. In practice, however, ŵ(t) for all t > 0 will be random, and depend
on the sample. We seek uniform bounds using a covering number argument. By (A1), W is
closed and bounded, and thus compact, and it requires no more than Nε ≤ (3∆/2ε)d balls of
ε radius to cover W, where ∆ is the diameter of W.1 Write the centers of these ε balls by
{w̃1, . . . , w̃Nε}. Given w ∈ W, denote by w̃ = w̃(w) the center closest to w, which satisfies
‖w − w̃‖ ≤ ε. Estimation error is controllable using the following new error terms:

‖θ̂(w)− g(w)‖ ≤ ‖θ̂(w)− θ̂(w̃)‖+ ‖g(w)− g(w̃)‖+ ‖θ̂(w̃)− g(w̃)‖. (10)

The goal is to be able to take the supremum over w ∈ W. We bound one term at a time.
The first term can be bounded, for any w ∈ W, by (9) just proven. The second term can be
bounded by

‖g(w)− g(w̃)‖ ≤ λ‖w − w̃‖ (11)

which follows immediately from (A2). Finally, for the third term, fixing any w ∈ W, w̃ =
w̃(w) ∈ {w̃1, . . . , w̃Nε} is also fixed, and can be bounded on the δ event E(w̃) just defined.
The important fact is that

sup
w∈W

∥∥∥θ̂(w̃(w))− g(w̃(w))
∥∥∥ = max

k∈[Nε]

∥∥∥θ̂(w̃k)− g(w̃k)
∥∥∥ .

We construct a “good event” naturally as the event in which the bad event E(·) holds for no
center on our ε-net, namely

E+ =

 ⋂
k∈[Nε]

E(w̃k)

c .
Taking a union bound, we can say that with probability no less than 1− δ, for all w ∈ W, we
have

‖θ̂(w̃(w))− g(w̃(w))‖ ≤ 2

√
dV log(2dNεδ−1)

n
c0. (12)

Taking the three new bounds together, we have with probability no less than 1− δ that

sup
w∈W

‖θ̂(w)− g(w)‖ ≤ λε(
√
d+ 1) + 2

√
dV log(2dNεδ−1)

n
c0.

Setting ε = 1/
√
n we have

sup
w∈W

‖θ̂(w)− g(w)‖ ≤ λ(
√
d+ 1)√
n

+ 2c0

√
dV (log(2dδ−1) + d log(3∆

√
n/2))

n
.

Since every step of Algorithm 1 (main text), with orthogonal projection if required, has ŵ(t) ∈
W, the desired result follows from this uniform confidence interval.

1This is a basic property of covering numbers for compact subsets of Euclidean space [4].
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Proof of Lemma 4 (main text). Given ŵ(t), running the approximate update (2, main text),
we have

‖ŵ(t+1) −w∗‖ = ‖ŵ(t) − αĝ(ŵ(t))−w∗‖
≤ ‖ŵ(t) − αg(ŵ(t))−w∗‖+ α‖ĝ(ŵ(t))− g(ŵ(t))‖.

The first term looks at the distance from the target given an optimal update, using g. Using
the κ-strong convexity of R, via Nesterov [5, Thm. 2.1.15] it follows that

‖ŵ(t) − αg(ŵ(t))−w∗‖2 ≤
(

1− 2ακλ
κ+ λ

)
‖ŵ(t) −w∗‖2.

Writing β ..= 2κλ/(κ+ λ), the coefficient becomes (1− αβ).
To control the second term simply requires unfolding the recursion. By hypothesis, we can

leverage (6, main text) to bound the statistical estimation error by ε for every step, all on the
same 1−δ “good event.” For notational ease, write a ..=

√
1− αβ. On the good event, we have

‖ŵ(t+1) −w∗‖ ≤ at+1‖ŵ(0) −w∗‖+ αε
(
1 + a+ a2 + · · ·+ at

)
= at+1‖ŵ(0) −w∗‖+ αε

(1− at+1)
1− a .

To clean up the second summand,

αε
(1− at+1)

1− a ≤ αε(1 + a)
(1− a)(1 + a)

= αε(1 +
√

1− αβ)
αβ

≤ 2ε
β
.

Taking this to the original inequality yields the desired result.

Proof of Theorem 5 (main text). Using strong convexity and (2), we have that

R(ŵ(T ))−R∗ ≤
λ

2 ‖ŵ(T ) −w∗‖2

≤ λ(1− αβ)TD2
0 + 4λε2

β2 .

The latter inequality holds by direct application of Lemma 4 (main text), followed by the
elementary fact (a+ b)2 ≤ 2(a2 + b2). The particular value of ε under which Lemma 4 (main
text) is valid (i.e., under which (6, main text) holds) is given by Lemma 3 (main text). Filling
in ε with this concrete setting yields the desired result.

