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1 Proofs

We provide in this supplementary material the proofs of theoretical results presented
in the main document, and we give additive theoretical and experimental results. For
the sake of clarity we recall the results before giving their proofs.

1.1 Convergence to the fixed point: Proposition 1

Lemma 1. Let Mφ := supx≥0E[|φ′2(xZ) + φ′′(xZ)φ(xZ)|]. Suppose Mφ < ∞, then
for σ2

w <
1
Mφ

and any σb, we have (σb, σw) ∈ Dφ,var and Kφ,var(σb, σw) =∞
Moreover, let Cφ,δ := supx,y≥0,|x−y|≤δ,c∈[0,1]E[|φ′(xZ1)φ′(y(cZ1 +

√
1− c2Z2)|]. Sup-

pose Cφ,δ <∞ for some positive δ, then for σ2
w < min( 1

Mφ
, 1
Cφ

) and any σb, we have

(σb, σw) ∈ Dφ,var ∩Dφ,corr and Kφ,var(σb, σw) = Kφ,corr(σb, σw) =∞.

Proof. To abbreviate the notation, we use ql := qla for some fixed input a.

Convergence of the variances: We first consider the asymptotic behaviour of
ql = qla. Recall that ql = F (ql−1) where

F (x) = σ2
b + σ2

wE[φ(
√
xZ)2].
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The first derivative of this function is given by

F ′(x) = σ2
wE[

Z√
x
φ′(
√
xZ)φ(

√
xZ)] = σ2

wE[φ′(
√
xZ)2 + φ′′(

√
xZ)φ(

√
xZ)], (1)

where we use Gaussian integration by parts, E[ZG(Z)] = E[G′(Z)], an identity satisfied
by any function G such that E[|G′(Z)|] <∞.

Using the condition on φ, we see that the function F is a contraction mapping for
σ2
w <

1
Mφ

and the Banach fixed-point theorem guarantees the existence of a unique

fixed point q of F , with liml→+∞ q
l = q. Note that this fixed point depends only on

F , therefore this is true for any input a and Kφ,var(σb, σw) =∞.

Convergence of the covariances: Since Mφ <∞, then for all a, b ∈ Rd there exists

l0 such that |
√
qla −

√
qlb| < δ for all l > l0. Let l > l0, using Gaussian integration by

parts, we have

dcl+1
ab

dclab
= σ2

wE[|φ′(
√
qlaZ1)φ′(

√
qlb(c

l
abZ1 +

√
1− (clab)

2Z2)|].

We cannot use the Banach fixed point theorem directly because the integrated function
here depends on l through ql. For ease of notation, we write cl := clab. We have

|cl+1 − cl| = |
∫ cl

cl−1

dcl+1

dcl
(x)dx| ≤ σ2

wCφ|cl − cl−1|.

Therefore, for σ2
w < min( 1

Mφ
, 1
Cφ

), cl is a Cauchy sequence and it converges to a limit

c ∈ [0, 1]. At the limit

c = f(c) =
σ2
b + σ2

wE[φ(
√
qz1)φ(

√
q(cz1 +

√
1− c2z2)))]

q
.

The derivative of this function is given by

f ′(x) = σ2
wE[φ′(

√
qZ1)φ′(

√
q(xZ1 +

√
1− xZ2)].

By assumption on φ and the choice of σw, we have supx|f ′(x)| < 1 so f is a contraction
and has a unique fixed point. Since f(1) = 1 then c = 1. The above result is true for
any a, b, therefore Kφ,var(σb, σw) = Kφ,corr(σb, σw) =∞.

Lemma 2. Let (σb, σw) ∈ Dφ,var ∩ Dφ,corr such that q > 0, a, b ∈ Rd and φ an
activation function such that supx∈K E[φ(xZ)2] < ∞ for all compact sets K. De-

fine fl by cl+1
a,b = fl(c

l
a,b) and f by f(x) =

σ2
b+σ2

wE[φ(
√
qZ1)φ(

√
q(xZ1+

√
1−x2Z2))

q
. Then

liml→∞ supx∈[0,1] |fl(x)− f(x)| = 0.
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Proof. For x ∈ [0, 1], we have

fl(x)− f(x) = (
1√
qlaq

l
b

− 1

q
)(σ2

b + σ2
wE[φ(

√
qlaZ1)φ(

√
qlbu2(x))])

+
σ2
w

q
(E[φ(

√
qlaZ1)φ(

√
qlbu2(x))]− E[φ(

√
qZ1)φ(

√
qu2(x))]),

where u2(x) := xZ1 +
√

1− x2Z2. The first term goes to zero uniformly in x using
the condition on φ and Cauchy-Schwartz inequality. As for the second term, it can be
written again as

E[(φ(
√
qlaZ1)− φ(

√
qZ1))φ(

√
qlbu2(x))] + E[φ(

√
qZ1)(φ(

√
qlbu2(x))− φ(

√
qu2(x)))].

