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Abstract

Topic models are Bayesian models that are frequently used to capture the latent

structure of certain corpora of documents or images. Each data element in such a

corpus (for instance each item in a collection of scientific articles) is regarded as a convex

combination of a small number of vectors corresponding to ‘topics’ or ‘components’.

The weights are assumed to have a Dirichlet prior distribution. The standard approach

towards approximating the posterior is to use variational inference algorithms, and in

particular a mean field approximation.

We show that this approach suffers from an instability that can produce misleading

conclusions. Namely, for certain regimes of the model parameters, variational inference

outputs a non-trivial decomposition into topics. However –for the same parameter

values– the data contain no actual information about the true decomposition, and

hence the output of the algorithm is uncorrelated with the true topic decomposition.

Among other consequences, the estimated posterior mean is significantly wrong, and

estimated Bayesian credible regions do not achieve the nominal coverage. We discuss

how this instability is remedied by more accurate mean field approximations.

Keywords: Variational Inference; Topic Models; Approximate Message Passing; Mean Field

Approximation; Credible Interval; TAP Free Energy.
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1 Introduction

Topic modeling [12] aims at extracting the latent structure from a corpus of documents (either

images or texts), that are represented as vectors x1,x2, . . . ,xn ∈ Rd. The key assumption

is that the n documents are (approximately) convex combinations of a small number k of

topics h̃1, . . . , h̃k ∈ Rd. Conditional on the topics, documents are generated independently

by letting

xa =
√
β

d

k∑
`=1

wa,`h̃` + za , (1.1)

where the weights wa = (wa,`)1≤`≤k and noise vectors za are i.i.d. across a ∈ {1, . . . , n}. The

scaling factor
√
β/d is introduced for mathematical convenience (an equivalent parametriza-

tion would have been to scale Z by a noise-level parameter σ), and β > 0 can be interpreted

as a signal-to-noise ratio. It is also useful to introduce the matrix X ∈ Rn×d whose i-th row

is xi, and therefore

X =
√
β

d
WHT +Z , (1.2)

where W ∈ Rn×k and H ∈ Rd×k. The a-th row of W , is the vector of weights wa, while

the rows of H will be denoted by hi ∈ Rk.

Note that wa belongs to the simplex P1(k) = {w ∈ Rk
≥0 : 〈w,1k〉 = 1}. It is com-

mon to assume that its prior is Dirichlet: this class of models is known as Latent Dirichlet

Allocations, or LDA [16]. Here we will take a particularly simple example of this type, and

assume that the prior is Dirichlet in k dimensions with all parameters equal to ν (which

we will denote by Dir(ν; k)). As for the topics H , their prior distribution depends on the

specific application. For instance, when applied to text corpora, the h̃i are typically non-

negative and represent normalized word count vectors. Here we will assume them to be

standard Gaussian (h̃i)i≤d ∼iid N(0, Ik). Finally, Z will be a noise matrix with entries

(Zij)i∈[n],j∈[d] ∼iid N(0, 1/d). We make these simplifying assumptions in order to keep analyt-

ical calculations manageable. It should be clear from our treatment that similar qualitative

result should hold for more general models.
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In fully Bayesian topic models, the parameters of the Dirichlet distribution, as well as

the topic distributions are themselves unknown and to be learned from data. Here we will

work in an idealized setting in which they are known. We will also assume that data are

in fact distributed according to the postulated generative model. Since we are interested

in studying some limitations of current approaches, our main point is only reinforced by

assuming this idealized scenario.

As is common with Bayesian approaches, computing the posterior distribution of the fac-

tors H , W given the data X is computationally challenging. Since the seminal work of Blei,

Ng and Jordan [16], variational inference is the method of choice for addressing this problem

within topic models. The term ‘variational inference’ refers to a broad class of methods

that aim at approximating the posterior computation by solving an optimization problem,

see [30, 45, 13] for background. A popular starting point is the Gibbs variational principle,

namely the fact that the posterior solves the following convex optimization problem:

pW ,H|X( · , · |X) = arg min
q∈Pn,d,k

KL(q‖pW ,H|X) (1.3)

= arg min
q∈Pn,d,k

{
− Eq log pX|W ,H(X|H ,W ) + KL(q‖pW × pH)

}
, (1.4)

where KL( · ‖ · ) denotes the Kullback-Leibler divergence. The variational expression in

Eq. (1.4) is also known as the Gibbs free energy. Optimization is within the space Pn,d,k of

probability measures on H ,W . To be precise, we always assume that a dominating measure

ν0 over Rn×k ×Rd×k is given for W ,H , and both pW ,H|X and q have densities with respect

to ν0: we hence identify the measure with its density. Throughout the paper (with the

exception of the example in Section 2) ν0 can be taken to be the Lebesgue measure.

Even for W ,H discrete, the Gibbs principle has exponentially many decision variables.

Variational methods differ in the way the problem (1.3) is approximated. The main approach

within topic modeling is naive mean field, which restricts the optimization problem to the

space of probability measures that factorize over the rows of W ,H :

q̂ (W ,H) = q (H) q̃ (W ) =
d∏
i=1

qi (hi)
n∏
a=1

q̃a (wa) . (1.5)
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By a suitable parametrization of the marginals qi, q̃a, this leads to an optimization problem

of dimension O((n+d)k), cf. Section 3. Despite being non-convex, this problem is separately

convex in the (qi)i≤d and (q̃a)a≤n, which naturally suggests the use of an alternating min-

imization algorithm which has been successfully deployed in a broad range of applications

ranging from computer vision to genetics [25, 49, 42]. We will refer to this as to the naive

mean field iteration. Following a common use in the topics models literature, we will use the

terms ‘variational inference’ and ‘naive mean field’ interchangeably.

The main result of this paper is that naive mean field presents an instability for learning

Latent Dirichlet Allocations. We will focus on the limit n, d→∞ with n/d = δ fixed. Hence,

an LDA distribution is determined by the parameters (k, δ, ν, β). We will show that there

are regions in this parameter space such that the following two findings hold simultaneously:

No non-trivial estimator. Any estimator Ĥ , Ŵ of the topic or weight matrices is asymp-

totically uncorrelated with the real model parameters H ,W . In other words, the data

do not contain enough signal to perform any strong inference.

Variational inference is randomly biased. Given the above, one would hope the Bayesian

posterior to be centered on an unbiased estimate. In particular, p(wa|X) (the posterior

distribution over weights of document a) should be centered around the uniform distri-

bution wa = (1/k, . . . , 1/k). In contrast, we will show that the posterior produced by

naive mean field is centered around a random distribution that is uncorrelated with the

actual weights. Similarly, the posterior over topic vectors is centered around random

vectors uncorrelated with the true topics.

One key argument in support of Bayesian methods is the hope that they provide a measure

of uncertainty of the estimated variables. In view of this, the failure just described is partic-

ularly dangerous because it suggests some measure of certainty, although the estimates are

essentially random.

Is there a way to eliminate this instability by using a better mean field approximation?

We show that a promising approach is provided by a classical idea in statistical physics, the

Thouless-Anderson-Palmer (TAP) free energy [44, 38]. This suggests a variational principle
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that is analogous in form to naive mean field, but provides a more accurate approximation

of the Gibbs principle:

Variational inference via the TAP free energy. We show that the instability of naive

mean field is remedied by using the TAP free energy instead of the naive mean field

free energy. The latter can be optimized using an iterative scheme that is analogous to

the naive mean field iteration and is known as approximate message passing (AMP).

While the TAP approach is promising –at least for synthetic data– we believe that further

work is needed to develop a reliable inference scheme.

The rest of the paper is organized as follows. Section 2 discusses a simpler example,

Z2-synchronization, which shares important features with latent Dirichlet allocations. Since

calculations are fairly straightforward, this example allows to explain the main mathematical

points in a simple context. We then present our main results about instability of naive mean

field in Section 3, and discuss the use of TAP free energy to overcome the instability in

Section 4.

1.1 Related literature

Over the last fifteen years, topic models have been generalized to cover an impressive number

of applications. A short list includes mixed membership models [24, 1], dynamic topic

models [14], correlated topic models [33, 15], spatial LDA [50], relational topic models [19],

Bayesian tensor models [53]. While other approaches have been used (e.g. Gibbs sampling),

variational algorithms are among the most popular methods for Bayesian inference in these

models. Variational methods provide a fairly complete and interpretable description of the

posterior, while allowing to leverage advances in optimization algorithms and architectures

towards this goal (see [28, 17]).

Despite this broad empirical success, little is rigorously known about the accuracy of

variational inference in concrete statistical problems. Wang and Titterington [46, 48] prove

local convergence of naive mean field estimate to the true parameters for exponential families

with missing data and Gaussian mixture models. In the context of Gaussian mixtures, the

same authors prove that the covariance of the variational posterior is asymptotically smaller
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(in the positive semidefinite order) than the inverse of the Fisher information matrix [47].

All of these results are established in the classical large sample asymptotics n → ∞ with d

fixed. In the present paper we focus instead on the high-dimensional limit n = Θ(d) and

prove that also the mode (or mean) of the variational posterior is incorrect. Notice that

the high-dimensional regime is particularly relevant for the analysis of Bayesian methods.

Indeed, in the classical low-dimensional asymptotics Bayesian approaches do not outperform

maximum likelihood.

In order to correct for the underestimation of covariances, [47] suggest replacing its vari-

ational estimate by the inverse Fisher information matrix. A different approach is developed

in [27], building on linear response theory.

Naive mean field variational inference was used in [18, 10] to estimate the parameters

of the stochastic block model. These works establish consistency and asymptotic normality

of the variational estimates in a large signal-to-noise ratio regime. Our work focuses on

estimating the latent factors: it would be interesting to consider implications on parameter

estimation as well.

The recent paper [52] also studies variational inference in the context of the stochastic

block model, but focuses on reconstructing the latent vertex labels. The authors prove

that naive mean field achieves minimax optimal statistical rates. Let us emphasize that

this problem is closely related to topic models: both are models for approximately low-rank

matrices, with a probabilistic prior on the factors. The results of [52] are complementary to

ours, in the sense that [52] establishes positive results at large signal-to-noise ratio (albeit

for a different model), while we prove inconsistency at low signal-to-noise ratio.

General conditions for consistency of variational Bayes methods have been recently de-

veloped in [51] and [40]. The first paper establishes a Bernstein-von Mises type theorem

for variational inference, while the latter proves consistency of point estimates derived from

variational inference. Once more, these works focus on a high signal-to-noise regime.

Our work also builds on recent theoretical advances in high-dimensional low-rank models,

that were mainly driven by techniques from mathematical statistical physics (more specif-

ically, spin glass theory). An incomplete list of relevant references includes [31, 21, 20, 32,

6, 34, 36, 35, 2]. These papers prove asymptotically exact characterizations of the Bayes
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optimal estimation error in low-rank models, to an increasing degree of generality, under the

high-dimensional scaling n, d→∞ with n/d→ δ ∈ (0,∞).

Related ideas also suggest an iterative algorithm for Bayesian estimation, namely Bayes

Approximate Message Passing [22, 23]. As mentioned above, Bayes AMP can be regarded

as minimizing a different variational approximation known as the TAP free energy. An

important advantage over naive mean field is that AMP can be rigorously analyzed using a

method known as state evolution [7, 29, 9].

Let us finally mention that a parallel line of work develops polynomial-time algorithms

to construct non-negative matrix factorizations under certain structural assumptions on the

data matrix X, such as separability [4, 3, 43]. It should be emphasized that the objective of

these algorithms is different from the one of Bayesian methods: they return a factorization

that is guaranteed to be unique under separability. In contrast, variational methods attempt

to approximate the posterior distribution, when the data are generated according to the

LDA model.

1.2 Notations

We denote by Im the identity matrix, and by Jm the all-ones matrix in m dimensions

(subscripts will be dropped when the number of dimensions is clear from the context). We

use 1k ∈ Rk for the all-ones vector.

We will use ⊗ for the tensor (outer) product. In particular, given vectors expressed in

the canonical basis as u = ∑d1
i=1 uiei ∈ Rd1 and v = ∑d2

i=j vjej ∈ Rd2 , u ⊗ v ∈ Rd1 ⊗ Rd2 is

the tensor with coordinates (u⊗ v)ij = uivj in the basis ei ⊗ ej. We will identify the space

of matrices Rd1×d2 with the tensor product Rd1 ⊗ Rd2 . In particular, for u ∈ Rd1 , v ∈ Rd2 ,

we identify u⊗ v with the matrix uvT.

