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Abstract
We quantify the separation between the numbers
of labeled examples required to learn in two set-
tings: Settings with and without the knowledge
of the distribution of the unlabeled data. More
specifically, we prove a separation by Θ(log n)
multiplicative factor for the class of projections
over the Boolean hypercube of dimension n. We
prove that there is no separation for the class
of all functions on domain of any size. Learn-
ing with the knowledge of the distribution (a.k.a.
fixed-distribution learning) can be viewed as an
idealized scenario of semi-supervised learning
where the number of unlabeled data points is so
great that the unlabeled distribution is known ex-
actly. For this reason, we call the separation the
value of unlabeled data.

1. Introduction
Hanneke (2016) showed that for any class C of Vapnik-
Chervonenkis dimension d there exists an algorithm that
ε-learns any target function from C under any distribu-
tion from O

(
d+log(1/δ)

ε

)
labeled examples with probabil-

ity at least 1 − δ. For this paper, it is important to stress
that Hanneke’s algorithm does not receive the distribution
of unlabeled data as input. On the other hand, Benedek
& Itai (1991) showed that for any class C and any dis-
tribution there exists an algorithm that ε-learns any tar-
get from C from O

(
logNε/2+log(1/δ)

ε

)
labeled examples

with probability at least 1 − δ where Nε/2 is the size of
an ε

2 -cover of C with respect to the disagreement metric
d(f, g) = Pr[f(x) 6= g(x)]. Here, it is important to note
that Benedek and Itai construct for each distribution a sep-
arate algorithm. In other words, they construct a family
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of algorithms indexed by the (uncountably many) distri-
butions over the domain. Alternatively, we can think of
Benedek-Itai’s family of algorithms as a single algorithm
that receives the distribution as an input. It is known that
Nε = O(1/ε)O(d); see Dudley (1978). Thus, ignoring
log(1/ε) factor, Benedek-Itai bound is never worse than
Hanneke’s bound.

As we already mentioned, Benedek-Itai’s algorithm re-
ceives as input the distribution of unlabeled data. The al-
gorithm uses it to construct an ε

2 -cover. Unsurprisingly,
there exist distributions which have a small ε

2 -cover and
thus sample complexity of Benedek-Itai’s algorithm on
such distributions is significantly lower then the Hanneke’s
bound. For instance, a distribution concentrated on a single
point has an ε

2 -cover of size 2 for any positive ε.

However, an algorithm does not need to receive the unla-
beled distribution in order to enjoy low sample complexity.
For example, empirical risk minimization (ERM) algorithm
needs significantly less labeled examples to learn any tar-
get under some unlabeled distributions. For instance, if the
distribution is concentrated on a single point, ERM needs
only one labeled example to learn any target. One could
be lead to believe that there exists an algorithm that does
not receive the unlabeled distribution as input and achieves
Benedek-Itai bound (or a slightly worse bound) for every
distribution. In fact, one could think that ERM or Han-
neke’s algorithm could be such algorithms. If ERM, Han-
neke’s algorithm, or some other distribution-independent
algorithm had sample complexity that matches (or nearly
matches) the optimal distribution-specific sample complex-
ity for every distribution, we could conclude that the knowl-
edge of unlabeled data distribution is completely useless.

As Darnstädt et al. (2013) showed this is not the case. They
showed that any algorithm for learning projections over
{0, 1}n that does not receive the unlabeled distribution as
input, requires, for some data unlabeled distributions, more
labeled examples than the Benedek-Itai bound. However,
they did not quantify this gap beside stating that it grows
without bound as n goes to infinity.

In this paper, we quantify the gap by showing that any
distribution-independent algorithm for learning the class
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Figure 1. The graph shows sample complexity bounds of learning
a class of projections over the domain {0, 1}n under various un-
labeled distributions. We assume that ε and δ are constant, say,
ε = δ = 1

100
. The graph shows three lines. The red horizon-

tal line is Hanneke’s bound for the class of projections, which
is Θ(VC(Cn)) = Θ(logn). The green line is the Benedek-Itai
bound. The green line touches the red line for certain distribu-
tions, but is lower for other distributions. In particular, for cer-
tain distributions the green line is O(1). The dashed line corre-
sponds to a particular distribution on a shattered set. This is where
the green line and red line touch. Furthermore, here the upper
bound coincides with the lower bound for that particular distri-
bution. The black line is the sample complexity of an arbitrary
distribution-independent algorithm. For example, the reader can
think of the ERM or Hanneke’s algorithm. We prove that there
exist a distribution where the black line is Ω(logn) times higher
than the green line. This separation is indicated by the double
arrow.

of projections over {0, 1}n requires, for some unlabeled
distributions, Ω(log n) times as many labeled examples as
Benedek-Itai bound. Darnstädt et al. (2013) showed the gap
for any class with Vapnik-Chervonenkis dimension d is at
most O(d). It is well known that Vapnik-Chervonenkis di-
mensions of projections over {0, 1}n is Θ(log n). Thus our
lower bound matches the upper bound O(d). To better un-
derstand the relationship of the upper and lower bounds,
we illustrate the situation for the class of projections over
{0, 1}n in Figure 1.

