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A. Further Discussion

A.1. Sequences
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Figure 12. IODINE applied to Objects Room sequences by setting
N, the number of refinement iterations, equal to the number of
timesteps in the data.
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The iterative nature of IODINE lends itself readily to se-
quential data, by, e.g., feeding a new frame at every iteration,
instead of the same input image x. This setup corresponds
to one iteration per timestep, and using next-step-prediction
instead of reconstruction as part of the training objective.
An example of this can be seen in Figure 12 where we
show a 16 timestep sequence along with reconstructions
and masks. When using the model in this way, it automat-
ically maintains the association of object to slot over time
(i.e, displaying robust slot stability). Thus, object tracking
comes almost for free as a by-product in IODINE. Notice
though, that IODINE has to rely on the LSTM that is part of
the inference network to model any dynamics. That means
none of the dynamics of tracked objects (e.g. velocity) will
be part of the object representation.

A.2. Memory Limitations

It is worth pointing out that memory consumption presents
an important limiting factor to scaling IODINE. To allow
training by backpropagation, each slot and each refinement
step require the storage of activations for an entire decoder
and refinement network. Memory consumption during train-
ing thus scales linearly with both K and 7'. This is par-
ticularly restrictive for sequential data, where the number
of steps can grow very large. In our experiments from Ap-
pendix A.1, we found that 16 timesteps with a batch-size
of 4 was the upper limit on GPUs with 12GB of RAM. Of
course this also depends on the size of the input and the size
of the network. Note also that at inference time there is no
need to keep the activations of previous timesteps, so the
dependence on 7" can be eliminated there.

A.3. Comparison with MONet

The Multi-Object NETwork (MONet; Burgess et al. 2019)
is a complementary method for unsupervised object rep-
resentation learning also developed recently. It learns to

sequentially attend to individual objects using a masking
network and a VAE. In each step the masking network seg-
ments out a yet unexplained part of the image (the next
object) which is then fed to the VAE which has to recon-
struct that object and the mask. Thus, in contrast to [ODINE,
MONet uses one iteration per object and doesn’t adjust an
object once it has been covered.

Both methods focus on the representation learning aspect
and both ensure that all objects are encoded in the same
format by sharing weights across objects. In our prelimi-
nary experiments MONet produced results very similar to
IODINE on CLEVR both in terms of segmentation and re-
garding the quality of object representations, and also learns
to inpaint occluded parts of objects.

Since MONet only visits each object once, it is a more
lightweight method that requires less computation and mem-
ory to train and run. Recurrently iterating over objects also
has the benefit that the model can dynamically vary the num-
ber of objects, whereas in IODINE the maximum number
of objects is a hyperparameter that has to be fixed manually
(though it can be changed at test time). The usage of a
separate masking network which isn’t directly subject to
a representational bottleneck likely leads to less regular-
ization for the segmentation mask. This could potentially
allow MONet to better deal with complex segmentation
shapes. But it also has to use that ability to directly produce
masks that respect occlusion, whereas IODINE tends to
produce masks for full unoccluded objects and leverages
the softmax to resolve overlap. For more complex scenes,
we also expect iterative refinement to be advantageous for
resolving difficult cases. There, IODINE could start with
a rough segmentation and then use the progressively bet-
ter understanding of the constituent objects for refining the
boundaries.

The segmentation process of MONet is deterministic which
induces an order on the objects, which might be useful
because it naturally prioritizes salient objects. We observed
that it typically starts with the background, then processes
large frontal objects, and finally smaller or farther away
objects. But this approach does break symmetry between
objects, and we prefer keeping such a bias out of the object
segmentation learning as much as possible.