Given a symmetric matrixM ∈ Rn×n, we denote by λ1(M ) ≥ λ2(M ) ≥ · · · ≥ λn(M ) its

eigenvalues in decreasing order. For a matrix (or vector) A ∈ Rd×n we denote the orthogonal

projector operator onto the subspace spanned by the columns of A by PA ∈ Rd×d, and

its orthogonal complement by P⊥A = Id − PA. When the subscript is omitted, this is

understood to be the projector onto the space spanned by the all-ones vector: P = 1d1d/d

and P⊥ = Id − P .
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2 A simple example: Z2-synchronization

In Z2 synchronization we are interested in estimating a vector σ ∈ {+1,−1}n from observa-

tions X ∈ Rn×n, generated according to

X = λ

n
σσT +Z , (2.1)

where Z = ZT ∈ Rn×n is distributed according to the Gaussian Orthogonal Ensemble

GOE(n), namely (Zij)i<j≤n ∼iid N(0, 1/n) are independent of (Zii)i≤n ∼iid N(0, 2/n). The

parameter λ ≥ 0 corresponds to the signal-to-noise ratio.

It is known that for λ ≤ 1 no algorithm can estimate σ from data X with positive

correlation in the limit n → ∞. The following is an immediate consequence of [31, 20], see

Appendix C.1.

Lemma 2.1. Under model (2.1), for λ ≤ 1 and any estimator σ̂ : Rn×n → Rn \ {0}, the

following limit holds in probability:

lim sup
n→∞

|〈σ̂(X),σ〉|
‖σ̂(X)‖2‖σ‖2

= 0 . (2.2)

How does variational inference perform on this problem? Any product probability distri-

bution q̂(σ) = ∏n
i=1 qi(σi) can be parametrized by the means mi = ∑

σi∈{+1,−1} qi(σi)σi, and

it is immediate to get

KL(q̂‖pσ|X) = F(m) + const. , (2.3)

F(m) ≡ −λ2 〈m,X0m〉 −
n∑
i=1

h(mi) . (2.4)

Here X0 is obtained from X by setting the diagonal entries to 0, and h(x) = −(1 +

x)/2 log((1 + x)/2) − (1 − x)/2 log((1 − x)/2) is the binary entropy function. In view of

Lemma 2.1, the correct posterior distribution should be essentially uniform, resulting in

m vanishing. Indeed, m∗ = 0 is a stationary point of the mean field free energy F(m):

∇F(m)|m=m∗ = 0. We refer to this as the ‘uninformative fixed point’.
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Is m∗ a local minimum? Computing the Hessian at the uninformative fixed point yields

∇2F(m)
∣∣∣
m=m∗

= −λX0 + I . (2.5)

The matrix X0 is a rank-one deformation of a Wigner matrix and its spectrum is well

understood [5, 26, 8]. For λ ≤ 1, its eigenvalues are contained with high probability in the

interval [−2, 2], with λmin(X) → −2, λmax(X) → 2 as n → ∞. For λ > 1, λmax(X) →

λ+ λ−1, while the other eigenvalues are contained in [−2, 2]. This implies

lim
n→∞

λmin(∇2F
∣∣∣
m∗

) =


1− 2λ if λ ≤ 1,

−λ2 if λ > 1.
(2.6)

In other words, m∗ = 0 is a local minimum for λ < 1/2, but becomes a saddle point for

λ > 1/2. In particular, for λ ∈ (1/2, 1), variational inference will produce an estimate

m̂ 6= 0, although the posterior should be essentially uniform. In fact, it is possible to make

this conclusion more quantitative.

Proposition 2.2. Let m̂ ∈ [−1, 1]n be any local minimum of the mean field free energy

F(m), under the Z2-synchronization model (2.1). Then there exists a numerical constant

c0 > 0 such that, with high probability, for λ > 1/2,

1
n
‖m̂‖2

2 ≥ c0 min
(
(2λ− 1)2, 1

)
. (2.7)

In other words, although no estimator is positively correlated with the true signal σ,

variational inference outputs biases m̂i that are non-zero (and indeed of order one, for a

positive fraction of them).

The last statement immediately implies that naive mean field leads to incorrect inferential

statements for λ ∈ (1/2, 1). In order to formalize this point, given any estimators {q̂i( · )}i≤n
of the posterior marginals, we define the per-coordinate expected coverage as

Q(q̂) = 1
n

n∑
i=1

P
(
σi = arg max

τi∈{+1,−1}
q̂i(τi)

)
. (2.8)
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This is the expected fraction of coordinates that are estimated correctly by choosing σ

according to the estimated posterior. Since the prior is assumed to be correct, it can be

interpreted either as the expectation (with respect to the parameters) of the frequentist

coverage, or as the expectation (with respect to the data) of the Bayesian coverage. On the

other hand, if the q̂i were accurate, Bayesian theory would suggest claiming the coverage

Q̂(q̂) ≡ 1
n

∑
i≤n

max
τi

q̂i(τi) . (2.9)

The following corollary is a direct consequence of Proposition 2.2, and formalizes the claim

that naive mean field leads to incorrect inferential statements. More precisely, it overesti-

mates the coverage achieved.

Corollary 2.3. Let m̂ ∈ [−1, 1]n be any local minimum of the mean field free energy F(m),

under the Z2-synchronization model (2.1), and consider the corresponding posterior marginal

estimates q̂i(σi) = (1 + m̂iσi)/2. Then, there exists a numerical constant c0 > 0 such that,

with high probability, for λ ∈ (1/2, 1),

Q(q̂) ≤ 1
2 + on(1) , Q̂(q̂) ≥ 1

2 + c0 min
(
(2λ− 1), 1

)
. (2.10)

While similar formal coverage statements can be obtained also for the more complex case

of topic models, we will not make them explicit, since they are relatively straightforward

consequences of our analysis.

3 Instability of variational inference for topic models

3.1 Information-theoretic limit

As in the case of Z2 synchronization discussed in Section 2, we expect it to be impossible to

estimate the factors W ,H with strictly positive correlation for small enough signal-to-noise

ratio β (or small enough sample size δ). The exact threshold was characterized recently in

[36] (but see also [21, 6, 34, 35] for closely related results). The characterization in [36] is

given in terms of a variational principle over k × k matrices.

10



Theorem 1 (Special case of [36]). Let In(X;W ,H) denote the mutual information between

the data X and the factors H ,W under the LDA model (1.2). Then, the following limit

holds almost surely

lim
n,d→∞

1
d

In(X;W ,H) = inf
M∈Sk

RS(M ; k, δ, ν) , (3.1)

where Sk is the cone of k× k positive semidefinite matrices and RS( · · · ) is a function given

explicitly in Appendix C.2.

It is also shown in Appendix C.2 that M ∗ = (δβ/k2)Jk is a stationary point of the

free energy RS(M ; k, δ, ν). We shall refer to M ∗ as the uninformative point. Let βBayes =

βBayes(k, δ, ν) be the supremum value of β such that the infimum in Eq. (3.1) is uniquely

achieved at M ∗:

βBayes(k, δ, ν) = sup
{
β ≥ 0 : RS(M ; k, δ, ν) > RS(M ∗; k, δ, ν) for all M 6= M ∗

}
. (3.2)

As formalized below, for β < βBayes the data X do not contain sufficient information for

estimating H , W in a non-trivial manner.

Proposition 3.1. Let M ∗ = δβJk/k
2. Then M ∗ is a stationary point of the function

M 7→ RS(M ; β, k, δ, ν). Further, it is a local minimum provided β < βspect(k, δ, ν) where the

spectral threshold is given by

βspect ≡
k(kν + 1)√

δ
. (3.3)

Finally, if β < βBayes(k, δ, ν), for any estimator X 7→ F̂ n(X), we have

lim inf
n→∞

E
{ ∥∥∥WHT − F̂ n(X)

∥∥∥2

F

}
≥ lim

n→∞
E
{∥∥∥WHT − c1n(XT1n)T

∥∥∥2

F

}
, (3.4)

for c ≡
√
β/(k + βδ) a constant.

We refer to Appendix C for a proof of this statement.

Note that Eq. (3.4) compares the mean square error of an arbitrary estimator F̂ n, to the

mean square error of the trivial estimator that replaces each column of X by its average.
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This is equivalent to estimating all the weights wi by the uniform distribution 1k/k. Of

course, βBayes ≤ βspect. However, this upper bound appears to be tight for small k.

Remark 3.1. Solving numerically the k(k + 1)/2-dimensional problem (3.1) indicates that

βBayes(k, ν, δ) = βspect(k, ν, δ) for k ∈ {2, 3} and ν = 1.

3.2 Naive mean field free energy

We consider a trial joint distribution that factorizes according to rows ofW andH according

to Eq. (1.5). It turns out (see Appendix D.2) that, for any stationary point of KL(q̂‖pH,W |X)

over such product distributions, the marginals take the form

qi(h) = exp
{
〈mi,h〉 −

1
2 〈h,Qih〉 − φ(mi,Qi)

}
q0 (h) ,

q̃a(w) = exp
{
〈m̃a,w〉 −

1
2
〈
w, Q̃aw

〉
− φ̃(m̃a, Q̃a)

}
q̃0 (w) ,

(3.5)

where q0( · ) is the density of N(0, Ik), and q̃0( · ) is the density of Dir(ν; k), and φ, φ̃ : Rk ×

Rk×k → R are defined implicitly by the normalization condition
∫
qi(dhi) =

∫
q̃a(dwa) = 1.

In the following we let m = (mi)i≤d, m̃ = (m̃a)a≤n denote the set of parameters in these

distributions; these can also be viewed as matrices m ∈ Rd×k and m̃ ∈ Rd×k whose i-th row

is mi (in the former case) or m̃i (in the latter).

It is useful to define the functions F, F̃ : Rk × Rk×k → Rk and G, G̃ : Rk × Rk×k → Rk×k

as (proportional to) expectations with respect to the approximate posteriors (3.5)

F(mi;Q) ≡
√
β
∫
h qi(dh) , F̃(m̃a; Q̃) ≡

√
β
∫
w q̃a(dw) , (3.6)

G(mi;Q) ≡ β
∫
h⊗2 qi(dh) , G̃(m̃a; Q̃) ≡ β

∫
w⊗2 q̃a(dw) . (3.7)

For m ∈ Rd×k, we overload the notation and denote by F(m;Q) ∈ Rd×k the matrix whose

i-th row is F(mi;Q) (and similarly for F̃(m̃; Q̃)).

When restricted to a product-form ansatz with parametrization (3.5), the mean field free
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energy takes the form (see Appendix D.3)

KL(q̂‖pW ,H|X) = F(r, r̃,Ω, Ω̃) + d

2‖X‖
2
F + log pX(X) , (3.8)

where

F(r, r̃,Ω, Ω̃) =
d∑
i=1

ψ∗(ri,Ωi) +
n∑
a=1

ψ̃∗(r̃a, Ω̃)−
√
βTr

(
Xrr̃T

)
+ β

2d

d∑
i=1

n∑
a=1
〈Ωi, Ω̃a〉 , (3.9)

ψ∗(r,Ω) ≡ sup
m,Q

{
〈r,m〉 − 1

2〈Ω,Q〉 − φ(m,Q)
}
, (3.10)

ψ̃∗(r̃, Ω̃) ≡ sup
m̃,Q̃

{
〈r̃, m̃〉 − 1

2〈Ω̃, Q̃〉 − φ̃(m̃, Q̃)
}
. (3.11)

Note that Eq. (3.11) implies the following convex duality relation between (r, r̃,Ω, Ω̃) and

(m, m̃,Q, Q̃)

ri ≡
1√
β

F(mi;Q), r̃a ≡
1√
β

F̃(m̃a; Q̃) , (3.12)

Ωi ≡
1
β

G(mi;Q), Ω̃a ≡
1
β

G̃(m̃a; Q̃) . (3.13)

By strict convexity of φ(m,Q), φ̃(m̃, Q̃) (the latter is strongly convex on the hyperplane

〈1, m̃〉 = 0, 〈1, Q̃1〉 = 0) we can view F(· · · ) as a function of (r, r̃,Ω, Ω̃) or (m, m̃,Q, Q̃).