In contrast, we show that for the class of all functions (on
any domain) there is no gap between the two settings. In
other words, for learning a target from the class of all func-
tions, unlabeled data are in fact useless. This illustrates the
point that the gap depends in a non-trivial way on the com-
binatorial structure of the function class rather than just on
the Vapnik-Chervonenkis dimension.

The paper is organized as follows. In Section 2 we re-
view prior work. Section 3 gives the necessary defini-
tions and basic probabilistic tools. In Section 4 we give
the proof of the separation result for projections. In Sec-
tion 5 we prove that there is no gap for the class of all func-
tions. For completeness, in the supplementary material, we
give a proof of a simple upper bound O(1/ε)O(d) on the
size of the minimum ε-cover and a proof of Benedek-Itai’s
O
(

logNε/2+log(1/δ)

ε

)
sample complexity upper bound.

2. Related Work
The question of whether knowledge of unlabeled data dis-
tribution helps was proposed and initially studied by Ben-
David et al. (2008); see also Lu (2009). However, they
considered only classes with Vapnik-Chervonenkis dimen-
sion at most 1, or classes with Vapnik-Chervonenkis di-
mension d but only distributions for which the size of the
ε-cover is Θ(1/ε)Θ(d), i.e. the ε-cover is as large as it can
be.1 In these settings, for constant ε and δ, the separation
of labeled sample complexities is at most a constant factor,
which is exactly what Ben-David et al. (2008) proved. In
these settings, unlabeled data are indeed useless. However,
these results say nothing about distributions with ε-cover
of small size and it ignores the dependency on the Vapnik-
Chervonenkis dimension.

The question was studied in earnest by Darnstädt et al.
(2013) who showed two major results. First, they show
that for any non-trivial concept class C and for every dis-
tribution, the ratio of the labeled sample complexities be-
tween distribution-independent and distribution-dependent
algorithms is bounded by the Vapnik-Chervonenkis dimen-
sion. Second, they show that for the class of projections
over {0, 1}n, there are distributions where the ratio grows
to infinity as a function of n.

In learning theory, the disagreement metric and ε-cover
were introduced by Benedek & Itai (1991) but the ideas are
much older; see e.g. Dudley (1978; 1984). TheO(1/ε)O(d)

upper bound on size of the smallest ε-cover is by Dudley
(1978, Lemma 7.13); see also Devroye & Lugosi (2000,
Chapter 4) and Haussler (1995). We present a proof of
O(1/ε)O(d) upper bound in Appendix A in the supplemen-
tary material.

For any distribution-independent algorithm and any class
C of Vapnik-Chervonenkis dimension d ≥ 2 and any ε ∈
(0, 1) and δ ∈ (0, 1), there exists a distribution over the do-
main and a concept which requires at least Ω

(
d+log(1/δ)

ε

)
labeled examples to ε-learn with probability at least 1− δ;
see Anthony & Bartlett (1999, Theorem 5.3) and Blumer
et al. (1989); Ehrenfeucht et al. (1989). The proof of the
lower bound constructs a distribution that does not depend
on the algorithm. The distribution is a particular distribu-
tion over a fixed set shattered by C. So even an algorithm
that knows the distribution requires Ω

(
d+log(1/δ)

ε

)
labeled

examples.

1For any concept class with Vapnik-Chervonenkis dimension
d and any distribution, the size of the smallest ε-cover is at most
O(1/ε)O(d).
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3. Preliminaries
Let X be a non-empty set. We denote by {0, 1}X the class
of all functions from X to {0, 1}. A concept class over a
domain X is a subset C ⊆ {0, 1}X . A labeled example is
a pair (x, y) ∈ X × {0, 1}.

A distribution-independent learning algorithm is a func-
tionA :

⋃∞
m=0 (X × {0, 1})m → {0, 1}X . In other words,

the algorithm gets as input a sequence of labeled exam-
ples (x1, y1), (x2, y2), . . . , (xm, ym) and outputs a func-
tion from X to {0, 1}. We allow the algorithm to output
a function that does not belong to C, i.e., the algorithm
can be improper. A distribution-dependent algorithm is a
function that maps any probability distribution over X to a
distribution-independent algorithm.

Let P be a probability distribution over a domain X . For
any two functions f : X → {0, 1}, g : X → {0, 1} we
define the disagreement pseudo-metric

dP (f, g) = Pr
X∼P

[f(X) 6= g(X)] .

