
An Investigation into Neural Net Optimization via Hessian Eigenvalue Density

A. Concentration of Quadratic Forms
The following lemma is one result on the concentration of
quadratic forms:

Lemma A.1 (Concentration of Quadratic Forms, (Bellec,
2014)). Let ζ ∼ N(0, σ2In). Let A ∈ Rn×n be any matrix.
Then, ∀x > 0,

P (ζTAζ − E
[
ζTAζ

]
> 2σ2‖A‖F

√
x+ 2σ2‖A‖2x)

≤ exp(−x).
(10)

We are now ready to prove Claim 2.3.

Proof. Consider the block-diagonal matrix A =

⊕ki=1f(H; t, σ2). Then, φ̂σ(t) = wTAw where w is
the concatenation of the k realizations of v divided by√
k. Now observe that w is i.i.d N (0, 1

kn). Therefore, by
Lemma A.1,

P

(
|φσ(t)−φ̂σ(t)| > 2‖A‖F

kn

√
x+

2‖A‖2
kn

x

)
≤ 2 exp(−x).

Now observe that ‖A‖F =
√
k‖f(H; t, σ2)‖F and ‖A‖2 =

‖f(H; t, σ2)‖2. Therefore, we get

P

(
|φσ(t)− φ̂σ(t)| > 2a

n
√
k

√
x+

2b

kn
x

)
≤ 2 exp(−x).

(11)

From (11) is clear that the bound deteriorates as a and b
increase. Since f(·) is the Gaussian density, we know b ≤

1√
2πσ

and a ≤
√
nb. Substituting these worst case scenario

values in (11), we get

P

(
|φσ(t)−φ̂σ(t)| >

√
2

πσ2
(

√
x

nk
+
x

nk
)

)
≤ 2 exp(−x).

(12)
This proves our assertion.

Figure 14 shows how ε(x) changes with respect to probabil-
ity bound 2 exp(−x) in the worst case bound (8). We can
see that even with modest values of k, we can achieve tight
bounds on ε with high probability.

B. Numerical Verification on Small Models
Figure 15 shows how fast φ(v)σ converges to φ̂(v)(t) as m
increases in terms of total variation (L1) distance.

Before going to large scale experiments, we empirically
demonstrate the accuracy of our proposed framework on
a small model where the Hessian eigenvalues can be com-
puted exactly. Let’s consider a feed-forward neural network
trained on 1000 MNIST examples with 1 hidden layer of

Figure 14. Examination of the worst-case tail bound for a network
with n = 5 × 105 parameters. Left figure: we set k = 20 and
change the kernel parameter σ. Right figure: we set σ = 0.01 and
change k.

Figure 15. The left plot shows the accuracy of the Gaussian quadra-
ture approximate as the number of nodes increases. A degree 80
approximation achieves double-precision accuracy of 10−14. The
right plot shows how the accuracy changes as the kernel width, σ2,
increases. For our large-scale experiments, we use σ2 = 10−5 and
90 quadrature nodes.

size 20, corresponding to n = 15910 parameters. The
Hessian of networks of this type were studied earlier in
(Sagun et al., 2017) where it was shown that, after train-
ing, the spectrum consists of a bulk near zero and a few
outlier eigenvalues. In our example, the range [−0.2, 0.4]
roughly corresponds to the bulk and (0.4, 10) corresponds
to the outlier eigenvalues. Figures 1 and 16 compare our
estimates with the exact smoothed density on each of these
intervals. Our results show that with a modest number of
quadrature points (90 here) we are able to approximate the
density extremely well. Our proposed framework achieves
L1(φσ, φ̂σ) ≈ 0.0012 which corresponds to an extremely
accurate solution. As demonstrated in Figure 16, our esti-
mator detects the presence of outlier eigenvalues. Therefore,
the information at the edges of φσ is also recovered.

C. Implementation Details
The implementation of Algorithm 1 for a single machine
is straightforward and can be done in a few lines of code.
Scaling it to run on a 27 million parameter Inception V3
(Szegedy et al., 2016) on ImageNet (where we performed
our largest scale experiments) requires a significant engi-
neering effort.