With an abuse of notation, we will write F(r, r̃,Ω, Ω̃) or F(m, m̃,Q, Q̃) interchangeably.

A critical (stationary) point of the free energy (3.9) is a point at which∇F(m, m̃,Q, Q̃) =

0. It turns out that the mean field free energy always admits a point that does not distin-

guish between the k latent factors, and in particular m = v1T
k , m̃ = ṽ1T

k , as stated in detail

below. We will refer to this as the uninformative critical point (or uninformative fixed point).

Lemma 3.2. Define

E(q; ν) ≡
∫
w2

1 exp{−q‖w‖2
2} q̃0(dw)∫

exp{−q‖w‖2
2} q̃0(dw)

and let q∗1 be any solution of the following equation in [0,∞)

q∗1 = kβδ

k − 1

{
E
(

β

1 + q∗1
; ν
)
− 1
k2

}
. (3.14)
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(Such a solution always exists.) Further define

q∗2 = βδ − kq∗1
k2 , q̃∗1 = β

1 + q∗1
, (3.15)

q̃∗2 = β

(
‖XT1n‖2

2
d(1 + q∗1 + kq∗2)2 −

q∗2
(1 + q∗1)(1 + q∗1 + kq∗2)

)
. (3.16)

Then the naive mean field free energy of Eq. (3.9) admits a stationary point whereby, for all

i ∈ [d], a ∈ [n],

m∗i =
√
β

k
(XT1n)i 1k , (3.17)

m̃∗a = β

k(1 + q∗1 + kq∗2) (XXT1n)a 1k , (3.18)

Q∗i = q∗1Ik + q∗2Jk , Q̃
∗
a = q̃∗1Ik + q̃∗2Jk . (3.19)

The proof of this lemma is deferred to Appendix D.4. We note that Eq. (3.14) appears to

always have a unique solution. Although we do not have a proof of uniqueness, in Appendix

J we prove that the solution is unique conditional on a certain inequality that can be easily

checked numerically.

3.3 Naive mean field iteration

As mentioned in the introduction, the variational approximation of the free energy is of-

ten minimized by alternating minimization over the marginals (qi)i≤d, (q̃a)a≤n of Eq. (1.5).

Using the parametrization (3.5), we obtain the following naive mean field iteration for

mt, m̃t,Qt, Q̃
t (see Appendix D.2):

mt+1 = XT F̃(m̃t; Q̃t), Qt+1 = 1
d

n∑
a=1

G̃(m̃t
a; Q̃

t) , (3.20)

m̃t = X F(mt;Qt) , Q̃
t = 1

d

d∑
i=1

G(mt
i;Qt) . (3.21)

Note that, while the free energy naturally depends on the (Qi)i≤d, (Q̃a)a≤n, the iteration

sets Qt
i = Qt, Q̃t

a = Q̃
t, independent of the indices i, a. In fact, any stationary point of
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F(m, m̃,Q, Q̃) can be shown to be of this form.

The state of the iteration in Eqs. (3.20), (3.21) is given by the pair (mt,Qt) ∈ Rd×k×Rk×k,

and (m̃t, Q̃
t) can be viewed as derived variables. The iteration hence defines a mapping

MX : Rd×k × Rk×k → Rd×k × Rk×k, and we can write it in the form

(mt+1,Qt+1) =MX(mt,Qt) . (3.22)

Any critical point of the free energy (3.9) is a fixed point of the naive mean field iteration

and vice-versa, as follows from Appendix D.3. In particular, the uninformative critical point

(m∗, m̃∗,Q∗, Q̃∗) is a fixed point of the naive mean field iteration.

3.4 Instability

In view of Section 3.1, for β < βBayes(k, δ, ν), the real posterior should be centered around

a point symmetric under permutations of the topics. In particular, the posterior q̃(wa)

over the weights of document a should be centered around the symmetric distribution wa =

(1/k, . . . , 1/k). In other words, the uninformative fixed point should be a good approximation

of the posterior for β ≤ βBayes.

A minimum consistency condition for variational inference is that the uninformative

stationary point is a local minimum of the posterior for β < βBayes. The next theorem

provides a necessary condition for stability of the uninformative point, which we expect to

be tight. As discussed below, it implies that this point is a saddle in an interval of β below

βBayes. We recall that the index of a smooth function f at stationary point x∗ is the number

of the negative eigenvalues of the Hessian ∇2f(x∗).

Theorem 2. Define q∗1, q∗2 as in Eqs. (3.14), (3.15), and let

L(β, k, δ, ν) ≡ β(1 +
√
δ)2

1 + q∗1

(
q∗1
δβ

+ k

[
q∗2

1 + q∗1 + kq∗2

(
1
δβ

+ 1
k

)
− 1
k2

]
+

)
. (3.23)

If L(β, k, δ, ν) > 1, then there exists ε1, ε2 > 0 such that the uninformative critical point of

Lemma 3.2, (m∗, m̃∗,Q∗, Q̃∗) is, with high probability, a saddle point, with index at least

nε1 and λmin(F|
m∗,m̃∗,Q∗,Q̃

∗) ≤ −ε2.
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Correspondingly (m∗,Q∗) is an unstable critical point of the mapping MX in the sense

that the Jacobian DMX has spectral radius larger than one at (m∗,Q∗).

In the following, we will say that a fixed point (m∗,Q∗) is stable if the linearization

of MX( · ) at (m∗,Q∗) (i.e. the Jacobian matrix DMX(m∗,Q∗)) has spectral radius

smaller than one. By the Hartman-Grobman linearization theorem [41], this implies that

(m∗,Q∗) is an attractive fixed point. Namely, there exists a neighborhood O of (m∗,Q∗)

such that, initializing the naive mean field iteration within that neighborhood, results in

(mt,Qt) → (m∗,Q∗) as t → ∞. Vice-versa, we say that (m∗,Q∗) is unstable if the Jaco-

bian DMX(m∗,Q∗) has spectral radius larger than one. In this case, for any neighborhood

of (m∗,Q∗), and a generic initialization in that neighborhood, (mt,Qt) does not converge

to the fixed point.

Motivated by Theorem 2, we define the instability threshold βinst = βinst(k, δ, ν) by

βinst(k, δ, ν) ≡ inf
{
β ≥ 0 : L(β, k, δ, ν) > 1

}
. (3.24)

Let us emphasize that, while we discuss the consequences of the instability at βinst on the

naive mean field iteration, this is a problem of the variational free energy (3.9) and not of

the specific optimization algorithm.

3.5 Numerical results for naive mean field

In order to investigate the impact of the instability described above, we carried out extensive

numerical simulations with the variational algorithm (3.20), (3.21). After any number of

iterations t, estimates of the factors H , W are obtained by computing expectations with

respect to the marginals (3.5). This results in

Ĥ
t = rt = 1√

β
F(mt;Qt) , Ŵ

t = r̃t = 1√
β

F̃(m̃t; Q̃t) . (3.25)

Note that (Ĥ t
, Q̂

t) can be used as the state of the naive mean-field iteration instead of

(mt,Qt).

We select a two-dimensional grid of (δ, β)’s and generate 400 different instances according
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to the LDA model for each grid point. We report various statistics of the estimates aggregated

over the 400 instances. We have performed the simulations for ν = 1 and k ∈ {2, 3}. For

space considerations, we focus here on the case ν = 1, k = 2, and discuss other results in

Appendix E. (Simulations for other values of ν also yield similar results.)

We initialize both the naive mean field iteration near the uninformative fixed-point as

follows:

Ĥ
0 = (1− ε)H∗ + ε

G

‖G‖F
‖H∗‖F , (3.26)

Q0 = Q∗ . (3.27)

Here G has entries (Gij)i≤d,j≤k ∼iid N(0, 1) and ε = 0.01 and H∗ = F(m∗,Q∗)/
√
β is the

estimate at the uninformative fixed point. We run a maximum of 300 and a minimum of 40

iterations, and assess convergence at iteration t by evaluating

∆t = min
Π∈Sk

∥∥∥Ŵ t−1
Π− Ŵ

t∥∥∥
∞
, (3.28)

where the minimum is over the set Sk of k×k permutation matrices. We declare convergence

when ∆t < 0.005. We denote by Ĥ , Ŵ the estimates obtained at convergence.

Recall the definition P⊥ = Ik−1k1T
k /k. In order to investigate the instability of Theorem

2, we define the quantities

V(Ŵ ) ≡ 1√
n
‖ŴP⊥‖F , V(Ĥ) ≡ 1√

d
‖ĤP⊥‖F (3.29)

In Figure 1 we plot empirical results for the average V(Ŵ ), V(Ĥ) for k = 2, ν = 1 and four

values of δ. In Figure 2, we plot the empirical probability that variational inference does not

converge to the uninformative fixed point or, more precisely, P̂(V(Ŵ ) ≥ ε0) with ε0 = 10−4,

evaluated on a grid of (β, δ) values. We also plot the Bayes threshold βBayes (which we find

numerically that it coincides with the spectral threshold βspect) and the instability threshold

βinst.

It is clear from Figures 1, 2, that variational inference stops converging to the uninforma-
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Figure 1: Normalized distances V(Ĥ), V(Ŵ ) of the naive mean field estimates from the
uninformative fixed point. Here k = 2, d = 1000 and n = dδ: each data point corresponds
to an average over 400 random realizations.

tive fixed point (although we initialize close to it) when β is still significantly smaller than

the Bayes threshold βBayes (i.e. in a regime in which the uninformative fixed point would a

reasonable output). The data are consistent with the hypothesis that variational inference

becomes unstable at βinst, as predicted by Theorem 2.

Because of Proposition 3.1, we expect the estimates Ĥ , Ŵ produced by variational in-

ference to be asymptotically uncorrelated with the true factors for βinst < β < βBayes. In

order to test this hypothesis, we borrow a technique that has been developed in the study

of phase transitions in statistical physics, and is known as the Binder cumulant [11]. For
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Figure 2: Empirical fraction of instances such that V(Ŵ ) ≥ ε0 = 10−4 (left frame) or
V(Ĥ) ≥ ε0 (right frame), where Ŵ , Ĥ are the naive mean field estimate. Here k = 2,
d = 1000 and, for each (δ, β) point on a grid, we used 400 random realizations to estimate
the probability of V(Ŵ ) ≥ ε0.

the sake of simplicity, we focus here –again– on the case k = 2, deferring the general case to

Appendix E. Since in this case Ĥ ,H ∈ Rd×2, Ŵ ,W ∈ Rn×2, we can encode the informative

component of these matrices by taking the difference between their columns. For instance,

we define ĥ⊥ ≡ Ĥ(e1 − e2), and analogously h⊥, ŵ⊥, w⊥. We then define

Cη(H , Ĥ) ≡ 〈ĥ⊥ + ηg,h⊥〉 , BH ≡
3
2 −

Ê{Cη(H , Ĥ)4}
2Ê{Cη(H , Ĥ)2}2

. (3.30)

Here Ê denotes empirical average with respect to the sample, g ∼ N(0, Id), and we set

η = 10−4. An analogous definition holds for Cη(Ŵ ), Bη(Ŵ ).

The rationale for definition (3.30) is easy to explain. At small signal-to-noise ratio β,

we expect ĥ⊥ to be essentially uncorrelated from h⊥ and hence the correlation Cη(H , Ĥ)

to be roughly normal with mean zero and variance σ2
H . In particular E{Cη(H , Ĥ)4} ≈

3E{Cη(H , Ĥ)4} and therefore BH ≈ 0. (Note that the term ηg is added to avoid that

empirical correlation vanishes, and hence BH is not defined.)

In contrast, for large β, we expect ĥ⊥ to be positively correlated with h⊥, and Cη(H , Ĥ)

should concentrate around a non-random positive value. As a consequence, BH ≈ 1.
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Figure 3: Binder cumulant for the correlation between the naive mean field estimates Ĥ and
the true topics H , see Eq. (3.30). Here we report results for k = 2, d ∈ {500, 2000, 4000}
and n = dδ, obtained by averaging over 400 realizations. Note that for β < βBayes(k, ν, δ),
BH decreases with increasing dimensions, suggesting asymptotically vanishing correlations.

In Figures 3 we report our empirical results for BH and BW for four different values of δ,

and several values of d. As expected, these quantities grow from 0 to 1 as β grows, and the

transition is centered around βBayes. Figure 4 reports the results on a grid of (β, δ) values.