Another disadvantage of a deterministic segmentation is
that it cannot directly deal with ambiguous cases like the
one shown in Section 4.4 and Figure 10. The iterative
message-passing-like approach of IODINE might also lend
itself well for incorporating top-down feedback to bias the
segmentation towards one that is useful for a given task. It is
less clear how to do that in MONet, though adding a way for
conditioning the masking network could potentially serve a
similar purpose. Finally the iterative refinement of IODINE
naturally extends to sequential data (see Appendix A.1)
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which would be less straightforward for MONet.

In summary, it is not at all clear yet which approach will
work better and under which circumstances. If the data is
sequential or contains ambiguity, IODINE presents a better
choice. For other data that is not visually more complex
than CLEVR, both methods will likely produce similar re-
sults making MONet the simpler and less computationally
intensive choice. For more complex data it is unclear yet
which approach would be the better choice, and in fact a
hybrid approach might be the most promising. Sequentially
attending to objects and iterative refinement are not mutu-
ally exclusive and might support each other. We consider
this a very attractive research direction and are excited to
explore its possibilities.

B. Dataset Details
B.1. CLEVR

We regenerated the CLEVR dataset (Johnson et al., 2017)
using the authors’ open-source code, because we needed
ground-truth segmentation masks for evaluation purposes.
The dataset contains 70 000 images with a resolution of
240 x 320 pixels, from which we extract a square center
crop of 192 x 192 and scale it to 128 x 128 pixels. Each
scene contains between three and ten objects, characterized
in terms of shape (cube, cylinder, or sphere), size (small or
large), material (rubber or metal), color (8 different colors),
position (continuous), and rotation (continuous).

The subset of images which contain 3-6 objects (inclusive)
served as the training set for our experiments; we refer to it
as CLEVRG6. Unless noted otherwise, we evaluate models
on the full CLEVR distribution, containing 3-10 objects.
All references to CLEVR refer to the full distribution.

We do not make use of the question answering task. Fig-
ure 13 shows a few samples from the dataset.
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Figure 13. Samples from CLEVRG6. The first column is the scene,
the second column is the background mask and the following
columns are the ground-truth object masks.

B.2. Multi-dSprites

This dataset, based on the dSprites dataset (Matthey et al.,
2017), consists of 60 000 images with a resolution of 64 x 64.

Each image contains two to five random sprites, which vary
in terms of shape (square, ellipse, or heart), color (uniform
saturated colors), scale (continuous), position (continuous),
and rotation (continuous). Furthermore the background
color is varied in brightness but always remains grayscale.
Figure 14 shows a few samples from the dataset.

We also used a binarized version of Multi-dSprites, where
the sprites are always white, the background is always black,
and each image contains two to three random sprites.

B.3. Tetris

We generated this dataset of 60 000 images by placing three
random Tetrominoes without overlap in an image of 35 x 35
pixels. Each Tetromino is composed of four blocks that
are each 5 x 5 pixels. There are a total of 17 different
Tetrominoes (counting rotations). We randomly color each
Tetromino with one of 6 colors (red, green, blue, cyan,
magenta, or yellow). Figure 15 shows a few samples from
the dataset.

B.4. Shapes

We use the same shapes dataset as in (Reichert & Serre,
2013). It contains 60 000 binary images of size 28 x 28 each
with three random shapes from the set {A, V,O}.

B.5. Objects Room

For the preliminary sequential experiments we used a se-
quential version of the Objects Room dataset (Burgess et al.,
2019). This dataset consists of 64x64 RGB images of a
cubic room, with randomly colored walls, floors and objects
randomly scattered around the room. The camera is always
positioned on a ring inside the room, always facing towards
the centre and oriented vertically in the range (—25°,22°).
There are 3 randomly shaped objects in the room with 1-3
objects visible in any given frame. This version contains se-
quences of camera-flights for 16 time steps, with the camera

i+ S
¥ - ENE
E : EEPAD
“ «

Figure 14. Samples from the Multi-dSprites dataset. The first col-
umn is the full image, the second column is the background mask
and the following columns are the ground-truth object masks.
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Figure 15. Samples from the Tetris dataset. The first column is the
full image, the second column is the background mask and the
following columns are the ground-truth object masks.

position and angle (within the above constraints) changing
according to a fixed velocity for the entire sequence (with a
random velocity sampled for each sequence).