Let C be a concept class over X , let c ∈ C, let ε, δ ∈
(0, 1). Let X1, X2, . . . , Xm be an i.i.d. sample from
P . We define the corresponding labeled sample T =
((X1, c(X1)), (X2, c(X2)), . . . , (Xm, c(Xm))). We say
that an algorithm A, ε-learns target c from m samples with
probability at least 1− δ if

Pr [dP (c, A(T )) ≤ ε] ≥ 1− δ .

The smallest non-negative integer m such that for any tar-
get c ∈ C, the algorithm A, ε-learns the target c from
m samples with probability at least 1 − δ is denoted by
m(A,C, P, ε, δ).

We recall the standard definitions from learning theory. For
any concept c : X → {0, 1} and any S ⊆ X we define
π(c, S) = {x ∈ S : c(x) = 1}. In other words, π(c, S)
is the set of examples in S which c labels 1. A set S ⊆ X
is shattered by a concept class C if for any subset S′ ⊆
S there exists a classifier c ∈ C such that π(c, S) = S′.
Vapnik-Chervonenkis dimension of a concept class C is the
size of the largest set S ⊆ X shattered by C. A subset C ′

of a concept class C is an ε-cover of C for a probability
distribution P if for any c ∈ C there exists c′ ∈ C ′ such
that dP (c, c′) ≤ ε.

To prove our lower bounds we need three general prob-
abilistic results. The first one is the standard Hoeffding
bound. The other two are simple and intuitive propositions.
The first proposition says that if average error dP (c, A(T ))
is high, the algorithm fails to ε-learn with high probability.
The second proposition says that the best algorithm for pre-
dicting a bit based on some side information, is to compute
conditional expectation of the bit and thresholds it at 1/2.

Theorem 1 (Hoeffding bound). Let X1, X2, . . . , Xn be
i.i.d. random variables that lie in interval [a, b] with proba-
bility one and let p = 1

n

∑n
i=1 E[Xi]. Then, for any t ≥ 0,

Pr

[
1

n

n∑
i=1

Xi ≥ p+ t

]
≤ e−2nt2/(a−b)2 ,

Pr

[
1

n

n∑
i=1

Xi ≤ p− t

]
≤ e−2nt2/(a−b)2 .

Proposition 2 (Error probability vs. Expected error). Let
Z be a random variable such that Z ≤ 1 with probability
one. Then,

Pr[Z > t] ≥ E[Z]− t
1− t

for any t ∈ [0, 1).

Proof. We have

E[Z] ≤ t · Pr[Z ≤ t] + 1 · Pr[Z > t]

= t · (1− Pr[Z > t]) + Pr[Z > t] .

Solving for Pr[Z > t] finishes the proof.

Proposition 3 (Predicting Single Bit). Let U be a finite
non-empty set. LetU, V be random variables (possibly cor-
related) such that U ∈ U and V ∈ {0, 1} with probability
one. Let f : U → {0, 1} be a predictor. Then,

Pr [f(U) 6= V ] ≥
∑
u∈U

(
1

2
−
∣∣∣∣12 −E [V |U = u]

∣∣∣∣)
· Pr[U = u] .

Proof. We have

Pr [f(U) 6= V ] =
∑
u∈U

Pr [f(U) 6= V |U = u]

· Pr[U = u] .

It remains to show that

Pr [f(U) 6= V |U = u] ≥ 1

2
−
∣∣∣∣12 −E [V |U = u]

∣∣∣∣ .
Since if U = u, the value f(U) = f(u) is fixed, and hence

Pr [f(U) 6= V |U = u]

≥ min {Pr [V = 1 |U = u] , Pr [V = 0 |U = u]}
= min {E [V |U = u] , 1−E [V |U = u]}

=
1

2
−
∣∣∣∣12 −E [V |U = u]

∣∣∣∣
We used the fact that min{x, 1 − x} = 1

2 −
∣∣ 1

2 − x
∣∣ for

all x ∈ R which can be easily verified by considering two
cases: x ≥ 1

2 and x < 1
2 .
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4. Projections
In this section, we denote by Cn the class of projections
over the domain X = {0, 1}n. The class Cn consists of
n functions c1, c2, . . . , cn from {0, 1}n to {0, 1}. For any
i ∈ {1, 2, . . . , n}, for any x ∈ {0, 1}n, the function ci is
defined as ci((x[1], x[2], . . . , x[n])) = x[i].

For any ε ∈ (0, 1
2 ) and n ≥ 2, we consider a family Pn,ε

consisting of n probability distributions P1, P2, . . . , Pn
over the Boolean hypercube {0, 1}n. In order to describe
the distribution Pi, for some i, consider a random vector
X = (X[1], X[2], . . . , X[n]) drawn from Pi. The dis-
tribution Pi is a product distribution, i.e., Pr[X = x] =∏n
j=1 Pr[X[j] = x[j]] for any x ∈ {0, 1}n. The marginal

distributions of the coordinates are

Pr[X[j] = 1] =

{
1
2 if j = i,
ε if j 6= i,

for j = 1, 2, . . . , n.