Again, the transition is well predicted by the analytical curve βBayes. These data support

our claim that, for βinst < β < βBayes, the output of variational inference is non-uniform but

uncorrelated with the true signal.

Finally, in Figure 5 we plot the estimates obtained for 100 entries of the weights vector

wi,1 for three instances with n = d = 5000 and β = 2 < βinst, β = 4.1 ∈ (βinst, βBayes) and
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Figure 4: Binder cumulant for the correlation between the naive mean field estimates Ŵ , Ĥ
and the true weights and topics W , H . Here k = 2, d = 1000 and n = dδ, and we averaged
over 400 realizations.
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Figure 5: Bayesian credible intervals as computed by variational inference at nominal cov-
erage level 1 − α = 0.9. Here k = 2, n = d = 5000, and we consider three values of β:
β ∈ {2, 4.1, 6} (for reference βinst ≈ 2.2, βBayes = 6). Circles correspond to the posterior
mean, and squares to the actual weights. We use red for the coordinates on which the
credible interval does not cover the actual value of wi,1.

β = 6 = βBayes. The interval for wa,1 is the form {wa,1 ∈ [0, 1] : q̃a(wa,1) ≥ ta(α)} and

are constructed to achieve nominal coverage level 1 − α = 0.9. It is visually clear that
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the claimed coverage level is not verified in these simulations for β > βinst, confirming our

analytical results. Indeed, for the three simulations in Figure 5 we achieve coverage 0.87

(for β = 2 < βinst), 0.65 (for β = 4.1 ∈ (βinst, βBayes)), and 0.51 (for β = 6 = βBayes). Further

results of this type are reported in Appendix E.

4 Fixing the instability

The fact that naive mean field is not accurate for certain classes of random high-dimensional

probability distributions is well understood within statistical physics. In particular, in the

context of mean field spin glasses [39], naive mean field is known to lead to an asymptotically

incorrect expression for the free energy. We expect the same mechanism to be relevant in

the context of topic models.

Namely, the product-form expression (1.5) only holds asymptotically in the sense of finite-

dimensional marginals. However, when computing the term Eq̂ log pX|W ,H(X|H ,W ) in the

KL divergence (1.4), the error due to the product form approximation is non-negligible.

Keeping track of this error leads to the so-called TAP free energy.

4.1 Revisiting Z2-synchronization

It is instructive to briefly discuss the Z2-synchronization example of Section 2, as the basic

concepts can be explained more easily in this example. For this problem, the TAP approxi-

mation replaces the free energy (2.4) with

FTAP(m) ≡ −λ2 〈m,X0m〉 −
n∑
i=1

h(mi)−
nλ2

4
(
1−Q(m)

)2
, (4.1)

where Q(m) ≡ ‖m‖2
2/n.

We can now repeat the analysis of Section 2 with this new free energy approximation. It

is easy to see that m∗ = 0 is again a stationary point. However, the Hessian is now

∇2F(m)
∣∣∣
m=m∗

= −λX0 +
(
1 + λ2

)
I . (4.2)
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In particular, for λ < 1, λmin(∇2F|m=m∗) converges to (1 − λ)2 > 0: the uninformative

stationary point is (with high probability) a local minimum.

The stationarity condition for the TAP free energy are known as TAP equations, and the

algorithm that corresponds to the naive mean field iteration is Bayesian approximate message

passing (AMP). For the Z2 synchronization problem, Bayes AMP is known to achieve the

Bayes optimal estimation error [20, 37].

4.2 TAP free energy for topic models

We now turn to topic models. The TAP approach replaces the free energy (3.9) with the

following (see Appendix F.1 for a derivation)

FTAP(r, r̃) =
d∑
i=1

ψ

(
ri,

β

d

n∑
a=1
r̃⊗2
a

)
+

n∑
a=1

ψ̃

(
r̃a,

β

d

d∑
i=1
r⊗2
i

)

−
√
βTr

(
Xrr̃T

)
− β

2d

d∑
i=1

n∑
a=1
〈ri, r̃a〉2 , (4.3)

where r̃1k = 1n, and we defined the partial Legendre transforms

ψ(r,Q) ≡ sup
m
{〈r,m〉 − φ(m,Q)} , ψ̃(r̃, Q̃) ≡ sup

m̃

{
〈r̃, m̃〉 − φ̃(m̃, Q̃)

}
. (4.4)

Notice that ψ̃(r̃, Q̃) is finite only if 〈1k, r̃〉 = 1.

When substituting in Eq. (4.3), the supremum of Eq. (4.4) is achieved at

r = 1√
β

F(m;Q) , r̃ = 1√
β

F̃(m̃; Q̃) , (4.5)

Q = β

d

n∑
a=1
r̃⊗2
a , Q̃ = β

d

d∑
i=1
r⊗2
i . (4.6)

Calculus shows that stationary points of this free energy are in one-to-one correspondence
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(via Eq. (4.5)) with the fixed points of the following iteration:

mt+1 = XT F̃(m̃t; Q̃t)− F(mt;Qt)Ω̃t , (4.7)

m̃t = X F(mt;Qt) − F̃(m̃t−1; Q̃t−1)Ωt , (4.8)

Qt+1 = 1
d

n∑
a=1

F̃(m̃t
a; Q̃

t )⊗2 (4.9)

Q̃
t = 1

d

d∑
i=1

F(mt
i;Qt )⊗2. (4.10)

where Ωt, Ω̃t are defined as

Ωt = 1
d
√
β

d∑
i=1

[G(mt
i,Q

t)− F(mt
i;Qt)⊗2] = 1

d

d∑
i=1

∂F
∂mi

(mt
i;Qt) , (4.11)

Ω̃t = 1
d
√
β

n∑
a=1

[G̃(m̃t
a, Q̃)− F̃(m̃t

a; Q̃
t)⊗2] = 1

d

n∑
a=1

∂F̃
∂m̃a

(m̃t
a; Q̃

t) . (4.12)

The stationarity conditions for the TAP free energy (4.3) are known as TAP equations,

and the corresponding iterative algorithm (4.7), (4.8) is a special case of approximate message

passing (AMP), with Bayesian updates. Note that the specific choice of time indices in Eqs.

(4.7), (4.8) is instrumental for the analysis in the next section to hold. We also note that the

general AMP analysis of [7, 29] allows for quite general choices of the sequence of matrices

Qt, Q̃t. However, stationarity of the TAP free energy (4.3) requires that at convergence the

condition (4.10) holds at the fixed point

Estimates of the factors W , H are computed following the same recipe as for naive mean

field, cf. Eq. (3.25), namely Ĥ t = rt = F(mt;Qt)/
√
β, Ŵ t = r̃t = F̃(m̃t; Q̃t)/

√
β.

It is not hard to see that the AMP iteration admits an uninformative fixed point, which

is a stationary point of the TAP free energy, see proof in Appendix F.3.

Lemma 4.1. Define q∗0 = βδ/k2 and q̃∗0 = β2‖XT1n‖2
2/(dk2(1+kq0)2). Then, AMP iteration
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admits the following fixed point

m∗ =
√
β

k
(XT1n)⊗ 1k , (4.13)

m̃∗ = β

k(1 + kq0)(XXT1n)⊗1k −
β

k + δβ
1n ⊗ 1k , (4.14)

Q∗ = q∗0 Jk , Q̃
∗ = q̃∗0 Jk . (4.15)

This corresponds to a stationary point of the TAP free energy (4.3), via Eq. (4.5):

r∗ =
√
β

k(1 + kq∗0)(XT1n)⊗ 1k , r̃∗ = 1
k

1n ⊗ 1k . (4.16)

Further, this is the only stationary point that is unchanged under permutations of the topics.

4.3 State evolution analysis

State evolution is a recursion over matrices M t, M̃ t ∈ Rk×k, defined by

M t+1 = δ E
{

F̃(M̃ tw + M̃ 1/2
t z;M̃ t)⊗2

}
, (4.17)

M̃ t = E
{

F(M th+M 1/2
t z;M t)⊗2

}
, (4.18)

where expectation is with respect to h ∼ q0( · ), w ∼ q̃0( · ) and z ∼ N(0, Ik) independent.

Note that M t,M̃ t are positive semidefinite symmetric matrices. Also, Eq. (4.18) can be

written explicitly as

M̃ t = β(Ik +M t)−1M t . (4.19)

State evolution provides an asymptotically exact characterization of the behavior of AMP,

as formalized by the next theorem (which is a direct application of [29]).

Theorem 3. Consider the AMP algorithm of Eqs. (4.7), with deterministic initialization

m0,Q0. Assume G ∈ Rd×k to be independent of data X, with entries (Gij)i≤d,j≤k ∼iid
N(0, 1), and let m0 = HM 0 + ZM

1/2
0 for M 0 ∈ Rk×k non-random, M 0 � 0. Let

{M t,M̃ t}t≥1 be defined by the state evolution recursion (4.17), (4.18). Then, for any
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pseudo-Lipschitz function g : Rk × Rk → R, we have, almost surely,

lim
n→∞

1
d

d∑
i=1

g(hi,mt
i) = E

{
g(h,M th+M 1/2

t z)
}
, (4.20)

lim
n→∞

1
n

n∑
a=1

g(wa, m̃
t
a) = E

{
g(w,M̃ tw + M̃ 1/2

t z)
}
, (4.21)

where it is understood that n, d→∞ with n/d→ δ. In particular

lim
n→∞

1
d
HTĤ

t = 1√
β
M̃ t , (4.22)

lim
n→∞

1
n
W TŴ

t = 1√
β
M t+1 . (4.23)

Further limn→∞Q
t = M t, limn→∞ Q̃

t = M̃ t.

Using state evolution, we can establish a stability result for AMP. First of all, notice that

the state evolution iteration (4.17), (4.18) admits a fixed point of the form M ∗ = (δβ/k2)Jk,

M̃
∗ = ρ0Jk, for ρ0 = δβ2/(kδβ + k2), see Appendix G.2. This is an uninformative fixed

point, in the sense that the k topics are asymptotically identical. The next theorem is proved

in Appendix G.3.

Theorem 4. If β < βspect(k, ν, δ), then the uninformative fixed point is stable under the state

evolution iteration (4.17), (4.18).

In particular, for β < βspect(k, ν, δ), there exists c0 = c0(β, kν, δ) such that, if we initialize

AMP as in Theorem 3 with ‖M 0 −M ∗‖F ≤ c0, then (recalling P⊥ = Ik − 1k1k/k)

lim
t→∞

lim
n→∞

1
n

∥∥∥mtP⊥‖2
F = 0 , lim

t→∞
lim
n→∞

1
n

∥∥∥mtP⊥‖2
F = 0 . (4.24)

4.4 Stability of the uninformative fixed point

The next theorem establishes that the uninformative fixed point of the TAP free energy is

a local minimum for all β below the spectral threshold βspect(k, ν, δ). Since βBayes(k, ν, δ) ≤

βspect(k, ν, δ), this shows that the instability we discovered in the case of naive mean field is

corrected by the TAP free energy.
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Theorem 5. Let (r∗, r̃∗) be the uninformative stationary point of the TAP free energy, cf.

Lemma 4.1. If β < βspect(k, ν, δ), then there exists ε > 0 such that, with high probability

λmin

(
∇2FTAP

∣∣∣
(r∗,r̃∗)

)
≥ ε . (4.25)

Remark 4.1. Let us emphasize that this result is not implied by the state evolution result

of Theorem 4, which only establishes stability in a certain asymptotic sense. Vice-versa,

Theorem 5 does not directly imply Theorem 4.

4.5 Numerical results for TAP free energy
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Figure 6: Normalized distances V(Ĥ), V(Ŵ ) of the AMP estimates from the uninformative
fixed point. Here, k = 2, d = 1000 and n = dδ: each data point corresponds to an average
over 400 random realizations.
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Figure 7: Empirical fraction of instances such that V(Ŵ ) ≥ ε0 = 5 · 10−3, where Ŵ is the
AMP estimate. Here k = 2, d = 1000, and for each (δ, β) point on the grid we ran AMP on
400 random realizations.