C. Model and Hyperparameter Details

Training Unless otherwise specified all the models are
trained with the ADAM optimizer (Kingma & Ba, 2015),
with default parameters and a learning rate of 0.0003. We
used gradient clipping as recommended by (Pascanu et al.,
2012): if the norm of global gradient exceeds 5.0 then the
gradient is scaled down to that norm. Note that this is
virtually always the case as the gradient norm is typically
on the order of 10°, but we nonetheless found it useful to
apply this strategy. We always use o = 0.1 for the global
scale of the output distribution p(x|z(*)) = N(x; u,(:), ).
Finally, batch size was 32 (4 x 8GPUs).

Initialization of Posterior IODINE iteratively refines an
initial posterior A(") which is independent of the input data.
Initially we set this initial value to match the prior (i.e.
q,\(zg)) = N(0,1)). But we found that this poses prob-
lems for the model, because of the competing requirements
it poses for structuring the latent space w.r.t. the prior:
On the one hand, samples from the prior need to be good
starting values for iterative refinement. On the other hand,
the prior should correspond to the accumulated posterior
(KL term). For this reason we decided to simply make the
parameters A1) of the initialization distribution trainable
parameters which are optimized alongside the weights of
the decoder (@) and of the refinement network (¢). This
lead to faster training, and improved the visual quality of
reconstructions from prior samples.

Inputs For all models, we use the following inputs to the
refinement network, where LN means Layernorm and SG
means stop gradients, and we omit the iteration index -(*)
for brevity. The following image-sized inputs are concate-
nated and fed to the corresponding convolutional network:

Description Formula LN SG Ch.
image X 3
means 12 3
mask my 1
mask-logits my, 1
mask posterior p(m|x, 1) 1
gradient of means VL v ooV 3
gradient of mask Vo L v v 1
pixelwise likelihood  p(x|z) v oV 1
leave-one-out likelih.  p(x|z;x) v v 1
coordinate channels 2
total: 17

The posterior parameters A and their gradients are flat
vectors, and as such we concatenate them with the out-
put of the convolutional part of the refinement network
and use the result as input to the refinement LSTM:

Formula LN SG

gradient of posterior V3, L v oy
posterior AL

Description

Architecture All layers use the ELU (Clevert et al., 2015)
activation function and the Convolutional layers use a stride
equal to 1, unless mentioned otherwise. Architecture details
for the individual datasets are summarized in the following
subsections.

C.1. CLEVR

All models were trained on scenes with 3-6 objects
(CLEVRG6) with K = 7 slots and T' = 5 iterations. When
evaluating on the full CLEVR dataset, we increased the
number of slots to X' = 11. For some of the analysis, we
varied 7" and K as mentioned in the text.

The rest of the architecture and hyperparameters are de-
scribed in the following.

Decoder

Type Size/Ch.  Act. Func. Comment
Input: A 128

Broadcast 130 + coordinates
Conv 3 x 3 64 ELU

Conv 3 x 3 64 ELU

Conv 3 x 3 64 ELU

Conv 3 x 3 64 ELU

Conv 3 x 3 4 Linear RGB + Mask
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Refinement Network

C.3. Tetris

Type Size/Ch.  Act. Func. Comment Models were trained with K = 4 slots, and used T' = 5
MLP 128 Linear iterations. For Tetris, in contrast to the other models, we did
LSTM 256 Tanh not use an LSTM in the refinement network.
Concat [A, VA L] 512 Decoder
IXI\;P Pool 265 46 ELU Type Size/Ch.  Act. Func. Comment
Conv 3 x 3 64 ELU Input: A 64
Conv 3 x 3 64 ELU Broadcast 66 + coordinates
Conv3 x 3 64 ELU Convb x5 32 ELU
Conv 3 x 3 64 ELU Conv 5 x 5 32 ELU
Inputs 17 Conv 5 x b 32 ELU