The major component is a distributed Lanczos algorithm.

An Investigation into Neural Net Optimization via Hessian Eigenvalue Density

Figure 16. Comparison of the estimated smoothed density (dashed)
and the exact smoothed density (solid) in the interval [0.4,+ inf).
We use σ2 = 10−5, k = 10 and degree 90 quadrature.

Because modern deep learning models and datasets are so
large, it is important to be able to run Hessian-vector prod-
ucts in parallel across multiple machines. At each iteration
of the Lanczos algorithm, we need to compute a Hessian-
vector product on the entire dataset. To do so, we split the
data across all our workers (each one of which is endowed
with one or more GPUs), each worker computes mini-batch
Hessian-vector products, and these products are summed
globally in an accumulator. Once worker i is done on its par-
tition of the data, it signals via semaphore i to the chief that
it is done. When all workers are done, the chief computes
completes the Lanczos iteration by applying a QR orthog-
onalization step to total Hessian-vector product. When the
chief is done, it writes the result to shared memory and
raises all the semaphores to signal to the workers to start on
a new iteration.

For the Hessian-vector products, we are careful to elimi-
nate all non-determinism from the computation, including
potential subsampling from the data, shuffle order (this af-
fects e.g., batch normalization), random number seeds for
dropout and data augmentation, parallel threads consuming
data elements for summaries etc. Otherwise, it is unclear
what matrix the Lanczos iteration is actually using.

Although GPUs typically run in single precision, it is impor-
tant to perform the Hessian-vector accumulation in double
precision. Similarly, we run the orthogonalization in the
Lanczos algorithm in double precision. TensorFlow variable
updates are not atomic by default, so it is important to turn
on locking, especially on the accumulators. TensorFlow
lacks communication capability between workers, so the
coordination via semaphores (untrainable tf.Variables) is
crude but necessary.

For a CIFAR-10, on 10 Tesla P100 GPUs, it takes about an
hour to compute 90 Lanczos iterations. For ImageNet, a
Resnet-18 takes about 20 hours to run 90 Lanczos iterations.
An Inception V3 takes far longer, at about 3 days, due to
needing to use 2 GPUs per worker to fit the computation
graph. We were unable to run any larger models due to an
unexpected OOM bugs in TensorFlow. It should be straight-
forward to obtain a 50-100% speedup – we use the default
TensorFlow parameter server setup, and one could easily

reduce wasteful network transfers of model parameters from
parameter servers for every mini-batch, and conversely from
transferring every mini-batch Hessian-vector product back
to the parameter servers. We made no attempt to optimize
these variable placement issues.

For the largest models, TensorFlow graph optimizations
via Grappler can dramatically increase peak GPU memory
usage, and we found it necessary to manage these carefully.

D. Comparison with Other Spectrum
Estimation Methods

There is an extensive literature on estimation of spectrum
of large matrices. A large fraction of the algorithms in this
literature relay on explicit polynomial approximations to f .
To be more specific, these methods approximate f(·, t, σ2)
with a polynomial of degree m, gm(·). In step I of Algo-
rithm 1, φ(v)σ (t) is approximated by

φ̂
(v)
poly(t) :=

n∑
i=1

β2
i gm(λi). (13)

If gm(·) is a good approximation for f(·; t, σ2), we expect
φ̂
(v)
poly(t) ≈ φ(v)σ (t).

Since gm is a polynomial, (13) can be exactly evaluated as
soon as

µ
(v)
j ≡

n∑
i=1

β2
i λ

j
i , 1 ≤ j ≤ m (14)

are known. Note that by definition,

µ
(v)
j =

n∑
i=1

(vT qi)
2λji = vTQΛjQT v = vTHjv

Therefore, if done carefully, {µ(v)
j }mj=1 can be computed

by performing m Hessian-vector products in total. Hence,
by performing km Hessian-vector products one can run
Algorithm 1 with k different realizations of v.