Proof of Lemma 8 (main text). As in the result statement, we write

Σ(t)
..= Eµ

(
l′(ŵ(t); z)− g(ŵ(t))

) (
l′(ŵ(t); z)− g(ŵ(t))

)T
, w ∈ W.

Running this modified version of Algorithm 1 (main text), we are minimizing the bound in
Lemma 1 (main text) as a function of scale sj , j ∈ [d], which immediately implies that the
estimates θ̂(t) = (θ̂1, . . . , θ̂d) at each step t satisfy

|θ̂j − gj(ŵ)| > 4
(
C varµ l′j(ŵ(t); z) log(2δ−1)

n

)1/2

(13)
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with probability no greater than δ. For clean notation, let us also denote

A ..= 4
(
C log(2δ−1)

n

)1/2

, ε∗ ..= A
√

trace(Σ(t)).

For the vector estimates then, we have

P
{
‖θ̂(t) − g(ŵ(t))‖ > ε∗

}
= P


d∑
j=1

(θ̂j − gj(ŵ(t)))2

A2 > trace(Σ(t))


= P


d∑
j=1

(
(θ̂j − gj(ŵ(t)))2

A2 − varµ l′j(ŵ(t); z)
)
> 0


≤ P

d⋃
j=1

{
(θ̂j − gj(ŵ(t)))2

A2 > varµ l′j(ŵ(t); z)
}

≤ dδ.

The first inequality uses a union bound, and the second inequality follows from (13). Plugging
in A and taking confidence δ/d implies the desired result.

Proof of Theorem 9 (main text). From Lemma 8 (main text), the estimation error has expo-
nential tails, as follows. Writing

A1 ..= 2d, A2 ..= 4
(
C trace(Σ(t))

n

)1/2

,

for each iteration t we have

P{‖θ̂(t) − g(ŵ(t))‖ > ε} ≤ A1 exp
(
−
(
ε

A2

)2
)
.

Controlling moments using exponential tails can be done using a fairly standard argument.
For random variable X ∈ Lp for p ≥ 1, we have the classic inequality

E |X|p =
∫ ∞

0
P{|X|p > t} dt

as a starting point. Setting X = ‖θ̂(t)−g(ŵ(t))‖ ≥ 0, and using substitution of variables twice,
we have

E |X|p =
∫ ∞

0
P{X > t1/p} dt

=
∫ ∞

0
P{X > t}ptp−1 dt

≤ A1p

∫ ∞
0

exp
(
− (t/A2)2

)
tp−1 dt

= A1A
p
2p

2

∫ ∞
0

exp(−t)tp/2−1 dt.

The last integral on the right-hand side, written Γ(p/2), is the usual Gamma function of Euler
evaluated at p/2. Setting p = 2, we have Γ(1) = 0! = 1, and plugging in the values of A1 and
A2 yields the desired result.

7



A.3 Computational methods

Here we discuss precisely how to compute the implicitly-defined M-estimates of (3, main text)
and (5, main text). Assuming s > 0 and real-valued observations x1, . . . , xn, we first look at
the program

min
θ

1
n

n∑
i=1

ρs (xi − θ)

assuming ρ is as specified in Definition 1, with ψ = ρ′. Write θ̂ for this unique minimum, and
note that it satisfies

s

n

n∑
i=1

ψs
(
xi − θ̂

)
= 0.

Indeed, by monotonicity of ψ, this θ̂ can be found via ρ minimization or root-finding. The
latter yields standard fixed-point iterative updates, such as

θ̂(k+1) = θ̂(k) + s

n

n∑
i=1

ψs
(
xi − θ̂(k)

)
.

Note the right-hand side has a fixed point at the desired value. In our routines, we use the
Gudermannian function

ρ(u) ..=
∫ u

0
ψ(x) dx, ψ(u) ..= 2 atan(exp(u))− π/2

which can be readily confirmed to satisfy all requirements of Definition 1.
For the dispersion estimate to be used in re-scaling, we introduce function χ, which is even,

non-decreasing on R+, and satisfies

0 <
∣∣∣∣ lim
u→±∞

χ(u)
∣∣∣∣ <∞, χ(0) < 0.

In practice, we take dispersion estimate σ̂ > 0 as any value satisfying

1
n

n∑
i=1

χ

(
xi − γ
σ̂

)
= 0

where γ = n−1∑n
i=1 xi, computed by the iterative procedure

σ̂(k+1) = σ̂(k)

(
1− 1

χ(0)n

n∑
i=1

χ

(
xi − γ
σ̂(k)

))1/2

which has the desired fixed point, as in the location case. Our routines use the quadratic
Geman-type χ, defined

χ(u) ..= u2

1 + u2 − c

with parameter c > 0, noting χ(0) = −c. Writing the first term as χ0 so χ(u) = χ0(u)− c, we
set c = Eχ0(x) under x ∼ N(0, 1). Computed via numerical integration, this is c ≈ 0.34.
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