The reader should think of ε as a constant that does not
depend on n, say, ε = 1

100 .

The following result is folklore. We include its proof for
completeness.

Proposition 4. Vapnik-Chervonenkis dimension of Cn is
blog2 nc.

Proof. Let us denote the Vapnik-Chervonenkis dimension
by d. Recall that d is the size of the largest shattered
set. Let S be any shattered set of size d. Then, there
must be at least 2d distinct functions in Cn. Hence, d ≤
log2 |Cn| = log2 n. Since d is an integer, we conclude that
d ≤ blog2 nc.

On the other hand, we construct a shattered set
of size blog2 nc. The set will consists of points
x1, x2, . . . , xblog2 nc ∈ {0, 1}n. For any i ∈
{1, 2, . . . , blog2 nc} and any j ∈ {0, 1, 2, . . . , n − 1},
we define xi[j] to be the i-th bit in the binary represen-
tation of the number j. (The bit at position i = 1 is
the least significant bit.) It is not hard to see that for
any v ∈ {0, 1}blog2 nc, there exists c ∈ Cn such that
v = (c(x1), c(x2), . . . , c(xblog2 nc)). Indeed, given v, let
k ∈ {0, 1, . . . , 2blog2 nc − 1} be the number with binary
representation v, then we can take c = ck+1.

Lemma 5 (Small cover). Let n ≥ 2 and ε ∈ (0, 1
2 ). Any

distribution in Pn,ε has 2ε-cover of size 2.

Proof. Consider a distribution Pi ∈ Pn,ε for some i ∈
{1, 2, . . . , n}. Let j be an arbitrary index in {1, 2, . . . , n} \
{i}. Consider the projections ci, cj ∈ Cn. We claim that
C ′ = {ci, cj} is a 2ε-cover of Cn.

To see that C ′ is a 2ε-cover of Cn, consider any ck ∈ Cn.
We need to show that dPi(ci, ck) ≤ 2ε or dPi(cj , ck) ≤

2ε. If k = i or k = j, the condition is trivially satisfied.
Consider k ∈ {1, 2, . . . , n} \ {i, j}. Let X ∼ Pi. Then,

dPi(cj , ck) = Pr[cj(X) 6= ck(X)]

= Pr[cj(X) = 1 ∧ ck(X) = 0]

+ Pr[cj(X) = 0 ∧ ck(X) = 1]

= Pr[X[j] = 1 ∧X[k] = 0]

+ Pr[X[j] = 0 ∧X[k] = 1]

= Pr[X[j] = 1] Pr[X[k] = 0]

+ Pr[X[j] = 0] Pr[X[k] = 1]

= 2ε (1− ε)
< 2ε .

Using Benedek-Itai bound (see Theorem 12 in Appendix B
in the supplementary material) we obtain the corollary be-
low. The corollary states that the distribution-dependent
sample complexity of learning target in Cn under any dis-
tribution from Pn,ε does not depend on n.

Corollary 6 (Learning with knowledge of the distribution).
Let n ≥ 2 and ε ∈ (0, 1

2 ). There exists a distribution-
dependent algorithm such that for any distribution from
Pn,ε, any δ ∈ (0, 1), any target function c ∈ Cn, if the
algorithm gets

m ≥ 12 ln(2/δ)

ε

labeled examples, with probability at least 1 − δ, it 4ε-
learns the target.

The next theorem states that without knowing the distri-
bution, learning a target under a distribution from Pn,ε re-
quires at least Ω(log n) labeled examples. It is important to
note that ε in this bound is the parameter of the distribution,
and not the accuracy of the PAC learning model.

Theorem 7 (Learning without knowledge of the distri-
bution). For any distribution-independent algorithm, any
ε ∈ (0, 1

4 ) and any n ≥ 600/ε3 there exists a distribution
P ∈ Pn,ε and a target concept c ∈ Cn such that if the
algorithm gets

m ≤ lnn

3 ln(1/ε)

labeled examples, it fails to 1
16 -learn the target concept

with probability more than 1
16 .

The main idea of the proof is the following. Assume that
the learner is restricted to output some function that belongs
to Cn (i.e., the learner is proper). Then with high probabil-
ity, the number of coordinates that coincide with the target
on a random sample is Ω(εn), and, thus, the number of
projections that output the same value on each of the m
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random samples is Ω(εmn). Therefore, with high proba-
bility, at least one other projection produces the exact same
output as the target. In this case, the learner has to choose
randomly, and the probability of choosing a wrong answer
is at least 1/2. This implies that the learner must see at least
m ≥ Ω( lnn

ln(1/ε) ) samples. In the proof below we make this
intuition formal, and generalize it to the case of improper
learners, too.