Using Cauchy-Schwartz and the condition on φ, both terms can be controlled uniformly
in x by an integrable upper bound. We conclude using dominated convergence.

Lemma 3 (Weak EOC). Let φ be a ReLU-like function with λ, β defined as above.
Then f ′l does not depend on l, and having f ′l (1) = 1 and ql bounded is only achieved

for the singleton (σb, σw) = (0,
√

2
λ2+β2 ). The Weak EOC is defined as this singleton.

Proof. We write ql = qla throughout the proof. Note first that the variance satisfies
the recursion:

ql+1 = σ2
b + σ2

wE[φ(Z)2]ql = σ2
b + σ2

w

λ2 + β2

2
ql. (2)

For all σw <
√

2
λ2+β2 , q = σ2

b (1− σ2
w(λ2 + β2)/2)

−1
is a fixed point. This is true for

any input, therefore Kφ,var(σb, σw) =∞ and (i) is proved.

Now, the EOC equation is given by χ1 = σ2
wE[φ′(Z)2] = σ2

w
λ2+β2

2
. Therefore,

σ2
w = 2

λ2+β2 . Replacing σ2
w by its critical value in (2) yields

ql+1 = σ2
b + ql.

Thus q = σ2
b + q if and only if σb = 0, otherwise ql diverges to infinity. So the frontier

is reduced to a single point (σ2
b , σ

2
w) = (0,E[φ′(Z)2]−1), and the variance does not

depend on l.
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Proposition 1 (EOC acts as Residual connections). Consider a ReLU network with
parameters (σ2

b , σ
2
w) = (0, 2) ∈ EOC and let clab be the corresponding correlation.

Consider also a ReLU network with simple residual connections given by

yli(a) = yl−1
i (a) +

Nl−1∑
j=1

W
l

ijφ(yl−1
j (a)) +B

l

i,

where W
l

ij ∼ N (0, σ2
w

Nl−1
) and B

l

i ∼ N (0, σ2
b). Let clab be the corresponding correlation.

Then, by taking σw > 0 and σb = 0, there exists a constant γ > 0 such that

1− clab ∼ γ(1− clab) ∼
9π2

2l2

as l→∞.

Proof. Let us first give a closed-form formula of the correlation function f of a
ReLU network. In this case, we have f(x) = 2E[(Z1)+(xZ1 +

√
1− x2Z2)+] where

(x)+ := x1x>0. Let x ∈ [0, 1], f is differentiable and satisfies

f ′(x) = 2E[1Z1>01xZ1+
√

1−x2Z2>0],

which is also differentiable. Simple algebra leads to

f ”(x) =
1

π
√

1− x2
.

Since arcsin′(x) = 1√
1−x2 and f ′(0) = 1/2,

f ′(x) =
1

π
arcsin(x) +

1

2
.

Using the fact that
∫

arcsin = x arcsin +
√

1− x2 and f(1) = 1, we conclude that for
x ∈ [0, 1], f(x) = 1

π
x arcsin(x) + 1

π

√
1− x2 + 1

2
x.

For the residual network, we have qla = ql−1
a + σ2

wE[φ(
√
ql−1
a Z)2] = (1 + σ2

w

2
)ql−1
a .

Let δ = 1

1+
σ2
w
2

. We have

clab = δcl−1
ab + δσ2

wE[φ(Z1)φ(U2(cl−1
ab ))]

= cl−1
ab + δ

σ2
w

2
(f(cl−1

ab )− cl−1
ab )
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Now, we use Taylor expansion near to conclude. However, since f is not differentiable
in 1 for all orders, we use a change of variable x = 1− t2 with t close to 0, then

arcsin(1− t2) =
π

2
−
√

2t−
√

2

12
t3 +O(t5),

so that

arcsin(x) =
π

2
−
√

2(1− x)1/2 −
√

2

12
(1− x)3/2 +O((1− x)5/2),

and

x arcsin(x) =
π

2
x−
√

2(1− x)1/2 +
11
√

2

12
(1− x)3/2 +O((1− x)5/2).

Since
√

1− x2 =
√

2(1− x)1/2 −
√

2

4
(1− x)3/2 +O((1− x)5/2),

we obtain that

f(x) =
x→1−

x+
2
√

2

3π
(1− x)3/2 +O((1− x)5/2). (3)

Since (f(x)− x)′ = 1
π
(arcsin(x)− π

2
) < 0 and f(1) = 1, for all x ∈ [0, 1), f(x) > x. If

cl < cl+1 then by taking the image by f (which is increasing because f ′ ≥ 0) we have
that cl+1 < cl+2, and we know that c1 = f(c0) ≥ c0, so by induction the sequence cl is
increasing, and therefore it converges to the fixed point of f which is 1.