This approximation framework is arguably simpler than
Gaussian quadrature method as it does not have to cope
with complexities of Lanczos algorithm. Therefore, it is
has been extensively used in the numerical linear algebra
literature. The polynomial approximation step is usually
done via Chebyshev polynomials. This class of polynomials
enjoy strong computational and theoretical properties that
make them suitable for approximating smooth functions.
For more details on Chebyshev polynomials we refer the
reader to (Gil et al., 2007).

Recently, there has been a proposal to use Chebyshev ap-
proximation for estimating the Hessian spectrum for deep

An Investigation into Neural Net Optimization via Hessian Eigenvalue Density

networks (Adams et al., 2018). For completeness, we com-
pare the performance of this algorithm with the Gaussian
quadrature rule on the feed-forward network defined earlier.

Figure 17 shows the performance of the Chebyshev method
in approximating φσ(t). The hyper-parameters are selected
such that the performance of the Chebyshev method in Fig-
ure 17 is directly comparable with the performance of Gaus-
sian quadrature in Figure 1. In particular, both approxima-
tions take the same amount of computation (as measured by
the number of Hessian-vector products) and they both use
the same kernel width (σ2 = 10−5). As the figure shows,
the Chebyshev method utterly fails to provide a decent ap-
proximation to the spectrum. As it can be seen from the
figure, almost all of the details of the spectrum are masked
by the artifacts of the polynomial approximation. In general,
we expect the Chebyshev method to require orders of mag-
nitude more Hessian-vector products to match the accuracy
of the Gaussian quadrature.

It is not a surprise that explicit polynomial approximation
fails to provide a good solution. For small kernel widths,
extremely high order polynomials are necessary to approxi-
mate the kernel well. Figure 18 shows how well Chebyshev
polynomials approximate the kernel f with σ2 = 10−5.
The figure suggests that even with a 500 degree approxima-
tion, there is a significant difference between the polynomial
approximation and the exact kernel.

Figure 17. Estimated Hessian spectral density using Chebyshev
approximation method for the feed-forward model. The left plot
shows the densities in the linear scale and the right plot shows
the densities in the log scale. Degree 90 polynomial was used to
estimate the density. σ2 = 10−5 was used as the kernel parameter.
To factor out the effects of noise in moment estimation, exact
eigenvalue moments were provided to the algorithm.

E. Gradient Concentration in the Quadratic
Case

In this section, we theoretically show the phenomenon of
gradient concentration on a simple quadratic loss function
with stochastic gradient descent. The loss function is of the
form

L(θ) =
1

2
(θ − θ∗)TH(θ − θ∗),

where the ordered (in decreasing order) eigenpairs of H
are (λi, qi), i = 1, · · · , n (implies Hqi = λiqi) and the

Figure 18. Demonstrating the quality of Chebyshev polynomial
approximation to the Gaussian kernel with σ2 = 10−5. The plot
suggests that approximations of order 500 or more are necessary
to achieve accurate results. Such high order approximations are
statistically unstable and extremely computationally expensive.

iteration starts at θ0 ∼ N (0, In). We model the stochastic
loss (from which we compute the gradients for SGD) as

L̂(θ) =
1

2
(θ − θ∗ + z)TH(θ − θ∗ + z),

where z is a random variable such that E [z] = 0 and
E
[
zzT

]
= S. In order to understand gradient concen-

tration, we look at the alignment of individual SGD updates
with individual eigenvectors of the Hessian. We are now
ready to prove the following theorem.
Theorem E.1. Consider a single gradient descent iteration,
θt+1 = θt − η∇L̂ with a constant learning rate η ≈ c/λ1
for a constant c < 1. Then,

E
[
〈qi, (θt+1 − θt)〉2

]
→ α ·

(
λi
λ1

)2

· (qTi Sqi) (15)

for some sufficiently large constant α as t→∞.

Proof. Each stochastic gradient step has the form θt =
θt−1−ηH(θt−1+zt−1). Expanding the recurrence induced
by gradient step over t steps, we can write

θt = (In − ηH)tθ0 − ηH
t−1∑
j=0

(In − ηH)jzt−j−1.