In order to confirm the stability analysis at the previous section, we carried out numerical

simulations analogous to the ones of Section 3.5. We found that the AMP iteration of

Eqs. (4.7), (4.8) is somewhat unstable when β ≈ βspect. In order to remedy this problem, we

used a damped version of the same iteration, see Appendix H.1. Notice that damping does

not change the stability of a local minimum or saddle, it merely reduces oscillations due to

aggressive step sizes.

We initialize the iteration as for naive mean field, and monitor the same quantities, as

in Section 3.5. In particular, here we report results on the distance from the uninformative

subspace V(Ĥ), V(Ŵ ), in Figures 6 and 7, and the Binder cumulants BH and BW , measuring

the correlation between AMP estimates and the true factorsW ,H , in Figures 8, 9. We focus

on the case k = 2, deferring k = 3 to the appendices.

In the intermediate regime β ∈ (βinst, βspect), the behavior of AMP is strikingly different

from the one of naive mean field. AMP remains close to the uninformative fixed point,

confirming that this is a local minimum of the TAP free energy. The distance from the

uninformative subspace starts growing only at the spectral threshold βspect (which coincides,

in the present cases, with the Bayes threshold βBayes). At the same point, the correlation

with the true factors W , H also becomes strictly positive.
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Figure 8: Binder cumulant for the correlation between AMP estimates Ĥ and the true topics
H , and between Ŵ and W , see Eq. (3.30). Here k = 2, d = 1000, n = dδ and estimates
are obtained by averaging over 400 realizations.

5 Discussion

Bayesian methods are particularly attractive in unsupervised learning problems such as topic

modeling. Faced with a collection of documents x1,. . .xn, it is not clear a priori whether

they should be modeled as convex combinations of topics, or how many topics should be

used. Even after a low-rank factorization X ≈WHT is computed, it is still unclear how to

evaluate it, or to which extent it should be trusted.

Bayesian approaches provide estimates of the factors W , H , but also a probabilistic

measure of how much these estimates should be trusted. To the extent that the posterior

concentrates around its mean, this can be considered as a good estimate of a true underlying
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Figure 9: Binder cumulant for the correlation between AMP estimates Ŵ , Ĥ and the true
weights and topics W , H . Here k = 2, d = 1000 and estimates are obtained by averaging
over 400 realizations.

signal.

It is well understood that Bayesian estimates can be unreliable if the prior is not chosen

carefully. Our work points at a second reason for caution. When variational inference is used

for approximating the posterior, the result can be incorrect even if the data are generated ac-

cording to the prior. More precisely, we showed that for a certain regime of parameters, naive

mean field ‘believes’ that there is a signal, even if it is information-theoretically impossible

to extract any non-trivial estimate from the data.

Given that naive mean field is the method of choice for inference with topic models

[16], it would be of great interest to remedy this instability. We showed that the TAP free

energy provides a better mean field approximation, and in particular does not have the same

instability. However, this approximation is also based on the correctness of the generative

model, and further investigation is warranted on its robustness.
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A Some remarks on alternating minimization
Let f : Rn×Rd → R be twice continuously differentiable in an open neighborhood Ω1×Ω2 ⊆
Rn×Rd of a critical point (x∗,y∗) (i.e. a point for which ∇(x,y)f(x,y) = 0). Further assume
that, fixing x0 ∈ Ω1, f(x0, · ) is strongly convex with a minimizer in Ω2, and fixing y0 ∈ Ω2,
f( · ,y0) is strongly convex with a minimizer in Ω1. By taking Ω1 and Ω2 sufficiently small,
these conditions follow by requiring that the partial Hessians satisfy ∇2

xf(x∗,y∗) � 0 and
∇2
yf(x∗,y∗) � 0 (i.e. they are strictly positive definite).

By strong convexity, the minimizers of f(x0, · ) and f( · ,y0) are unique, and we can
define the functions g : Rd → Rn and h : Rn → Rd by

h(x0) = arg min
y∈Ω2

f(x0,y) , (A.1)

g(y0) = arg min
x∈Ω1

f(x,y0) . (A.2)

We then define the alternating minimization iteration

xt+1 = h(yt), yt = g(xt) . (A.3)

If d = n and h : Ω1 → Ω2, g : Ω2 → Ω1 are bijective, we also define the dual iteration

xt+1 = g−1(yt), yt = h−1(xt) . (A.4)

Lemma A.1. Let f : Rn×Rd → R by twice continuously differentiable in Ω1×Ω2, satisfying
the above assumptions. Then the following are equivalent:

(A1) The Hessian H = ∇2
(x,y)f

∣∣∣
(x,y)=(x∗,y∗)

is strictly positive definite.

(A2) (x∗,y∗) is a stable fixed point of the alternate minimization algorithm (A.3).

(A3) f1(x) ≡ miny∈Ω2 f(x,y) is strongly convex in a neighborhood of x∗ (and in particular,
x∗ is a local minimum of f1).

Further, if n = d and the matrix ∂f
∂x∂y

∣∣∣
x∗,y∗

is invertible, then the following are equivalent:

(B1) (x∗,y∗) is a stable fixed point of the dual algorithm (A.4).

(B2) f1(x) ≡ miny∈Ω2 f(x,y) is strongly concave in a neighborhood of x∗ (and in particular,
x∗ is a local maximum).

Proof. Let

H =
[
Hxx Hxy

HT
xy Hyy

]
= ∇2

(x,y)f
∣∣∣
(x,y)=(x∗,y∗)

. (A.5)

(A1)≡(A2) We compute the linearization of the iterations in (A.3) around the fixed point
(x∗,y∗). Note that since x∗ is a minimizer of f( · ,y∗), using the implicit function theorem
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for the Jacobian of the update rule for x in (A.3) we have

∂2f

∂x∂y

∣∣∣∣∣
(x,y)=(x∗,y∗)

+
∂2f

∂x2

∣∣∣∣∣
(x,y)=(x∗,y∗)

 [Dh(y∗)] = 0. (A.6)

Hence, we get

Dh(y∗) = −
(∂2f

∂x2

)−1 (
∂2f

∂x∂y

)
(x,y)=(x∗,y∗)

= −H−1
xxHxy. (A.7)

Similarly, for the Jacobian of the update rule for y in (A.3) we have

Dg(x∗) = −
(∂2f

∂y2

)−1 (
∂2f

∂y∂x

)
(x,y)=(x∗,y∗)

= −H−1
yyH

T
xy. (A.8)

Hence, (x∗,y∗) is stable if and only if the operator

L = Dh(x∗) ·Dg(y∗) = H−1
xxHxyH

−1
yyH

T
xy , (A.9)

has spectral radius

σ(L) ≡ max
i
|λi (L)| < 1. (A.10)

Since f( · ,x∗) is strongly convex, the matrices Hxx,H
−1
xx are positive definite. Hence, the

eigenvalues of H−1
xxHxyH

−1
yyH

T
xy are real and equal to the eigenvalues of the symmetric

positive semi-definite matrix H−1/2
xx HxyH

−1
yyH

T
xyH

−1/2
xx . Therefore, σ(L) < 1 if and only if

H−1/2
xx HxyH

−1
yyH

T
xyH

−1/2
xx ≺ In ⇐⇒ HxyH

−1
yyH

T
xy ≺Hxx

⇐⇒ Hxx −HxyH
−1
yyH

T
xy � 0. (A.11)

Note that since f(x∗, · ) is convex, Hyy � 0. Therefore, Hxx −HxyH
−1
yyH

T
xy � 0 if and

only if H � 0. Hence, the fixed point is stable if and only if H � 0 and this completes the
proof.

(A1)≡ (A3) By differentiating f1(z) = f(x, g(x)), we obtain

∂2f1

∂x2

∣∣∣∣∣
x∗

= ∂2f

∂x2

∣∣∣∣∣
x∗,y∗

+ ∂2f

∂x∂y

∣∣∣∣∣
x∗,y∗

·Dg(x∗) (A.12)

= Hxx −HxyH
−1
yyH

T
xy , (A.13)

where in the last line we used Eq. (A.8). Hence ∂2f1
∂x2

∣∣∣
x∗
� 0 if and only if Hxx �

HxyH
−1
yyH

T
xy which, by Schur’s complement formula is equivalent to H � 0. Further,
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since f ∈ C2(Rn+d), ∂2f1
∂x2

∣∣∣
x∗
� 0 if and only if ∂2f1

∂x2 � 0 in a neighborhood of x∗.

(B1)≡ (B2) Linearizing the iteration (A.4), we get that (x∗,y∗) is a stable fixed point if
and only if the operator

L−1 = Dg(x∗)−1Dh(y∗)−1 = (HT
xy)−1HyyH

−1
xyHxx (A.14)

has spectral radius

σ(L−1) ≡ max
i≤n

∣∣∣λi (L−1
)∣∣∣ < 1. (A.15)

Using the fact that Hxx � 0, we have that σ(L−1) < 1 if and only if

H1/2
xx (HT

xy)−1HyyH
−1
xyH

1/2
xx ≺ In ⇐⇒ (HT

xy)−1HyyH
−1
xy ≺H−1

xx

⇐⇒ Hxx −HxyH
−1
yyH

T
xy ≺ 0. (A.16)

As shown above, the last condition is equivalent to ∂2f1
∂x2

∣∣∣
x∗
≺ 0, and by continuity of the

Hessian, this is equivalent to f1 being strongly concave in a neighborhood of x∗.

B Proof of Proposition 2.2
It is useful to first prove a simple random matrix theory remark.

Lemma B.1. For S ⊆ [n], let XS,S be the submatrix of X with rows and columns with
index in S. Then, for any ε ∈ [0, 1), the following holds with high probability:

min
{
λmax(XS,S) : |S| ≥ n(1− ε)

}
≥ 2
√

1− ε− on(1) . (B.1)

Proof. Without loss of generality we can assume X ∼ GOE(n) (because the rank-one defor-
mation cannot decrease the maximum eigenvalue), and |S| = n(1− ε) (because λmax(XS,S)
is non-decreasing in S). Note that XS,S is distributed as

√
1− ε times a GOE(n(1 − ε))

matrix. Large deviation bounds on the eigenvalues of GOE matrices imply that, for any
δ > 0, there exists c(δ) > 0 such that

P
(
λmax(XS,S) ≤ 2

√
1− ε− δ

)
≤ 2 e−c(δ)n2

, (B.2)

for all n large enough. The claim follows by union bound since there is at most 2n such sets
S.

Proof of Proposition 2.2. First notice that Lemma B.1 continues to hold if X is replaced by
X0 since ‖XS,S − (X0)S,S‖op ≤ maxi≤n |Xii| ≤ 4

√
log n/n (where the last bound holds with

high probability since (Xii)i≤n ∼ N(0, 2/n).
Note that ∇F(m)i = ±∞ if mi = ±1, whence any local minimum must be in the

interior of [−1,+1]n. Let m ∈ (−1,−1)n be a local minimum of F( · ). By the second-order
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minimality conditions, we must have

∇2F(m) = −λX0 + diag
(
(1−m2

i )−1
i≤n

)
� 0 . (B.3)

Denote by m(1), m(2), . . . the entries of m ordered by decreasing absolute value, and let S`
be the set of indices corresponding to entries m(`+1), . . . ,m(n). Finally let v(`) ∈ Rn be the
eigenvector corresponding to the largest eigenvalue of (X0)S`,S`

(extended with zeros outside
S`). We then have, for ` = nε

0 ≤ 〈v(`),∇2F(m)v(`)〉 (B.4)

= −λ · λmax
(
(X0)S`,S`

)
+
∑
i∈S`

(v(`)
i )2

1−m2
i

(B.5)

≤ −2λ
√

1− ε+ 1
1−m2

(nε)
+ on(1) . (B.6)

The last inequality holds with high probability by Lemma B.1. Inverting it, we get

m2
(nε) ≥ 1− 1

2λ
√

1− ε
− on(1) , (B.7)

and therefore

1
n
‖m‖2

2 ≥ ε

(
1− 1

2λ
√

1− ε

)
− on(1). (B.8)

The claim follows by taking ε = c1 a small constant (for which the right-hand side is lower
bounded by c0 for all λ ≥ 1), or ε = c2(2λ − 1) (for which the right-hand side is lower
bounded by c0(2λ− 1)2).