Using a Taylor expansion of f near 1, we have

clab = cl−1
ab + δ

2
√

2

3π
(1− cl−1

ab )3/2 +O((1− cl−1
ab )5/2)

and

clab = cl−1
ab +

2
√

2

3π
(1− cl−1

ab )3/2 +O((1− cl−1
ab )5/2).

Now let γl := 1 − clab for a, b fixed. We note s = 2
√

2
3π

, from the series expansion we

have that γl+1 = γl − sγ3/2
l +O(γ

5/2
l ) so that

γ
−1/2
l+1 = γ

−1/2
l (1− sγ1/2

l +O(γ
3/2
l ))−1/2 = γ

−1/2
l (1 +

s

2
γ

1/2
l +O(γ

3/2
l ))

= γ
−1/2
l +

s

2
+O(γl).

Thus, as l goes to infinity

γ
−1/2
l+1 − γ

−1/2
l ∼ s

2
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and by summing and equivalence of positive divergent series

γ
−1/2
l ∼ s

2
l.

Therefore, we have 1− clab ∼ 9π2

2l2
. Using the same argument for clal, we conclude.

Proposition 2. Let φ ∈ D1
g be non ReLU-like function. Assume V [φ] is non-

decreasing and V [φ′] is non-increasing. Let σmax :=
√

supx≥0 |x−
V [φ](x)
V [φ′](x)

| and for

σb < σmax let qσb be the smallest fixed point of the function σ2
b + V [φ]

V [φ′]
. Then we have

EOC = {(σb, 1√
E[φ′(

√
qZ)2]

) : σb < σmax}.

To prove Proposition 2, we need to introduce some lemmas. The next lemma gives
a characterization of ReLU-like activation functions.

Lemma 1.1 (A Characterization of ReLU-like activations). Let φ ∈ D1(R,R) such
that φ(0) = 0 and φ′ non-identically zero. We define the function e for non-negative
real numbers by

e(x) =
V [φ](x)

V [φ′](x)
=

E[φ(
√
xZ)2]

E[φ′(
√
xZ)2]

Then, for all x ≥ 0, e(x) ≤ x.
Moreover, the following statements are equivalent

• There exists x0 > 0 such that e(x0) = x0.

• φ is ReLU-like, i.e. there exists λ, β ∈ R such that φ(x) = λx if x > 0 and
φ(x) = βx if x ≤ 0.

Proof. Let x > 0. We have for all z ∈ R, φ(
√
xz) =

√
x
∫ z

0
φ′(
√
xu)du. This yields

E[φ(
√
xZ)2] = xE[

( ∫ Z

0

φ′(
√
xu)du

)2
]

≤ xE[|Z|
∫ |Z|

0

φ′(
√
xu)2du]

= xE[Z

∫ Z

0

φ′(
√
xu)2du]

= xE[φ′(
√
xZ)2du]
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where we have used Cauchy-Schwartz inequality and Gaussian integration by parts.
Therefore e(x) ≤ x.
Now assume there exists x0 > 0 such that e(x0) = x0. We have

E[φ(
√
x0Z)2] = x0E[

( ∫ Z

0

φ′(
√
x0u)du

)2
]

= x0E[1Z>0

( ∫ Z

0

φ′(
√
x0u)du

)2
] + x0E[1Z≤0

( ∫ 0

Z

φ′(
√
x0u)du

)2
]

≤ x0E[1Z>0

∫ Z

0

1du

∫ Z

0

φ′(
√
x0u)2du] + x0E[1Z≤0

∫ 0

Z

1du

∫ 0

Z

φ′(
√
x0u)2du].

The equality in Cauchy-Schwartz inequality implies that
- For almost every z > 0, there exists λz such that φ′(

√
x0u) = λz for all u ∈ [0, z].

- For almost every z < 0, there exists βz such that φ′(
√
x0u) = βz for all u ∈ [z, 0].

Therefore, λz, βz are independent of z, and φ is ReLU-like.

It is easy to see that for ReLU-like activations, e(x) = x for all x ≥ 0.

The next trivial lemma provides a sufficient condition for the existence of a fixed
point of a shifted function.

Lemma 1.2. Let g ∈ C0(R+,R) such that g(0) = 0 and g(x) ≤ x for all x ∈ R+. Let
tmax := supx≥0 |x− g(x)| (tmax may be infinite). Then, for all t ∈ [0, tmax), the shifted
function t+ g(.) has a fixed point.

Proof. Let t ∈ [0, tmax). There exists x0 > 0 such that t+ g(.) < x0 − g(x0) + g(.). So
we have t+ g(0) = t and t+ g(x0) < x0, which means that t+ g(.) crosses the identity
line, therefore the fixed point exists.

Corollary 1.1. Let φ ∈ D1(R,R) such that φ is non ReLU-like. Let tmax = supx≥0 |x−
V [φ](x)
V [φ′](x)

|. Then, For any σ2
b ∈ [0, tmax), the shifted function σ2

b + V [φ]
V [φ′]

has a fixed point
q. Moreover, by taking q to be the greatest fixed point, we have limσb→0 q = 0.