Conv 5 x 5 32 ELU
Deconv Decoder used in Section 4.3 Conv 5 X 5 4 Linear RGB + Mask
Type Size/Ch.  Act. Func. Comment

Refinement Network
II\I/}IE;I A ;%g ELU Type Size/Ch.  Act. Func. Comment
MLP 512 ELU MLP 64 Linear
Reshape 8 8x8x8 Concat [A, VaL] 256
Conv 5 x 5 64 ELU stride 2 MLP 128 ELU
Conv b x 5 64 ELU stride 2 Avg. Pool 32
Conv 5 X 5 64 ELU stride 2 Conv 5 x 5 32 ELU
Conv 5 x 5 64 ELU stride 2 Conv 5 x 5 32 ELU
Conv 5 x 5 64 ELU Conv 5 x 5 32 ELU
Convb x5 4 Linear RGB + Mask Inputs 17

C.2. Multi-dSprites D. Additional Plots

Models were trained with K = 6 slots, and used 7" = 5

iterations.
Decoder
Type Size/Ch. Act. Func. Comment
Input: A 32
Broadcast 34 + coordinates
Conv 5 x 5 32 ELU
Conv b x 5 32 ELU
Conv b x 5 32 ELU
Conv b5 x 5 32 ELU
Conv b x 5 4 Linear RGB + Mask
Refinement Network
Type Size/Ch. Act. Func. Comment
MLP 32 Linear
LSTM 128 Tanh
Concat [\, VA L] 192
MLP 128 ELU
Avg. Pool 32
Conv 5 x 5 32 ELU
Conv 5 x 5 32 ELU
Conv b x 5 32 ELU
Inputs 17

Decompositions Figures 16—18 show additional decom-
position samples on our datasets. Figure 19 shows a com-
plete version of Figure 7, showing all individual masked
reconstruction slots. Figures 20-22 show a comparison be-
tween the object reconstructions and the mask logits used
for assigning decoded latents to pixels.

Projections of Object Latents Figures 24-26 demon-
strate how object latents are clustered when projected onto
the first two principal components of the latent distribution.
Figures 27-29 show how object latents are clustered when
projected onto a t-SNE (Maaten & Hinton, 2008) of the
latent distribution.

Traversals Figures 30-32 show additional (randomly cho-
sen) latent traversals for IODINE on CLEVR like on the
right side of Figure 6.

Input Ablations Figures 33—40 give an overview of the
impact of each of the inputs to the refinement network on
the total loss, mean squared reconstruction error, KL diver-
gence loss term, and the ARI segmentation performance
(excluding the background pixels) on the CLEVR and Tetris
datasets.



Variational Iterative Multi-Object Representation Learning

Image Recons Mask Individual masked reconstruction —>»

Figure 16. Additional segmentation and object reconstruction results on CLEVRG6. Border colors are matched to the segmentation mask
on the left.
Image Recons Mask Individual masked reconstruction —>»

Figure 17. Additional segmentation and object reconstruction results on Multi-dSprites. Border colors are matched to the segmentation
mask on the left.
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Image Recons Mask Individual masked reconstruction