C Information-theoretic limits

C.1 Proof of Lemma 2.1
Let Q̂ : Rn×n 7→ Rn×n, X 7→ Q̂(X) be any estimator of σσT. By [5, Theorem 1.6], for
λ ∈ [0, 1],

lim inf
n→∞

1
n2E

{∥∥∥σσT − Q̂(X)
∥∥∥2

F

}
≥ 1 . (C.1)

Given σ̂ : Rn×n → Rn \ {0}, set

Q̂(X) = c
σ̂(X)σ̂(X)T

‖σ̂(X)‖2
2

, c = E
(
〈σ̂(X),σ〉2
‖σ̂(X)‖2

2

)
. (C.2)
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By a simple calculation

1− on(1) ≤ 1
n2E

{∥∥∥σσT − Q̂(X)
∥∥∥2

F

}
= 1− E

(
〈σ̂(X),σ〉2
‖σ̂(X)‖2

2

)2

, (C.3)

which obviously implies the claim.

C.2 Proof of Proposition 3.1
We begin by providing the expression for the free energy functional RS(M ; k, δ, ν) of Theorem
1, which is obtained by specializing the expression in [8]. Recall the functions φ( · · · ), φ̃( · · · ),
introduced in Eq. (3.5). We then define a function RS0( · , · ; k, δ, ν) : Sk × Sk → R by

RS0(M ,M̃ ; k, δ, ν) =βδ(ν + 1)
kν + 1 + 1

2β 〈M ,M̃〉 (C.4)

− Eφ(Mh+M 1/2z;M)− δ E φ̃(M̃w + M̃ 1/2
z;M̃) ,

where expectations are with respect to z ∼ N(0, Ik) independent of h ∼ N(0, Ik) and
w ∼ Dir(ν; k). We then have

RS(M ; k, δ, ν) = sup
M̃∈Sk

RS0(M ,M̃ ; k, δ, ν) . (C.5)

Further, the function RS0(M ,M̃ ; k, δ, ν) on Eq. (C.4) is separately strictly concave in M
and M̃ , and in particular the last supremum is uniquely achieved at a point M̃ = M̃ (M ).

A simple calculation shows that

∂RS0

∂M
(M ,M̃ ; k, δ, ν) = 1

2β

{
M̃ − E

{
F(Mh+M 1/2z;M )⊗2

}}
, (C.6)

∂RS0

∂M̃
(M ,M̃ ; k, δ, ν) = 1

2β

{
M − δE

{
F̃(M̃w + M̃ 1/2

z;M̃ )⊗2
}}

. (C.7)

By Lemma D.1, for M = aJk, M̃ = bJk, we have

∂RS0

∂M
(M ,M̃ ; k, δ, ν) = 1

2β

{
bJk −

βa

1 + ka
Jk

}
, (C.8)

∂RS0

∂M̃
(M ,M̃ ; k, δ, ν) = 1

2β

{
aJk −

βδ

k2 Jk

}
. (C.9)

Therefore, this is a stationary point of RS0 provided a = βδ/k2 and b = β2δ/(k(k + βδ))
(in particular, M = M ∗). Since RS(M ; k, δ, ν) = RS0(M ,M̃(M); k, δ, ν), for M̃ ( · ) a
differentiable function, it also follows that M ∗ is a stationary point of RS.

In order to prove that M ∗ is a local minimum of RS for β < βspect, we apply Lemma
A.1 to the function f(x,y) = −RS0(x,y; k, δ, ν), whence f1(x) = −RS(x; k, δ, ν). It follows
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from Eqs. (C.6) and (C.7) that the dynamics (A.4) then coincides with the state evolution
dynamics discussed in Section 4.3, namely

M t+1 = δ E
{

F̃(M̃ tw + M̃ 1/2
t z;M̃ t)⊗2

}
, (C.10)

M̃ t = E
{

F(M th+M 1/2
t z;M t)⊗2

}
. (C.11)

Hence, the claim follows immediately from Theorem 4 and Lemma A.1.
Finally, we prove that Eq. (3.4) holds for β < βBayes. Note that the estimator F̂ n(X)

that minimizes the left-hand side is F̂ n(X) = E{WHT|X}. By [8, Proposition 29], for
β < βBayes,

lim
n→∞

1
nd

E
{∥∥∥WHT − E{WHT|X}

∥∥∥2

F

}
= lim

n→∞

1
nd

E
{∥∥∥WHT

∥∥∥2

F

}
− 1
β2δ

Tr(M ∗M̃
∗)

= lim
n→∞

1
nd

E
{∥∥∥WHT

∥∥∥2

F

}
− βδ

k(βδ + k) . (C.12)

On the other hand,

lim
n→∞

1
nd

E
{∥∥∥WHT − c1n(XT1n)T

∥∥∥2

F

}
= lim

n→∞

1
nd

E
{∥∥∥WHT

∥∥∥2

F

}
− 2cA+ c2B . (C.13)

Here, we defined A via

A ≡ lim
n→∞

1
nd

ETr
(
HW T1n(XT1n)T

)
= lim

n→∞

√
β

nd2ETr
(
W T1n1T

nWHTH
)

=
√
βδTr

(1k
k

1T
k

k
Ik

)
=
√
βδ

k
,

(where we used W T1n/n→ 1k/k and HTH/d→ Ik by the law of large numbers) and

B ≡ lim
n→∞

1
nd

ETr
(
1n(XT1n)T(XT1n)1n

)
= lim

n→∞

1
d
E
〈
1n,XXT1n

〉
= lim

n→∞

1
d
E
{
β

d2 Tr
(
(W T1n)THTH(W T1n)

)
+ n

}

= βδ2Tr
(1T

k

k

1k
k
Ik
)

+ δ = βδ2

k
+ δ .
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Setting c = A/B, and substituting in Eq. (C.13), we obtain

lim
n→∞

1
nd

E
{∥∥∥WHT − c1n(XT1n)T

∥∥∥2

F

}
= lim

n→∞

1
nd

E
{∥∥∥WHT

∥∥∥2

F

}
− βδ

k(βδ + k) , (C.14)

which coincides with Eq. (C.12) as claimed.

D Naive Mean Field: Analytical results

D.1 Preliminary definitions
The functions F, F̃ : Rk × Rk×k → Rk are defined in Eq. (3.6). Explicitly

F(y;Q) ≡
√
β

∫
h exp{〈y,h〉 − 〈h,Qh〉/2} q0(dh)∫

exp{〈y,h〉 − 〈h,Qh〉/2} q0(dh) , (D.1)

F̃(ỹ; Q̃) ≡
√
β

∫
w exp{〈ỹ,w〉 − 〈w, Q̃w〉/2} q̃0(dw)∫

exp{〈ỹ,w〉 − 〈w, Q̃w〉/2} q̃0(dw)
, (D.2)

where q0( · ) is the prior distribution of the rows of H , and q̃0( · ) is the prior distribution of
the rows of W .

For Q positive semidefinite and symmetric, F(y;Q)/
√
β can be interpreted as the poste-

rior expectation of h ∼ q0( · ), given observations y = Qh+Q1/2z, where z ∼ N(0, Ik), and
analogously for F̃(ỹ; Q̃). Explicitly

F(y;Q) =
√
β E

{
h
∣∣∣∣ Qh+Q1/2z = y

}
, F̃(ỹ; Q̃) =

√
β E

{
w
∣∣∣∣ Q̃w + Q̃1/2

z = ỹ
}
.

In our specific application q0( · ) is N(0, Ik), and q̃0( · ) is Dir(ν; k), namely

q0(dh) = 1
(2π)k/2 exp{−‖h‖2

2/2}dh , q̃0(dw) = 1
Z(ν; k)

k∏
i=1

wν−1
i q(dw) , (D.3)

where q( · ) is the uniform measure over the simplex P1(k) = {w ∈ Rk
≥0 : 〈w,1k〉 = 1}. In

particular, F(y;Q) can be computed explicitly, yielding

F(y;Q) =
√
β(Ik +Q)−1y . (D.4)

We also define the second moment functions G, G̃ : Rk × Rk×k → Rk×k by

G(y;Q) ≡ β

∫
h⊗2 exp{〈y,h〉 − 〈h,Qh〉/2} q0(dh)∫

exp{〈y,h〉 − 〈h,Qh〉/2} q0(dh) , (D.5)

G̃(ỹ; Q̃) ≡ β

∫
w⊗2 exp{〈ỹ,w〉 − 〈w, Q̃w〉/2} q̃0(dw)∫

exp{〈ỹ,w〉 − 〈w, Q̃w〉/2} q̃0(dw)
. (D.6)
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Again, G( · · · ) can be written explicitly as

G(y;Q) = β
{

(Ik +Q)−1yyT(Ik +Q)−1 + (Ik +Q)−1
}
. (D.7)

D.2 Derivation of the iteration (3.20), (3.21)
Let D, the set of joint distributions q̂ (W ,H) that factorize over the rows of W ,H , namely

q̂ (W ,H) = q (H) q̃ (W ) =
d∏
i=1

qi (hi)
n∏
a=1

q̃a (wa) . (D.8)

The goal in variational inference is to find the distribution in D that minimizes the Kullback-
Leibler (KL) divergence with respect to the actual posterior distribution of X,W given X

q̂∗ ( · , · ) = arg min
q̂∈D

KL (q̂ ( · , · ) || p ( · , · |X)) (D.9)

The KL divergence can also be written as (denoting by Eq̂ expectation over (W ,H) ∼
q̂( · , · ))

KL (q̂ ( · , · ) || p ( · , · |X)) = Eq̂ [log q̂ (W ,H)]− Eq̂ [log p (X,W ,H)] + log p (X) (D.10)
≡ F(q̂) + log p (X) . (D.11)

The function F(q̂) is known as Gibbs free energy or –within the topic models literature–
as the opposite of the evidence lower bound F(q̂) = −ELBO(q̂) [4]. Since log p (X) does
not depend on q̂, minimizing the KL divergence is equivalent to minimizing the Gibbs free
energy.

In order to find q̂∗ (W ,H) = q∗ (H) q̃∗ (W ), the naive mean field iteration minimizes
the Gibbs free energy by alternating minimization: we minimize the Gibbs free energy over
q (H) (while keeping q̃ (W ) fixed), then minimize over q̃ (W ) (while keeping q (H) fixed),
and repeat. With a slight abuse of notation, we will write F(q̂) = F(q, q̃). Note that if we
keep q̃ (W ) fixed, we have

arg min
q
F(q, q̃) = arg min

q

{
Eq(H) [log q (H)]− Eq(H)

[
Eq̃(W ) [log p (X,W ,H)]

]}
= arg min

q
KL

(
q (H) ||C exp

{
Eq̃(W ) [log p (X,W ,H)]

})
∝ exp

{
Eq̃(W ) [log p (X,W ,H)]

}
. (D.12)

Similarly, by taking q (H) fixed, we have

arg min
q̃
F(q, q̃) ∝ exp

{
Eq(H) [log p (X,W ,H)]

}
. (D.13)
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Therefore, the naive mean field iterations have the form

qt+1 (H) =
d∏
i=1

qt+1
i (hi) ∝ exp

{
Eq̃t(W ) [log p (X,W ,H)]

}
,

q̃t (W ) =
n∏
a=1

q̃ta (wa) ∝ exp
{
Eqt(H) [log p (X,W ,H)]

}
.