The limit of q is zero because it is a fixed point of the function V [φ](x)
V [φ′](x)

which has
only 0 as a fixed point for non ReLU-like functions.

Corollary 1.1 proves the existence of a fixed point for the shifted function σ2
b + V [φ]

V [φ′]
,

which is a necessary condition for (σb, 1/
√
V [φ′](q)) to be in the EOC where q is the

smallest fixed point. It is not a sufficient condition because q may not be the smallest
fixed point of σ2

b + 1
V [φ′](q)

V [φ]. We further analyse this problem hereafter.
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Definition 1 (Permissible couples). Let g, h ∈ C(R+,R+) and c > 0. Define the

function k(x) = c+ g(x)
h(x)

for x ≥ 0 and let q = inf{x : k(x) = x}. We say that (g, h)
is permissible if for any c ≥ 0 such that q < ∞, q is the smallest fixed point of the
function c+ g(.)

h(q)
.

Lemma 1.3. Let g, h ∈ C(R+,R+). Then the following statements are equivalent

1. (g, h) is permissible.

2. For any c > 0 such that q is finite, we have g(q) − g(x) < (q − x)h(q) for
x ∈ [0, q).

Proof. If q is a fixed point of c+ g(.)
h(.)

, then q is clearly a fixed point of I(x) = c+ 1
h(q)

g(x).

Having q is the smallest fixed point of c + g(.)
h(q)

is equivalent to c + g(x)
h(q)

> x for all

x ∈ [0, q). Since c = q − g(q)
h(q)

, we conclude.

Corollary 1.2. Let g, h ∈ C(R+,R+). Assume h is non-increasing, then (g, h) is
permissible.

Proof. Since h is non-increasing, we have for x ∈ [0, q), g(q)− g(x) ≤ h(q)(q − c)−
h(q)
h(x)

g(x) = h(q)(q − (c + g(x)
h(x)

)). We conclude using the fact that c + g(x)
h(x)

> x for

x ∈ [0, q).

Corollary 1.3. Let φ be a non ReLU-like function. Assume V [φ] is non-decreasing
and (V [φ], V [φ′]) is permissible. Then, for any σ2

b < tmax := supx≥0 |x − e(x)|, by
taking σ2

w = 1
E[φ′(

√
qZ)2]

, we have (σb, σw) ∈ EOC. Moreover, we have limσb→0 q = 0.

We can omit the condition ’V [φ] is non-decreasing’ by choosing a small tmax.
Indeed, by taking a small σb, the limiting variance q is small, and we know that V [φ]
is increasing near 0 because V [φ]′(0) = φ′(0)2 > 0.

The proof of Proposition 2 is straightforward from corollary A.3.

Lemma 4. Let φ be a Tanh-like activation function, then φ satisfies all conditions of
Proposition 2 and EOC = {(σb, 1√

E[φ′(
√
qZ)2]

) : σb ∈ R+}.

Proof. For x ≥ 0, we have V [φ]′(x) = 1
x
E[
√
xZφ′(

√
xZ)φ(

√
xZ)] ≥ 0, so V [φ] is non-

decreasing. Moreover, V [φ′]′(x) = 1
x
E[
√
xZφ′′(

√
xZ)φ′(

√
xZ)] ≤ 0, therefore V [φ′] is

non-increasing. To conclude, we still have to show that tmax =∞.
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Using the second condition on φ, there exists M > 0 such that |φ′(y)|2 ≥Me−2α|y|.
Let x > 0. we have

E[φ′(
√
xZ)2] ≥ME[e−2α|

√
xZ|]

= 2M

∫ ∞
0

e−2α
√
xZ e

−z2/2

√
2π

dz

= 2Me2α2xΨ(2α
√
x)

∼ 2M

2α
√
x

where Ψ is the Gaussian cumulative function and where we used the asymptotic

approximation Ψ(x) ∼ e−x
2/2

x
for large x.

Using this lower bound and the upper bound on φ, there exists x0, k > 0 such that for
x > x0, we have x− V [φ](x)

V [φ′](x)
≥ x− k

√
x→∞ which concludes the proof.

Proposition 3 (Convergence rate for smooth activations). Let φ ∈ A such that φ
non-linear (i.e. φ(2) is non-identically zero). Then, on the EOC, we have 1− cl ∼ βq

l

where βq =
2E[φ′(

√
qZ)2]

qE[φ′′(
√
qZ)2]

.

Proof. We first prove that liml→∞ c
l = 1 on the EOC. Let x ∈ [0, 1) and u2(x) :=

xZ1 +
√

1− x2Z2, we have

f ′(x) = σ2
wE[φ′(

√
qZ1)φ′(

√
qu2(x))]

≤ σ2
w(E[φ′(

√
qZ1)2])1/2(E[φ′(

√
qu2(x))2])1/2

= 1

where we have used Cauchy Schwartz inequality and the fact the σ2
w = 1

E[φ′(
√
qZ)2]

.