Proof of Theorem 7. Let A be any learning algorithm. For
ease of notation, we formalize it is a function

A :

∞⋃
m=0

(
{0, 1}m×n × {0, 1}m

)
→ {0, 1}{0,1}

n

.

The algorithm receives an m× n matrix and a binary vec-
tor of length m. The rows of the matrix corresponds to
unlabeled examples and the vector encodes the labels. The
output of A is any function from {0, 1}n → {0, 1}.

We demonstrate the existence of a pair (P, c) ∈ Pn,ε ×Cn
which cannot be learned with m samples by the probabilis-
tic method. Let I be chosen uniformly at random from
{1, 2, . . . , n}. We consider the distribution PI ∈ Pn,ε and
target cI ∈ Cn. Let X1, X2, . . . , Xm be an i.i.d. sample
from PI and let Y1 = cI(X1), Y2 = cI(X2), . . . , Ym =
cI(Xm) be the target labels. Let X be the m × n matrix
with entries Xi[j] and let Y = (Y1, Y2, . . . , Ym) be the
vector of labels. The output of the algorithm is A(X,Y ).
We will show that

E [dPI (cI , A(X,Y ))] ≥ 1

8
. (1)

This means that there exists i ∈ {1, 2, . . . , n} such that

E [dPi(ci, A(X,Y )) | I = i] ≥ 1

8
.

By Proposition 2,

Pr

[
dPi(ci, A(X,Y )) >

1

16

∣∣∣∣ I = i

]
≥

1
8 −

1
16

1− 1
16

>
1

16
.

It remains to prove (1). Let Z be a test sample drawn
from PI . That is, conditioned on I , the sequence
X1, X2, . . . , Xm, Z is i.i.d. drawn from PI . Then, by
Proposition 3,

E [dPI (cI , A(X,Y ))] = Pr [A(X,Y )(Z) 6= cI(Z)] ≥∑
x∈{0,1}m×n
y∈{0,1}m
z∈{0,1}n

(
1

2
−
∣∣∣∣12 −E [cI(Z) |X = x, Y = y, Z = z]

∣∣∣∣)

· Pr [X = x, Y = y, Z = z] . (2)

We need to compute E [cI(Z) |X = x, Y = y, Z = z].
For that we need some additional notation. For any ma-
trix x ∈ {0, 1}m×n, let x[1], x[2], . . . , x[n] be its columns.
For any matrix x ∈ {0, 1}m×n and vector y ∈ {0, 1}m let

k(x, y) = {i ∈ {1, 2, . . . , n} : x[i] = y}

be the set of indices of columns of x equal to the vector
y. Also, we define ‖·‖ to be the sum of absolute values
of entries of a vector or a matrix. (Since we use ‖·‖ only
for binary matrices and binary vectors, it will be just the
number of ones.)

For any i ∈ {1, 2, . . . , n},

Pr [I = i,X = x, Y = y]

=

{
1
n

(
1
2

)m
ε‖x‖−‖y‖(1− ε)mn−‖x‖+‖y‖ if i ∈ k(x, y),

0 if i 6∈ k(x, y).

Therefore, for any i ∈ {1, 2, . . . , n},

Pr [I = i |X = x, Y = y]

=
Pr [I = i,X = x, Y = y]

Pr [X = x, Y = y]

=
Pr [I = i,X = x, Y = y]∑

j∈k(x,y) Pr [I = j,X = x, Y = y]

=

{
1

|k(x,y)| if i ∈ k(x, y),

0 if i 6∈ k(x, y).

Conditioned on I , the variables Z and (X,Y ) are indepen-
dent. Thus, for any x ∈ {0, 1}n, and i = 1, 2, . . . , n,

Pr [Z = z | I = i,X = x, Y = y]

= Pr [Z = z | I = i]

=

{
1
2ε
‖z‖−1(1− ε)n−‖z‖ if z[i] = 1,

1
2ε
‖z‖(1− ε)n−1−‖z‖ if z[i] = 0.

This allows us to compute the conditional probability

Pr [I = i, Z = z |X = x, Y = y]

= Pr [Z = z | I = i,X = x, Y = y]

· Pr [I = i |X = x, Y = y]

=


ε‖z‖−1(1−ε)n−‖z‖

2|k(x,y)| if i ∈ k(x, y) and z[i] = 1,
ε‖z‖(1−ε)n−1−‖z‖

2|k(x,y)| if i ∈ k(x, y) and z[i] = 0,

0 if i 6∈ k(x, y).