Figure 18. Additional segmentation and object reconstruction results on Tetris. Border colors are matched to the segmentation mask on
the left.
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Figure 19. Full version of Figure 7, showcasing all slots.
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Figure 20. CLEVRG6 dataset. Odd rows: image and object masks Figure 21. Multi-dSprites dataset. Odd rows: image and object
as determined by the model. Even rows: first column is the input masks as determined by the model. Even rows: first column is
image, second one is the ground-truth masks and the following the input image, second one is the ground-truth masks and the
ones are mask logits produced by the model. following ones are mask logits produced by the model.
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Figure 22. Tetris dataset. Odd rows: image and object masks as determined by the model. Even rows: first column is the input image,
second one is the ground-truth masks and the following ones are mask logits produced by the model.
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Figure 23. Segmentation and object reconstruction results on CLEVR6 using a deconvolution based decoder instead of the spatial
broadcast decoder. Note that IODINE still cleanly segments objects from the background (now ignoring shadows), but specialization
of the individual slots is much worse. Both, slots holding multiple objects, and objects replicated across multiple slots are much more
frequent now. Slot reconstructions are also much less clean, containing much more noise and residue of other objects. (Note though, that
in this figure we didn’t mask the reconstructions as we have for Figure 16.)
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Figure 24. Projection on the first two principal components of the latent distribution for the CLEVR®6 dataset. Each dot represents one
object latent and is colored according to the corresponding ground truth factor.
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Figure 25. Projection on the first two principal components of the latent distribution for the Multi-dSprites dataset. Each dot represents
one object latent and is colored according to the corresponding ground truth factor.
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Figure 26. Projection on the first two principal components of the latent distribution for the Tetris dataset. Each dot represents one object
latent and is colored according to the corresponding ground truth factor.
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Figure 27. t-SNE of the latent distribution for the CLEVR6 dataset. Each dot represents one object latent and is colored according to the
corresponding ground truth factor
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Figure 28. t-SNE of the latent distribution for the Multi-dSprites dataset. Each dot represents one object latent and is colored according
to the corresponding ground truth factor
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Figure 29. t-SNE of the latent distribution for the Tetris dataset. Each dot represents one object latent and is colored according to the
corresponding ground truth factor
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Figure 30. Latent traversal of IODINE on CLEVR (like right side of Figure 6), for a randomly chosen example and randomly chosen slot.
Here the brown cylinder in the back is changing. Occlusion handling shows several flaws, that could be fixed by adjusting another latent
(not shown) that encodes the depth ordering.
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Figure 31. Latent traversal of IODINE on CLEVR (like right side of Figure 6), for a randomly chosen example and randomly chosen
slot. Here the large blue sphere in the front is changing. Note that the background slot contains a bright spot behind the blue sphere that
becomes visible when the sphere is moved away.
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Figure 32. Latent traversal of IODINE on CLEVR (like right side of Figure 6), for a randomly chosen example and randomly chosen slot.
Here the gray cylinder on the right is changing. Occlusion handling shows several flaws, that could be fixed by adjusting another latent
(not shown) that encodes the depth ordering.
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Figure 33. Ablation study for the model’s total loss on CLEVR6. Each curve denotes the result of training the model without a particular
input.
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Figure 34. Ablation study for the model’s segmentation performance in terms of ARI (excluding the background pixels) on CLEVR6.
Each curve denotes the result of training the model without a particular input.
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Figure 35. Ablation study for the model’s reconstruction loss term on CLEVR6. Each curve denotes the result of training the model
without a particular input. The y-axis shows the mean squared error between the target image and the output means (of the final iteration)
as a proxy for the full reconstruction loss.
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Figure 36. Ablation study for the model’s KL divergence loss term on CLEVR6, summed over slots and iterations. Each curve denotes the
result of training the model without a particular input.
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Figure 37. Ablation study for the model’s total loss on Tetris. Each curve denotes the result of training the model without a particular
input.
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Figure 38. Ablation study for the model’s segmentation performance in terms of ARI (excluding the background pixels) on Tetris. Each
curve denotes the result of training the model without a particular input.
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Figure 39. Ablation study for the model’s reconstruction loss term on Tetris. Each curve denotes the result of training the model without a
particular input. The y-axis shows the mean squared error between the target image and the output means (of the final iteration) as a proxy
for the full reconstruction loss.
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Figure 40. Ablation study for the model’s KL divergence loss term on Tetris, summed over slots and iterations. Each curve denotes the
result of training the model without a particular input.