Moreover, the equality holds if and only if there exists a constant s such that
φ′(
√
q(xz1 +

√
1− x2z2)) = sφ′(

√
qz1) for almost any z1, z2 ∈ R, which is equiva-

lent to having φ′ equal to a constant almost everywhere on R, hence φ is linear and q
does not exists. This proves that for all x ∈ [0, 1), f ′(x) < 1. Integrating both sides
between x and 1 yields f(x) > x for all x ∈ [0, 1). Therefore cl is non-decreasing and
converges to the fixed point of f which is 1.

Now we want to prove that f admits a Taylor expansion near 1. It is easy to do
that if φ ∈ D3

g . Indeed, using the conditions on φ, we can easily see that f has a third
derivative at 1 and we have

f ′(1) = σ2
wE[φ′(

√
qZ)2]

f ′′(1) = σ2
wqE[φ′′(

√
qZ)2].
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A Taylor expansion near 1 yields

f(x) = 1 + f ′(1)(x− 1) +
(x− 1)2

2
f ′′(1) +O((x− 1)3)

= x+
(x− 1)2

βq
+O((x− 1)3).

The proof is a bit more complicated for general φ ∈ A. We prove the result when
φ(2)(x) = 1x<0g1(x) + 1x≥0g2(x). The generalization to the whole class is straightfor-
ward. Let us first show that there exists g ∈ C1 such that f (3)(x) = 1√

1−x2 g(x).
We have

f ′′(x) = σ2
wqE[φ′′(

√
qZ1)φ′′(

√
qU2(x))]

= σ2
wqE[φ′′(

√
qZ1)1U2(x)<0g1(

√
qU2(x))] + σ2

wqE[φ′′(
√
qZ1)1U2(x)>0g2(

√
qU2(x))].

Let G(x) = E[φ′′(
√
qZ1)1U2(x)<0g1(

√
qU2(x))] then

G′(x) = E[φ′′(
√
qZ1)(Z1 −

x√
1− x2

Z2)δU2(x)=0
1√

1− x2
g1(
√
qU2(x))]

+ E[φ′′(
√
qZ1)1U2(x)<0

√
q(Z1 −

x√
1− x2

Z2)g′1(
√
qU2(x))].

After simplification, it is easy to see that G′(x) = 1√
1−x2G1(x) where G1 ∈ C1. By

extending the same analysis to the second term of f ′′, we conclude that there exists
g ∈ C1 such that f (3)(x) = 1√

1−x2 g(x).

Let us now derive a Taylor expansion of f near 1. Since f (3) is potentially non
defined at 1, we use the change of variable x = 1− t2 to compensate this effect. Simple
algebra shows that the function t→ f(1− t2) has a Taylor expansion near 0

f(1− t2) = 1− t2f ′(1) +
t4

2
f ′′(1) +O(t5).

Therefore,

f(x) = 1 + (x− 1)f ′(1) +
(x− 1)2

2
f ′′(1) +O((x− 1)5/2).

Note that this expansion is weaker than the expansion when φ ∈ D3
g .

Denote λl := 1− cl, we have

λl+1 = λl −
λ2
l

βq
+O(λ

5/2
l )
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therefore,

λ−1
l+1 = λ−1

l (1− λl
βq

+O(λ
3/2
l ))−1

= λ−1
l (1 +

λl
βq

+O(λ
3/2
l ))

= λ−1
l +

1

βq
+O(λ

1/2
l ).

By summing (divergent series), we conclude that λ−1
l ∼ l

βq
.

Proposition 4. Let φ ∈ A be a non-linear activation function such that φ(0) = 0,
φ′(0) 6= 0. Assume that V [φ] is non-decreasing and V [φ′]) is non-increasing, and let
σmax > 0 be defined as in Proposition 2. Define the gradient with respect to the lth

layer by ∂E
∂yl

= ( ∂E
∂yli

)1≤i≤Nl and let Q̃l
ab = E[ ∂E

∂yla

T ∂E
∂ylb

] denote the covariance matrix of

the gradients during backpropagation. Recall that βq =
2E[φ′(

√
qZ)2]

qE[φ′′(
√
qZ)2]

.

Then, for any σb < σmax, by taking (σb, σw) ∈ EOC we have

• supx∈[0,1] |f(x)− x| ≤ 1
βq

• For l ≥ 1, | Tr(Q̃lab)

Tr(Q̃l+1
ab )
− 1| ≤ 2

βq

Moreover, we have
lim
σb→0

(σb,σw)∈EOC

βq =∞.

To prove this result, let us first prove a more general result.