For any z ∈ {0, 1}n, let

s(x, y, z) = {i ∈ k(x, y) : z[i] = 1} ,

and note that s(x, y, z) ⊆ k(x, y). Then,

Pr [Z = z |X = x, Y = y]
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=

n∑
i=1

Pr [Z = z, I = i |X = x, Y = y]

=
∑

i∈k(x,y)

Pr [Z = z, I = i |X = x, Y = y]

=
∑

i∈s(x,y,x)

Pr [Z = z, I = i |X = x, Y = y]

+
∑

i∈k(x,y)\s(x,y,z)

Pr [Z = z, I = i |X = x, Y = y]

=
1

2|k(x, y)|
· |s(x, y, z)| · ε‖z‖−1(1− ε)n−‖z‖

+
(|k(x, y)| − |s(x, y, z)|) · ε‖z‖(1− ε)n−1−‖z‖

2|k(x, y)|

=
ε‖z‖−1(1− ε)n−1−‖z‖

2|k(x, y)|
· (|s(x, y, z)| · (1− 2ε) + |k(x, y)| · ε) .

Hence,

E [cI(Z) |X = x, Y = y, Z = z]

= Pr [Z[I] = 1 |X = x, Y = y, Z = z]

=
Pr [Z[I] = 1, Z = z |X = x, Y = y]

Pr [Z = z |X = x, Y = y]

=

n∑
i=1

Pr [I = i, Z[i] = 1, Z = z |X = x, Y = y]

Pr [Z = z |X = x, Y = y]

=

|s(x, y, z)|
2|k(x, y)|

· ε‖z‖−1(1− ε)n−‖z‖

ε‖z‖−1(1− ε)n−1−‖z‖

2|k(x, y)|

· 1

(|s(x, y, z)| · (1− 2ε) + |k(x, y, z)| · ε)

=
|s(x, y, z)| · (1− ε)

|s(x, y, z)| · (1− 2ε) + |k(x, y)| · ε

=
1− ε

1− 2ε+
|k(x, y)| · ε
|s(x, y, z)|

We now show that the last expression is close to 1/2. It is
easy to check that

|k(x, y)| · ε
|s(x, y, z)|

∈
[

5

6
, 2

]
⇒ 1− ε

1− 2ε+
|k(x, y)| · ε
|s(x, y, z)|

∈
[

1

4
,

3

4

]
.

Indeed, since ε ∈ (0, 1
4 ),

1− ε

1− 2ε+
|k(x, y)| · ε
|s(x, y, z)|

≥ 1− ε
1− 2ε+ 2

≥ 1− 1/4

1 + 2
=

1

4

and

1− ε

1− 2ε+
|k(x, y)| · ε
|s(x, y, z)|

≤ 1− ε
1− 2ε+ 5/6

≤ 1

1− 1/2 + 5/6
=

3

4
.

We now substitute this into the (2). We have∑
x∈{0,1}m×n
y∈{0,1}m
z∈{0,1}n

(
1

2
−
∣∣∣∣12 −E [cI(Z) |X = x, Y = y, Z = z]

∣∣∣∣)

· Pr [X = x, Y = y, Z = z]

=
∑

x∈{0,1}m×n
y∈{0,1}m
z∈{0,1}n

1

2
−

∣∣∣∣∣∣∣∣
1

2
− 1− ε

1− 2ε+
|k(x, y)| · ε
|s(x, y, z)|

∣∣∣∣∣∣∣∣


· Pr [X = x, Y = y, Z = z]

≥
∑

x∈{0,1}m×n
y∈{0,1}m
z∈{0,1}n

|k(x,y,z)|ε
|s(x,y,z)| ∈[ 56 ,2]

1

2
−

∣∣∣∣∣∣∣∣
1

2
− 1− ε

1− 2ε+
|k(x, y)| · ε
|s(x, y, z)|

∣∣∣∣∣∣∣∣


· Pr [X = x, Y = y, Z = z]

≥
∑

x∈{0,1}m×n
y∈{0,1}m
z∈{0,1}n

|k(x,y,z)|ε
|s(x,y,z)| ∈[ 56 ,2]

(
1

2
− 1

4

)
· Pr [X = x, Y = y, Z = z]

=
1

4
Pr

[
|k(X,Y )| · ε
|s(X,Y, Z)|

∈
[

5

6
, 2

]]
.

In order to prove (1), we need to show that |k(X,Y )|·ε
|s(X,Y,Z)| ∈[

5
6 , 2
]

with probability at least 1/2. To that end, we define
two additional random variables

K = |k(X,Y )| and S = |s(X,Y, Z)| .