(D.14)

with initialization

q0 (H) =
d∏
i=1

q0 (hi) , q̃0 (W ) =
n∏
a=1

q̃0 (wa) (D.15)

where q0 (hi), q̃0 (wa) are the prior distributions on the rows of H and W , cf. Eq. (D.3).
Note that the iterations in (D.14) can be further simplified by noting that the densities qti
and q̃ti have the form

qti (h) ∝ exp
{〈
mt

i,h
〉
− 1

2
〈
h,Qth

〉}
q0 (h) ,

q̃ta (w) ∝ exp
{〈
m̃t

a,w
〉
− 1

2

〈
w, Q̃

t
w
〉}

q̃0 (w) .
(D.16)

In order to see this, note that the initial densities q0 (h), q̃0 (w) are in the form (D.16).
Further, if we assume that qti (h), q̃ta (w) are in the form (D.16), using the update equations
(D.14), we have

qt+1 (H) =
d∏
i=1

qt+1
i (hi)

∝ exp
{
Eq̃t(W ) log p (X,H ,W )

}
∝ exp

{
Eq̃t(W ) log p (H ,X|W )

}
∝ q0 (H) exp

{
Eq̃t(W ) log p (X|H ,W )

}
∝ q0 (H) exp

−Eq̃t(W )

d
2

∥∥∥∥∥X −
√
β

d
WHT

∥∥∥∥∥
2

F


∝ q0 (H) exp

{
Eq̃t(W )Tr

(√
βXHW T − β

2dWHTHW T
)}

= q0 (H) exp
{
Eq̃t(W )

n∑
a=1

(√
β 〈xa,Hwa〉 −

β

2d
〈
wa,H

THwa

〉)}

= q0 (H) exp
{

n∑
a=1

〈
xa,HF̃

(
m̃t

a; Q̃
t
)〉
− 1

2d

〈
HTH ,

n∑
a=1

G̃
(
m̃t

a; Q̃t

)〉}

=
d∏
i=1

(
q0 (hi) exp

{〈
mt+1

i ,hi
〉
− 1

2
〈
hi,Q

t+1hi
〉})
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where F̃( · ; · ), G̃( · ; · ) are given in (D.2), (D.6) and

mt+1 = XTF̃
(
m̃t; Q̃t

)
, Qt+1 = 1

d

n∑
a=1

G̃
(
m̃t

a; Q̃
t
)
. (D.17)

Therefore, qt+1
i (h) has the form in (D.16) and the update formula for mt+1, Qt+1 are given

in (D.17). Similarly, for q̃t+1 (W ) we have

q̃t+1 (W ) =
n∏
a=1

q̃t+1
a (wa)

∝ exp
{
Eqt+1(H) log p (X,H ,W )

}
∝ exp

{
Eqt+1(H) log p (W ,X|H)

}
= q̃0 (W ) exp

{
Eqt+1(H) log p (X|H ,W )

}
∝ q̃0 (W ) exp

Eqt+1(H)

−d2
∥∥∥∥∥X −

√
β

d
WHT

∥∥∥∥∥
2

F


∝ q̃0 (W ) exp

{
Eqt+1(H)Tr

(√
βWHTXT − β

2dWHTHW T
)}

Hence,

q̃t+1 (W ) ∝ q̃0 (W ) exp
{
Eqt+1(H)

n∑
a=1

(√
β 〈wa,xaH〉 −

β

2d
〈
wa,H

THwa

〉)}

= q̃0 (W ) exp
{

n∑
a=1

〈
wa,xaF

(
mt+1;Qt+1

)〉
− 1

2d

〈
wa,

(
d∑
i=1

G
(
mt+1

i ;Qt+1
))
wa

〉}

=
n∏
a=1

(
q̃0 (wa) exp

{〈
wa, m̃

t+1
a

〉
− 1

2

〈
wa, Q̃

t+1
wa

〉})

where F( · ; · ),G( · ; · ) are given in (D.1), (D.5) and

m̃t+1 = XF
(
mt+1;Qt+1

)
, Q̃

t+1 = 1
d

d∑
i=1

G
(
mt+1

i ;Qt+1
)
. (D.18)

Therefore, q̃t+1
a (w) has the form in (D.16) and the update formula for m̃t+1, Q̃t+1 are given

in (D.18).

D.3 Derivation of the variational free energy (3.9)
As already mentioned, naive mean field minimizes the KL divergence between a factorized
distribution q̂(W ,H) = ∏n

a=1 q̃(wa)
∏d
i=1 q(hi) and the real posterior p(W ,H|X). The KL
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divergence takes the form

KL(q̂( · , · )||p( · , · |X)) = F(q̂) + log p(X) + d

2‖X‖
2
F , (D.19)

where F(q̂) is the Gibbs free energy. In this appendix we derive an explicit form for F(q̂)
when q̂ is factorized. We have

F(q̂) = Eq̂[− log p(W ,H|X)] + Eq̂[log q̂(W ,H)]− d

2‖X‖
2
F

= Eq̂[− log p(W ,H ,X)] + Eq̂[log q̂(W ,H)]− d

2‖X‖
2
F

= Eq̂[− log p(X|W ,H)− log p(W ,H)] + Eq̂[log q̂(W ,H)]− d

2‖X‖
2
F

= Eq̂

d‖X −
√
β

d
WHT‖2

F

2 − d

2‖X‖
2
F − log(p(W ,H))

+ Eq̂[log q̂(W ,H)]

= d

2Eq̂
[
‖X −

√
β

d
WHT‖2

F

]
− d

2‖X‖
2
F + KL(q̂( · , · )‖q0( · , · )) .

(The last term is the KL divergence between q̂ and the prior.)
We can explicitly calculate each term. Let’s denote by ri,Ωi the first and second moments

of qi and by r̃a, Q̃a the first and second moments of q̃a:

ri =
∫
h qi(dh) , r̃a =

∫
w q̃a(dw) , (D.20)

Ωi =
∫
h⊗2 qi(dh) , Ω̃a =

∫
w⊗2 q̃a(dw) . (D.21)

We then have

d

2Eq̂‖X −
√
β

d
WHT‖2

F −
d

2‖X‖
2
F = d

2Eq̂
[
Tr
(
−2
√
β

d
XTWHT

)
+ Tr

(
β

d2HW
TWHT

)]

= −
√
βTr

(
XTEq̂[WHT]

)
+ β

2dTr
(
Eq̂[HW TWHT]

)
= −

√
βTr

(
XTrr̃T

)
+ β

2d

d∑
i=1

n∑
a=1
〈Ωi, Ω̃a〉 . (D.22)

Since both q̂ and q0 have product form, their KL divergence is just a sum of KL diver-
gences for each row of W and each row of H :

KL(q̂( · , · )‖q0( · , · ))) =
d∑
i=1

KL(qi‖q0) +
n∑
a=1

KL(q̃a‖q0) . (D.23)

Each of these terms is treated in the same manner: we minimize over qi or q̃a subject to the
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moment constraints (D.20), and define

ψ∗(ri,Ωi) = min
{

KL(qi‖q0) :
∫
h qi(dh) = ri ,

∫
h⊗2 qi(dh) = Ωi

}
, (D.24)

ψ̃∗(r̃a, Ω̃a) = min
{

KL(q̃a‖q̃0) :
∫
w q̃a(dw) = r̃a ,

∫
w⊗2 q̃a(dw) = Ω̃a

}
. (D.25)

Standard duality between entropy and moment generating functions yields that ψ∗, ψ̃∗ are
defined as per Eq. (3.11). We briefly recall the argument for the reader’s convenience.
Considering for instance ψ̃∗(r̃, Ω̃), we introduce the Lagrangian

L(q̃a, m̃a, Q̃a) =KL(q̃a‖q̃0) + 〈m̃a, r̃a〉 −
1
2〈Q̃a, Ω̃a〉

−
∫

exp
{
〈m̃a,w〉 −

1
2〈w, Q̃aw〉

}
q̃a(dw) .

This is minimized easily with respect to q̃a. The minimum is achieved at the distribution
(3.5), with

min
q̃a

L(q̃a, m̃a, Q̃a) = 〈r̃a, m̃a〉 −
1
2〈Ω̃a, Q̃a〉 − φ̃(m̃a, Q̃a) , (D.26)

and the claim (3.11) follows by strong duality.
Putting together Eqs. (D.22), (D.23), and (D.24)-(D.25), we obtain the desired expression

(3.9).
Using (3.11), we get the following expressions for the gradients of ψ∗

∂ψ∗
∂r

(r,Ω) = m ,
∂ψ∗
∂Ω

(r,Ω) = −1
2Q , (D.27)

and similarly for ψ̃∗ (where m,Q are related to r,Ω via Eqs. (3.12), (3.12)). Hence, the
gradients of F with respect to ri, Ωi read

∂F
∂ri

(r, r̃,Ω, Ω̃) = −
√
β(XTr̃)i,· +mi ,

∂F
∂r̃a

(r, r̃,Ω, Ω̃) = −
√
β(Xr)a,· + m̃a , (D.28)

∂F
∂Ωi

(r, r̃,Ω, Ω̃) = −1
2Qi + β

2d

n∑
a=1

Ω̃a ,
∂F
∂Ω̃a

(r, r̃,Ω, Ω̃) = −1
2Qa + β

2d

d∑
i=1

Ωi . (D.29)

Notice that at stationarity points, we have Qi = Q = (β/d)∑n
a=1 Ω̃a independent of i.

D.4 Proof of Lemma 3.2
We start with some useful formulae.
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Lemma D.1. For q ∈ R define E(q) by

E(q; ν) =
∫
w2

1 exp{−q‖w‖2
2} q̃0(dw)∫

exp{−q‖w‖2
2} q̃0(dw) . (D.30)

Then, we have

F(y = y1k;Q = q1Ik + q2Jk) =
√
β y

1 + q1 + kq2
1k , (D.31)

G(y = y1k;Q = q1Ik + q2Jk) = β

(1 + q1)Ik

+ β

{
y2

(1 + q1 + kq2)2 −
q1

(1 + q1)(1 + q1 + kq2)

}
Jk , (D.32)

F̃(ỹ = ỹ1k; Q̃ = q̃1Ik + q̃2Jk) =
√
β

k
1k , (D.33)

G̃(ỹ = ỹ1k; Q̃ = q̃1Ik + q̃2Jk) = β
k2E(q̃1; ν)− 1
k(k − 1) Ik − β

kE(q̃1; ν)− 1
k(k − 1) Jk . (D.34)

In particular

F(y = y1k;Q = qJk) =
√
β y

1 + kq
1k ,

G(y = y1k;Q = qJk) = β Ik + β
y2

(1 + kq)2 Jk ,

F̃(ỹ = ỹ1k; Q̃ = q̃Jk) =
√
β

k
1k ,

G̃(ỹ = ỹ1k; Q̃ = q̃Jk) = β

k(kν + 1) (Ik + νJk) .

Proof. First note that

[(1 + q1) Ik + q2Jk]−1 = 1
1 + q1

Ik −
q2

(1 + q1)(1 + q1 + kq2)Jk.

Hence, by (D.4) we have

F(y = y1k;Q = q1Ik + q2Jk) =
√
βy [(1 + q1) Ik + q2Jk]−1 1k

=
√
βy

(
1

1 + q1
Ik −

q2

(1 + q1)(1 + q1 + kq2)Jk
)

1k

=
√
βy

(
1

1 + q1
− kq2

(1 + q1)(1 + q1 + kq2)

)
1k

=
√
β y

1 + q1 + kq2
1k .
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Thus, by (D.7)

G(y = y1k;Q = q1Ik + q2Jk) = β y2

(1 + q1 + kq2)2Jk

+ β

(
1

1 + q1
Ik −

q2

(1 + q1)(1 + q1 + kq2)Jk
)

= β

(1 + q1) Ik

+ β

{
y2

(1 + q1 + kq2)2 −
q1

(1 + q1)(1 + q1 + kq2)

}
Jk .

In addition, using (D.2), by symmetry, all entries of F̃(ỹ = ỹ1k; Q̃ = q̃1Ik + q̃2Jk) are equal.
Further,

〈
1k , F̃(ỹ = ỹ1k; Q̃ = q̃1Ik + q̃2Jk)

〉
=
√
β

∫
〈1k,w〉 exp{〈ỹ,w〉 − 〈w, Q̃w〉/2} q̃0(dw)∫

exp{〈ỹ,w〉 − 〈w, Q̃w〉/2} q̃0(dw)

=
√
β

∫
exp{〈ỹ,w〉 − 〈w, Q̃w〉/2}q̃0(dw)∫
exp{〈ỹ,w〉 − 〈w, Q̃w〉/2}q̃0(dw)

=
√
β.

Therefore,

F̃(ỹ = ỹ1k; Q̃ = q̃1Ik + q̃2Jk) =
√
β

k
1k.