Proposition 5 (How close is f to the identity function?). Let φ ∈ D2(R,R) − {0}
and (σb, σw) ∈ Dφ,var with q the corresponding limiting variance. Then,

sup
x∈[0,1]

|f(x)− x| ≤ |σ2
wE[φ′(

√
qZ)2]− 1|+ σ2

w

2
qE[φ′′(

√
qZ)2]

Proof. Using a second order Taylor expansion, we have for all s ∈ [0, 1]

|f(x)− f(1)− f ′(1)(x− 1)| ≤ (1− x)2

2
sup
θ∈[0,1]

|f ′′(θ)|.

11



We have f(1) = 1. Therefore |f(x)− x| ≤ (1− x)|f ′(1)− 1|+ (1−x)2

2
supθ∈[0,1] |f ′′(θ)|.

For θ ∈ [0, 1], we have

f ′′(θ) = σ2
wqE[φ′′(

√
qZ1)φ′′(

√
qU2(θ))]

≤ σ2
wqE[φ′′(

√
qZ)2]

=
σ2
w

2
qE[φ′′(

√
qZ)2]

using Cauchy-Schwartz inequality.

As a result, for φ ∈ D2(R,R)− {0} and (σb, σw) ∈ EOC with q the corresponding
limiting variance, we have

sup
x∈[0,1]

|f(x)− x| ≤
qE[φ′′(

√
qZ)2]

2E[φ′(
√
qZ)2]

=
1

βq

which is the first result of Proposition 4.

Now let us prove the second result for gradient backpropagation, we show that
under some assumptions, our results of forward information propagation generalize to
the back-propagation of the gradients. Let us first recall the results in Schoenholz
et al. [2017] (we use similar notations hereafter).

Let E be the loss we want to optimize. The backpropagation process is given by
the equations

∂E

∂W l
ij

= δliφ(yl−1
j )

δli =
∂E

∂yli
= φ′(yli)

Nl+1∑
j=1

δl+1
j W l+1

ji .

Although δli is non Gaussian (unlike yli), knowing how q̃la = E[(δli)
2] changes back

through the network will give us an idea about how the norm of the gradient changes.
Indeed, following this approach, and using the approximation that the weights used
during forward propagation are independent from those used for backpropagation,
Schoenholz et al. [2017] showed that

q̃la = q̃l+1
a

Nl+1

Nl

χ1

where χ1 = σ2
wE[φ′(

√
qZ)2].

12



Considering a constant width network, authors concluded that χ1 controls also
the depth scales of the gradient norm, i.e. q̃la = q̃La e

−(L−l/ξ∆) where ξ−1
∆ = − log(χ1).

So in the ordered phase, gradients can propagate to a depth of ξ∆ without being
exponentially small, while in the chaotic phase, gradient explode exponentially. On
the EOC (χ1 = 1), the depth scale is infinite so the gradient information can also
propagate deeper without being exponentially small.
The following result shows that our previous analysis on the EOC extends to the
backpropagation of gradients, and that we can make this propagation better by
choosing a suitable activation function and an initialization on the EOC. We use
the following approximation to ease the calculations: the weights used in forward
propagation are independent from those used in backward propagation.

Proposition 6 (Better propagation for the gradient). Let a and b be two inputs and
(σb, σw) ∈ Dφ,var with q the limiting variance. We define the covariance between the
gradients with respect to layer l by q̃lab = E[δli(a)δli(b)]. Then, we have

| q̃
l
ab

q̃l+1
ab

× Nl

Nl+1

− 1| ≤ |σ2
wE[φ′(

√
qZ)2]− 1|+ (1− clab)σ2

wqE[φ′′(
√
qZ)2]→σb→0 0.

Proof. We have

q̃lab = E[δli(a)δli(b)]

= E[φ′(yli(a))φ′(yli(b))

Nl+1∑
j=1

δl+1
j (a)W l+1

ji

Nl+1∑
j=1

δl+1
j (b)W l+1

ji ]

= E[φ′(yli(a))φ′(yli(b))]× E[δl+1
j (a)δl+1

j (b)]× E[

Nl+1∑
j=1

(W l+1
ji )2]

≈ q̃l+1
ab

Nl+1

Nl

σ2
wE[φ′(

√
qZ1)φ′(

√
qU2(clab))]

= q̃l+1
ab

Nl+1

Nl

f ′(clab).

We conclude using the fact that |f ′(x)− 1| ≤ |f ′(1)− 1|+ (1− x)f ′′(1)

The dependence in the width of the layer is natural since it acts as a scale
for the covariance. We define the gradient with respect to the lth layer by ∂E

∂yl
=

( ∂E
∂yli

)1≤i≤Nl and let Q̃l
ab = E[ ∂E

∂yla

T ∂E
∂ylb

] denote the covariance matrix of the gradients

during backpropagation. Then, on the EOC, we have

| Tr(Q̃l
ab)

Tr(Q̃l+1
ab )
− 1| ≤ (1− clab)

qE[φ′′(
√
qZ)2]

E[φ′(
√
qZ)2]

≤ 2

βq
.