The condition |k(X,Y )|·ε
|s(X,Y,Z)| ∈

[
5
6 , 2
]

is equivalent to

1

2
ε ≤ S

K
≤ 6

5
ε . (3)

First, we lower bound K. For any y ∈ {0, 1}m and any
i, j ∈ {1, 2, . . . , n},

Pr [j ∈ k(X,Y ) |Y = y, I = i]

=

{
1 if j = i,
ε‖y‖(1− ε)m−‖y‖ if j 6= j.
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Conditioned on Y = y and I = i, the random variable
K − 1 = |k(X,Y ) \ {I}| is a sum of n − 1 Bernoulli
variables with parameter ε‖y‖(1 − ε)m−‖y‖, one for each
column except for column i. Hoeffding bound with t =
εm/2 and the loose lower bound ε‖y‖(1 − ε)m−‖y‖ ≥ εm

gives

Pr

[
K − 1

n− 1
>
εm

2

∣∣∣∣Y = y, I = i

]
= Pr

[
K − 1

n− 1
> εm − t

∣∣∣∣Y = y, I = i

]
≥ Pr

[
K − 1

n− 1
> ε‖y‖(1− ε)m−‖y‖ − t

∣∣∣∣Y = y, I = i

]
≥ 1− e−2(n−1)t2 .

Since m ≤ lnn
3 ln(1/ε) , we lower bound t = εm

2 as

t = εm/2 >
1

2
ε

lnn
3 ln(1/ε) =

1

2 3
√
n
.

Since the lower bound is uniform for all choices of y and i,
we can remove the conditioning and conclude that

Pr

[
K > 1 +

(n− 1)

2 3
√
n

]
≥ 1− exp

(
− (n− 1)

2n2/3

)
.

For n ≥ 25, we can simplify it further to

Pr

[
K ≥ n2/3

2

]
≥ 3

4
.

Second, conditioned on K = r, the random variable S is
a sum of r − 1 Bernoulli random variables with parameter
ε and one Bernoulli random variable with parameter 1/2.
Hoeffding bound for any t ≥ 0 gives that

Pr

[∣∣∣∣ SK − ε(K − 1) + 1/2

K

∣∣∣∣ < t

∣∣∣∣K = r

]
≥ 1− 2e−2rt2 .

Thus,

Pr

[∣∣∣∣ SK − ε(K − 1) + 1/2

K

∣∣∣∣ < t and K ≥ n2/3

2

]
≥

n∑
r=dn2/3/2e

Pr

[∣∣∣∣ SK − ε(K − 1) + 1/2

K

∣∣∣∣ < t

∣∣∣∣K = r

]
· Pr[K = r]

≥
n∑

r=dn2/3/2e

(
1− 2e−2rt2

)
· Pr[K = r]

≥
(

1− 2e−n
2/3t2/2

)
· Pr

[
K ≥ n2/3

2

]
.

We choose t = ε/4. Since n ≥ 600/ε3, we have
e−n

2/3t2/2 < 1
8 and thus

Pr

[∣∣∣∣ SK − ε(K − 1) + 1/2

K

∣∣∣∣ < t and K ≥ n2/3

2

]

≥
(

1− 2e−n
2/3t2/2

)
· Pr

[
K ≥ n2/3

2

]
≥ 3

4

(
1− 2e−n

2/3t2/2
)

>
3

4

(
1− 1

4

)
=

9

16
>

1

2
.

We claim that t = ε/4,
∣∣∣ SK − ε(K−1)+1/2

K

∣∣∣ < t and K ≥
n2/3

2 imply (3). To see that, note that
∣∣∣ SK − ε(K−1)+1/2

K

∣∣∣ <
t is equivalent to

ε(K − 1) + 1/2

K
− t < S

K
<
ε(K − 1) + 1/2

K
+ t

which implies that

p

(
1− 1

K

)
− t < S

K
< ε

(
1− 1

K

)
+

1

2K
+ t .

Since K ≥ n2/3

2 and n ≥ 25 we have K > 4, which
implies that

3

4
ε− t < S

K
<

3

4
ε+

1

2K
+ t .

Since K ≥ n2/3

2 and n ≥ 12
ε3/2

we have K > 5
2ε , which

implies that

3

4
ε− t < S

K
<

3

4
ε+

ε

5
+ t .

Since t = ε/4, the condition (3) follows.

5. All Functions
Let X be some finite domain. We say a sample T =
((x1, y1), . . . , (xm, ym)) ∈ (X × {0, 1})m of size m is
self-consistent if for any i, j ∈ {1, 2, . . . ,m}, xi = xj
implies that yi = yj . A distribution independent algo-
rithm A is said to be consistent if for any self-consistent
sample T = ((x1, y1), . . . , (xm, ym)) ∈ (X × {0, 1})m,
A(T )(xi) = yi holds for any i = 1, 2, . . . ,m.

In this section we show that for Call = {0, 1}X , any consis-
tent distribution independent learner is almost as powerful
as any distribution independent learner. Note that, in par-
ticular, the ERM algorithm for Call is consistent. In other
words, for the class Call unlabeled data do not have any
information theoretic value.