Therefore a single update θt+1 − θt = −ηH(θt + zt) can
be expanded as

θt+1 − θt = −ηH[(In − ηH)tθ0

− ηH
t−1∑
j=0

(In − ηH)jzt−j−1 + zt]

We can write the above equation as −ηH(T1 + T2), where

T1 = (In − ηH)tθ0

T2 = −ηH
t−1∑
j=0

(In − ηH)jzt−j−1 + zt

An Investigation into Neural Net Optimization via Hessian Eigenvalue Density

Consider the dot product of this update with one of the
eigenvectors qi. Clearly from the form of the update
E [〈qi, θt+1 − θt〉]

t→∞−−−→ 0. We now quantify the variance
of the update in the direction of qi. Using the identity
Hqi = λiqi, it is easy to see that

qTi ηHT1 = ηλi(1− ηλi)tqTi θ0

qTi ηHT2 = −η2λ2i
t−1∑
j=0

(1− ηλi)jqTi zt−j−1 + ηλiq
T
i zt

Squaring the sum of the two terms above and taking expec-
tations, only the squared terms survive. We write the

E
[
〈qi, (θt+1 − θt)〉2

]
= η2λ2i (1− ηλi)2t

+

η4λ4i t−1∑
j=0

(1− ηλi)2j + η2λ2i

 · (qTi Sqi)
As t→∞, the first term above goes to 0. This suggests that
in the absence of noise in the gradients there is no reason
to expect any alignment of the gradient updates with the
eigenvectors of the Hessian. However, the second term
(after some algebraic simplification) can be written as

2η2λ2i
2− ηλi

· (qTi Sqi).

Parameterizing η = c/λ1 completes the proof.

A couple of observations are appropriate here. We can see
that as the separation of eigenvalues increases, gradient
updates align quadratically with the top eigenspaces. By
manipulating the alignment of S with the top eigenspaces
of H , we can dramatically change the concentration of
updates. For example, if S was similar to H , the alignment
with the top eigenspaces can be enhanced. If S was similar
to H−1, the alignment with the top eigenspaces can be
diminished. We have seen that, even in practice, if we could
control the noise in the gradients, we can hamper or improve
optimization in significant ways.

F. Experimental Details
On CIFAR-10, our models of interest are:

Resnet-32: This model is a standard Resnet-32 with 460k
parameters. We train with SGD and a batch size of
128, and decay the learning from 0.1 by factors of 10
at step 40k, 60k, 80k. This attains a validation of 92%
with data augmentation (and around 85% without)

VGG-11: This model is a slightly modified VGG-11 archi-
tecture. Instead of the enormous final fully connected
layers, we are able to reduce these to 256 neurons with
only a little degradation in validation accuracy (81%
vs 83% with a 2048 size fully connected layers). We
train with a constant SGD learning rate of 0.1, and
a batch size of 128. This model has over 10 million
parameters.

To ensure that our models have a finite local minimum, we
introduce a small label smoothing of 0.1. This does not
affect the validation accuracy; the only visible effect is that
the lowest attained cross entropy loss is the entropy 0.509.

On Imagenet, our primary model of interest is Resnet-18.
We use the model in the official Tensorflow Models repos-
itory (Github, 2017). However, we train the model on
299×299 resolution images, in an asynchronous fashion on
50 GPUs with an exponentially decaying learning rate start-
ing at 0.045 and batch size 32. This attains 71.9% validation
accuracy. This model has over 11 million parameters.

G. Batch normalization with population
statistics

The population loss experiment is quite difficult to run on
CIFAR-10 (we were unable to make Inception V3 train in
this way without using a tiny learning rate of 10−6). In
particular, it is important to divide the learning rate by a
factor of 100, and also to spend at least 400 steps at the start
of optimization with a learning rate of 0: this allows the
batch normalization population statistics to stabilize with a
better initialization than the default mean of 0.0 and variance
of 1.0.

Figure 19. Optimization progress (in terms of loss) of batch nor-
malization with mini-batch statistics and population statistics.