13



So again, the quantity |φ|EOC controls the vanishing of the covariance of the gradi-
ents during backpropagation. This was expected because linear activation functions
do not change the covariance of the gradients.

2 Further theoretical results

2.1 Results on the Edge of Chaos

The next lemma shows that under some conditions, the EOC does not include couples
(σb, σw) with small σb > 0.

Lemma 5 (Trivial EOC). Assume there exists M > 0 such that E[φ′′(xZ)φ(xZ)] > 0
for all x ∈]0,M [. Then, there exists σ > 0 such that EOC∩([0, σ)×R+) = {(0, 1

|φ′(0)|)}.
Moreover, if M =∞ then EOC = {(0, 1

|φ′(0)|)}.

Activation functions that satisfy the conditions of Lemma 5 cannot be used with
small σb > 0 (note that using σb = 0 would lead to q = 0 which is not practical for the
training), therefore, the result of Proposition 4 do not apply in this case. However, as
we will see hereafter, SiLU (a.k.a Swish) has a partial EOC, and still allows better
information propagation (Proposition 3) compared to ReLU even if σb not very small.

Proof. It is clear that (0, 1
|φ′(0)|) ∈ EOC. For σb > 0 we denote by q the smallest fixed

point of the function σ2
b + V [φ]

V [φ′]
(which is supposed to be the limiting variance on the

EOC). Using the condition on φ and the fact that limσb→0 q = 0, there exists σ > 0
such that for σb < σ we have E[φ′′(

√
qZ)φ(

√
qZ)] > 0. Now let us prove that for

σb ∈]0, σ[, the limiting variance does not satisfy the EOC equation.

Let tmax =
√

supx>0 |x−
V [φ]
V [φ′]
| and σb ∈]0,min(tmax, σ)[. Recall that for all x ≥ 0 we

have that
F ′(x) = σ2

w(E[φ′(
√
xZ)2] + E[φ′′(

√
xZ)φ(

√
xZ)])

Using σ2
w = 1/V [φ′](q) (EOC equation) we have that F ′(q) = 1+σ2

wE[φ′′(
√
qZ)φ(

√
qZ)]) >

1. Therefore, the function σ2
b + 1

V [φ′](q)
V [φ] crosses the identity in a point q̂ < q,

hence (σb, σw) 6∈ Dφ,var. Therefore, for any σb ∈]0, σ[, there is no σw such that
(σb, σw) ∈ EOC.

If M =∞, the previous analysis is true for any σ > 0, by taking the limit σ →∞,
we conclude.

This is true for activations such as Shifted Softplus (a shifted version of Softplus
in order to have φ(0) = 0) and SiLU (a.k.a Swish).
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Corollary 1. EOCSSoftplus = {(0, 2)} and there exists σ > 0 such that EOCSiLU ∩
([0, σ[×R+) = {(0, 2)}

Proof. let s(x) = 1
1+e−x

for all x ∈ R (sigmoid function).

1. Let sp(x) = log(1 + ex)− log(2) for x ∈ R (Shifted Softplus). We have sp′(x) =
s(x) and sp′′(x) = s(x)(1− s(x)). For x > 0 we have

E[sp′′(xZ)sp(xZ)] = E[s(xZ)(1− s(xZ))sp(xZ)]

= E[1Z>0(s(xZ)(1− s(xZ))sp(xZ))] + E[1Z<0(s(xZ)(1− s(xZ))sp(xZ))]

= E[1Z>0(s(xZ)(1− s(xZ))sp(xZ))] + E[1Z<0(s(xZ)(1− s(xZ))sp(−xZ))]

= E[1Z>0(s(xZ)(1− s(xZ))(sp(xZ) + sp(−xZ)))] > 0,

where we have used the fact that sp(y) + sp(−y) = log(2+ey+e−y

4
) > 0 for all

y > 0. We conclude using Lemma 5.

2. Let si(x) = xs(x) (SiLU activation function, known also as Swish). We have
si′(x) = s(x) + xs(x)(1− s(x)) and si′′(x) = s(x)(1− s(x))(2 + x(1− 2s(x))).
Using the same technique as for SSoftplus, we have for x > 0

E[si′′(xZ)si(xZ)] = E[xZ × s(xZ)2 × (1− s(xZ))(2 + xZ(1− 2))]

= E[1Z>0G(xZ)],

where G(y) = ys(y)(1− s(y))(2 + y(1− 2s(y)))(2s(y)− 1). The only term that
changes sign is (2 + y(1− 2s(y))). It is positive for small y and negative for large
y. We conclude that there M > 0 such that E[si′′(xZ)si(xZ)] > 0 for x ∈]0,M [.