Theorem 8 (No Gap). LetX be some finite domain, Call =
{0, 1}X andA be any consistent learning algorithm. Then,
for any distribution P over X , any (possibly distribution
dependent) learning algorithm B and any ε, δ ∈ (0, 1),

m(A,Call, P, 2ε, 2δ) ≤ m(B,Call, P, ε, δ) .
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Proof. Fix any integer m ≥ 0 and any distribution P over
X . Let X,X1, X2, . . . , Xm be an i.i.d. sample from P .
Define the random variable

Z = Pr[X 6∈ {X1, X2, . . . , Xm} | X1, X2, . . . , Xm] .

In other words, Z is the probability mass not cov-
ered by X1, X2, . . . , Xm. For any c ∈ Call, let
Tc = ((X1, c(X1)), (X2, c(X2)), . . . , (Xm, c(Xm))) be
the sample labeled according to c. Since A is consistent,
with probability one, for any c ∈ Call,

dP (A(Tc), c) ≤ Z . (4)

Let c̃ be chosen uniformly at random from Call, indepen-
dently of X,X1, X2, . . . , Xm. Additionally, define ĉ ∈
Call as

ĉ(x) =

{
c̃(x) if x ∈ {X1, X2, . . . , Xm},
1− c̃(x) otherwise.

and note that ĉ and c̃ are distributed identically and Tc̃ =
Tĉ, and thus

E [1 [dP (B (Tc̃) , c̃) ≥ ε] | Tc̃]
= E [1 [dP (B (Tĉ) , ĉ) ≥ ε] | Tc̃] (5)

We have

sup
c∈Call

Pr[dP (B(Tc), c) ≥ ε]

= sup
c∈Call

E [1 [dP (B (Tc) , c) ≥ ε]]

≥E [1 [dP (B (Tc̃) , c̃) ≥ ε]]
=E [E [1 [dP (B (Tc̃) , c̃) ≥ ε] | Tc̃]]

=E

[
E

[
1

2
1 [dP (B (Tc̃) , c̃) ≥ ε]

+
1

2
1 [dP (B (Tĉ) , ĉ) ≥ ε]

∣∣∣∣ Tc̃]] (6)

≥E

[
E

[
1

2
1 [Z ≥ 2ε]

∣∣∣∣ Tc̃]] (7)

=
1

2
E [1 [Z ≥ 2ε]]

=
1

2
Pr [Z ≥ 2ε]

=
1

2
sup
c∈C

Pr [Z ≥ 2ε]

≥1

2
sup
c∈C

Pr [dP (A(Tc), c) ≥ 2ε] . (8)

Equation (6) follows from (5). To justify inequality (7),
note that since the classifiers c̃ and ĉ disagree on the
missing mass, if Z ≥ 2ε then dP (B(Tc̃), c̃) ≥ ε or
dP (B(Tĉ), ĉ) ≥ ε or both. By symmetry between c̃

and ĉ, if Z ≥ 2ε then with probability at least 1/2,
dP (B(Tc̃), c̃) ≥ ε. Inequality (8) follows from (4).

Since the inequality

sup
c∈Call

Pr[dP (B(Tc), c) ≥ ε] ≥
1

2
sup
c∈C

Pr [dP (A(Tc), c) ≥ 2ε]

holds for arbitrary m, it implies m(A,Call, P, 2ε, 2δ) ≤
m(B,Call, P, ε, δ) for any ε, δ ∈ (0, 1).

6. Conclusion and Open Problems
Darnstädt et al. (2013) showed that the gap between the
number of samples needed to learn a class of functions
of Vapnik-Chervonenkis dimension d with and without
knowledge of the distribution is upper-bounded by O(d).
We show that this bound is tight for the class of Boolean
projections. On the other hand, for the class of all func-
tions, this gap is only constant. These observations lead to
the following research directions.

First, it will be interesting to understand the value of the gap
for larger classes of functions. For example, one might con-
sider the classes of (monotone) disjunctions over {0, 1}n,
(monotone) conjuctions over {0, 1}n, parities over {0, 1}n,
and halfspaces over Rn. The Vapnik-Chervonenkis dimen-
sion of these classes is Θ(n) thus the gap for these classes
is at least Ω(1) and at most O(n). Other than these crude
bounds, the question of what is the gap for these classes is
wide open.

Second, as the example with class of all functions shows,
the gap is not characterized by the Vapnik-Chervonenkis
dimension. It will be interesting to study other parameters
which determine this gap. In particular, it will be interest-
ing to obtain upper bounds on the gap in terms of other
quantities.

Finally, we believe that studying this question in the agnos-
tic extension of the PAC model (Anthony & Bartlett, 1999,
Chapter 2) will be of great interest, too.
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