2.2 Beyond the Edge of Chaos

Can we make the distance between f and the identity function small independently
from the choice of σb? The answer is yes if we select the right activation function. Let
us first define a semi-norm on D2(R,R).

Definition 2 (EOC semi-norm). The semi-norm |.|EOC is defined on D2(R,R) by

|φ|EOC = supy∈R+
yE[φ′′(

√
yZ)2]

E[φ′(
√
yZ)2]

.

|.|EOC is a norm on the quotient space D2(R,R)/L(R) where L(R) is the space of
linear functions.
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When |φ|EOC is small, φ is close to a linear function, which implies that the

function V [φ]
V [φ′]

defined on R+ is close to the identity function. Thus, for a fixed σb, we

expect q to become arbitrarily big when |φ|EOC goes to zero.

Lemma 2.1. Let (φn)n∈N be a sequence of functions such that limn→∞ |φn|EOC = 0.
Let σb > 0 and assume that for all n ∈ N there exists σw,n such that (σw, σw,n) ∈ EOC.
Let qn be the limiting variance. Then limn→∞ qn =∞

Proof. The proof is straightforward knowing that f(0) ≤ 1
2
|φn|EOC , which implies

that
σ2
b

q
≤ 1

2
|φn|EOC .

Corollary 2.1. Let φ ∈ D2(R,R)−{0} and (σb, σw) ∈ EOC with q the corresponding
limiting variance. Then,

sup
x∈[0,1]

|f(x)− x| ≤ 1

2
|φ|EOC .

Corollary 2.1 shows that by taking an activation function φ such that |φ|EOC is
small and by initializing the network on the EOC, the correlation function is close to
the identity function, i.e., the signal propagates deeper through the network. How-
ever, note that there is a trade-off to take in account here: we loose expressiveness
by taking |φ|EOC too small, because this would imply that φ is close to a linear
function. So there is a trade-off between signal propagation and expressiveness We
check this finding with activation functions of the form φα(x) = x + αTanh(x). In-
deed, we have |φα|EOC ≤ α2 supy∈R+ E[Tanh′′(

√
xZ)2] →α→0 0. So by taking small

α, we would theoretically provide deeper signal propagation. However, note that
we loose expressiveness as α goes to zero because φα becomes closer to the identity
function. So There is also a trade-off here. The difference with Proposition 4 is
that here we can compensate the expressiveness issue by adding more layers (see e.g.
Montufar et al. [2014] who showed that expressiveness grows exponentially with depth).

3 Experiments

3.1 Training with RMSProp

For RMSProp, the learning rate 10−5 is nearly optimal for networks with depth
L ≤ 200 (for deeper networks, 10−6 gives better results). This learning rate was found
by a grid search with exponential step of size 10.
Figure 1 shows the training curves of ELU, ReLU and Tanh on MNIST for a network
with depth 200 and width 300. Here also, ELU and Tanh perform better than ReLU.
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Figure 1: 100 epochs of the training curves of ELU, ReLU and Tanh networks of
depth 200 and width 300 on MNIST with RMSProp

This confirms that the result of Proposition 3 is independent of the training algorithm.
ELU has faster convergence than Tanh. This could be explained by the saturation
problem of Tanh.

3.2 Training with activation φα(x) = x+ αTanh(x)

As we have already mentioned, φα satisfies all conditions of Proposition 3. Therefore,
we expect it to perform at least better than ReLU for deep neural networks. Figure
2 shows the training curve for width 300 and depth 200 with different activation
functions. φ0.5 has approximately similar performance as ELU and better than Tanh
and ReLU. Note that φα does not suffer form saturation of the gradient, which could
explain why it performs better than Tanh.

3.3 Impact of φ′′(0)

Since we usually take σb small on the EOC, then having φ′′(0) = 0 would make the
coefficient βq even bigger. We test this result on SiLU (a.k.a Swish) for depth 70.
SiLU is defined by

φSiLU(x) = x sigmoid(x)

we have φ′′(0) = 1/2. consider a modified SiLU (MSiLU) defined by

φMSiLU(x) = x sigmoid(x) + (e−x
2 − 1)/4

We have φ′′MSiLU(0) = 0.
Figure 3 shows the the training curves (test accuracy) of SiLU and MSiLU on MNIST
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Figure 2: 100 epochs of the training curves of ELU, ReLU, Tanh and φ0.5 networks of
depth 200 and width 300 on MNIST with SGD

Figure 3: 50 epochs of the training curves of SiLU and MSiLU on MNIST with SGD

with SGD. MSiLU performs better than SiLU, expecially at the beginning of the
training.

18



References

S.S. Schoenholz, J. Gilmer, S. Ganguli, and J. Sohl-Dickstein. Deep information
propagation. 5th International Conference on Learning Representations, 2017.

G.F. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the number of linear regions
of deep neural networks. Advances in Neural Information Processing Systems, 27:
2924–2932, 2014.

19