Finally, again by symmetry, G̃(ỹ = ỹ1k; Q̃ = q̃1Ik + q̃2Jk) has the same diagonal entries.
Further, the off-diagonal entries of this matrix are equal. Thus, we have

G̃(ỹ = ỹ1k; Q̃ = q̃1Ik + q̃2Jk) =
(
G̃11 − G̃12

)
Ik + G̃12Jk. (D.35)

Note that by (D.5), (D.30)

G̃1,1 = β

∫
w2

1 exp{ỹ 〈w,1k〉 − q̃1‖w‖2
2/2− q̃2 〈w,1k〉2 /2} q̃0(dw)∫

exp{ỹ 〈w,1k〉 − q̃1‖w‖2
2/2− q̃2 〈w,1k〉2 /2}q̃0(dw)

= β
exp{ỹ − q̃2/2}

∫
w2

1 exp{−q̃1‖w‖2
2/2} q̃0(dw)

exp{ỹ − q̃2/2}
∫

exp{−q̃1‖w‖2
2/2}q̃0(dw) = β E(q̃1; ν).
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Further, by (D.5)

kG̃1,1 + k(k − 1)G̃1,2 =
〈
G̃(ỹ = ỹ1k; Q̃ = q̃1Ik + q̃2Jk),Jk

〉
= β

∫
〈w,1k〉2 exp{〈ỹ,w〉 − 〈w, Q̃w〉/2} q̃0(dw)∫

exp{〈ỹ,w〉 − 〈w, Q̃w〉/2}q̃0(dw)
, (D.36)

= β

∫
exp{〈ỹ,w〉 − 〈w, Q̃w〉/2} q̃0(dw)∫
exp{〈ỹ,w〉 − 〈w, Q̃w〉/2} q̃0(dw)

= β. (D.37)

Therefore, by (D.37), (D.35), we get

G̃1,1 = β E(q̃1; ν) , G̃1,2 = −β kE(q̃1; ν)− 1
k(k − 1) . (D.38)

Hence,

G̃(ỹ = ỹ1k; Q̃ = q̃1Ik + q̃2Jk) = β
k2E(q̃1; ν)− 1
k(k − 1) Ik − β

kE(q̃1; ν)− 1
k(k − 1) Jk. (D.39)

In addition, note that

E(0; ν) =
∫
w2

1 q̃0(dw) = ν + 1
k(kν + 1) . (D.40)

Using this, and replacing q1, q̃1 = 0 in (D.31) - (D.34) will complete the proof.

Proof of Lemma 3.2. Note that q ≥ 0

k2E(q; ν) =
∫
k2w2

1 exp{−q‖w‖2
2} q̃0(dw)∫

exp{−q‖w‖2
2} q̃0(dw) =

∫
k‖w‖2

2 exp{−q‖w‖2
2} q̃0(dw)∫

exp{−q‖w‖2
2} q̃0(dw)

≥
∫
‖w‖2

1 exp{−q‖w‖2
2} q̃0(dw)∫

exp{−q‖w‖2
2} q̃0(dw) = 1.

In addition, we have

E(0; ν) =
∫
w2

1 q̃0(dw) = ν + 1
k(kν + 1) ,

lim
q1→∞

kβδ

k − 1

{
E
(

β

1 + q1
; ν
)
− 1
k2

}
= kβδ

k − 1

{
E (0; ν)− 1

k2

}
= βδ

k(kν + 1) <∞.

Therefore, the right hand side of (3.14) is non-negative, continuous, bounded for q∗1 ∈ [0,∞).
Hence, using intermediate value theorem, (3.14) has a solution in [0,∞).

Now we will check that equations (3.20) and (3.21) hold for mt+1 = mt = m∗, m̃t = m̃∗,
Qt = Qt+1 = Q∗, Q̃t = Q̃

∗. We start with the first equation in (3.20). Using Lemma D.1,
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we have

F̃(m̃∗a; Q̃
∗) =

√
β

k
1k.

Therefore,

F̃(m̃∗; Q̃∗) =
√
β

k
1n ⊗ 1k, XTF̃(m̃∗; Q̃∗) =

√
β

k
(XT1n)⊗ 1k = m∗.

Now we consider the first equation in (3.21). Using Lemma D.1, we have

F(m∗i ;Q∗) = β

k(1 + q∗1 + kq∗2) 〈X .,i,1n〉1k.

Hence,

F(m∗;Q∗) = β

k(1 + q∗1 + kq∗2)(XT1n)⊗ 1k,

XF(m∗;Q∗) = β

k(1 + q∗1 + kq∗2)(XXT1n)⊗ 1k = m̃∗.

For the second equation in (3.20), note that using Lemma D.1, we have

1
d

n∑
a=1

G̃(m̃∗a; Q̃
∗) = δβ

(
k2E(q̃∗1; ν)− 1
k(k − 1) Ik −

kE(q̃∗1; ν)− 1
k(k − 1) Jk

)
.

Note that using (3.14), (3.15)

k2E(q̃∗1; ν)− 1
k(k − 1) = 1

k(k − 1)

[
k2E

(
β

1 + q∗1
; ν
)
− 1

]
= q∗1
δβ
,

−kE(q̃∗1; ν) + 1
k(k − 1) = −1

k(k − 1)

[
kE
(

β

1 + q∗1
; ν
)
− 1

]

= −1
k(k − 1)

[
k − 1
δβ

q∗1 + 1− k
k

]

= 1
δβ

(
βδ − kq∗1

k2

)
= q∗2
δβ
.

Therefore,

1
d

n∑
a=1

G̃(m̃∗a; Q̃
∗) = q∗1Ik + q∗2Jk = Q∗. (D.41)
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Finally, we check the second equation in (3.21). Using Lemma D.1, we have

G(m∗i ;Q∗) = β

(1 + q∗1) Ik + β

{
〈X .,i,1n〉2

(1 + q∗1 + kq∗2)2 −
q∗1

(1 + q∗1)(1 + q∗1 + kq∗2)

}
Jk. (D.42)

Hence,

1
d

d∑
i=1

G(m∗i ;Q∗) = β

(1 + q∗1) Ik + β

{
‖XT1n‖2

2
d(1 + q∗1 + kq∗2)2 −

q∗1
(1 + q∗1)(1 + q∗1 + kq∗2)

}
Jk

= q̃∗1Ik + q̃∗2Jk = Q̃
∗
,

this completes the proof.

D.5 Proof of Theorem 2
We will first prove that, if L(β, k, δ, ν) > 1, then the uninformative fixed point (r∗, r̃∗,Ω∗, Ω̃∗)
(or equivalently, its conjugate (m∗, m̃∗,Q∗, Q̃∗)) is (with high probability) a saddle point of
the naive mean field free energy (3.9). This implies immediately that the naive mean field
iteration is unstable at that fixed point.

Note that the mapping (r, r̃,Ω, Ω̃)→ (r, r̃,Q, Q̃) is a diffeomorphism (since the Jacobian
is always invertible by strict convexity of φ, φ̃). We define F∗ to be the restriction of F to
the submanifold defined by Q = Q∗, Q̃ = Q̃∗. Explicitly, this can be written in terms
of the partial Legendre transforms (we repeat the definition of Eq. (4.4) for the reader’s
convenience):

ψ(r,Q) ≡ sup
m
{〈r,m〉 − φ(m,Q)} , ψ̃(r̃, Q̃) ≡ sup

m̃

{
〈r̃, m̃〉 − φ̃(m̃, Q̃)

}
. (D.43)

We then have

F∗(r, r̃) =
d∑
i=1

ψ(ri,Q∗) +
n∑
a=1

ψ̃(r̃a, Q̃∗)−
√
βTr

(
Xrr̃T

)
− d

2〈Q∗,Ω〉 −
n

2 〈Q̃∗, Ω̃〉+ βn

2 〈Ω, Ω̃〉 , (D.44)

Ω ≡ 1
dβ

d∑
i=1

G(mi;Q∗) , Ω̃ ≡ 1
nβ

n∑
a=1

G̃(m̃a; Q̃
∗) , (D.45)

ri ≡
1√
β

F(mi;Q∗) , r̃a ≡
1√
β

F̃(m̃a; Q̃
∗) , . (D.46)

In order to prove that (r∗, r̃∗) is a saddle point of F , it is sufficient to show that it is a saddle
along a submanifold, and hence that the Hessian of F∗ has a negative eigenvalue at (r∗, r̃∗).
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Next notice that

F∗(r, r̃) = G1(r, r̃) + G2(r, r̃) ,

G1(r, r̃) ≡
d∑
i=1

ψ(ri,Q∗) +
n∑
a=1

ψ̃(r̃a, Q̃∗)−
√
βTr

(
Xrr̃T

)
,

G2(r, r̃) ≡ −d2〈Q∗,Ω〉 −
n

2 〈Q̃∗, Ω̃〉+ βn

2 〈Ω, Ω̃〉 .

Consider deviations from the stationary point ri = r∗i + δi, r̃a = r̃∗a + δ̃a. By Eqs. (D.45)
and (D.46), we have (for some tensors T , T̃ ∈ (Rk)⊗3))

Ω = Ω∗ + 1
d

d∑
i=1
Tδi + ∆ , Ω̃ = Ω̃∗ + 1

n

n∑
a=1
T̃ δ̃a + ∆̃ , (D.47)

where ∆, ∆̃ are of second order in δ, δ̃. At the stationary point, by Eq. (D.29), we have
Q∗ = βΩ∗, Q̃∗ = βδΩ̃∗. Hence, substituting in G2, and letting Mij = ∑

s,t Tst,iT̃st,j, we
obtain

G2(r, r̃) = G2(r∗, r̃∗) + β

2d

d∑
i=1

n∑
a=1
〈δi,Mδ̃a〉+ o(δ2) (D.48)

Therefore, the Hessian ∇2G2(r∗, r̃∗) has rank at most k.
Since ψ( · ,Q∗), ψ̃( · , Q̃∗) are Legendre transforms of φ( · ,Q∗), φ̃( · , Q̃∗), respectively, we

have

∇2
rrψ(r,Q∗) =

(
∇2
mmφ(m,Q∗)

)−1
= Ik +Q∗, (D.49)

∇2
r̃r̃ψ̃(r̃, Q̃∗) =

(
∇2
m̃m̃φ̃(m̃, Q̃

∗)
)−1

= D−1 (D.50)

where D ∈ Rk×k is as

Dij = 1√
β

∂F̃i
(
m̃; Q̃

)
∂m̃j

∣∣∣∣∣∣
m̃=0,Q̃=Q̃

∗
. (D.51)

Thus,

D =(
∫
w⊗2 exp{−q̃∗1‖w‖2

2/2}q̃0(dw)) (
∫

exp{−q̃∗1‖w‖2
2/2}q̃0(dw))

(
∫

exp{−q̃∗1‖w‖2
2/2}q̃0(dw))2

− (
∫
w exp{−q̃∗1‖w‖2

2/2}q̃0(dw))⊗2

(
∫

exp{−q̃∗1‖w‖2
2/2}q̃0(dw))2

=Q
∗

δβ
− Jk
k2 .
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Hence,

∇2G1 =
[
Id ⊗

(
Ik + Q̃∗

)
−
√
βXT ⊗ Ik

−
√
βX ⊗ Ik In ⊗D−1

]
. (D.52)

Since Ik + Q̃∗ is positive definite, ∇2G � 0 if and only if

In ⊗D−1 � β (X ⊗ Ik)
(
Id ⊗

(
Ik + Q̃∗

))−1 (
XT ⊗ Ik

)
⇐⇒ In ⊗D−1 � β

(
XXT

)
⊗
(
Ik + Q̃∗

)−1

⇐⇒ In ⊗ Ik � β
(
XXT

)
⊗
(
Ik + Q̃∗

)−1
D.

Hence, ∇2G1 has a negative eigenvalue if and only if

βλmax
(
XXT

)
λmax

((
Ik + Q̃∗

)−1
D
)
> 1.

Further, by the same argument, if βλ`(XXT)λmax((Ik + Q̃
∗)−1D) > 1, then ∇2G1 has at

least ` negative eigenvalues (recall that λ`(M) denotes the `-th eigenvalue ofM in decreasing
order).

Note that

(Ik +Q∗)−1D =
(

Ik
1 + q∗1

− q∗2
(1 + q∗1)(1 + q∗1 + kq∗2)Jk

)(
q∗1
δβ
Ik +

(
q∗2
δβ
− 1
k2

)
Jk

)

= 1
1 + q∗1

(
q∗1
δβ
Ik +

(
q∗2

1 + q∗1 + kq∗2

(
1
δβ

+ 1
k

)
− 1
k2

)
Jk

)
,

µ(β, δ) ≡ λmax
(
(Ik +Q∗)−1D

)
= 1

1 + q∗1

(
q∗1
δβ

+ k

[
q∗2

1 + q∗1 + kq∗2

(
1
δβ

+ 1
k

)
− 1
k2

]
+

)
.

where q∗1, q̃∗1, q∗2 are given in (3.14), (3.15), (3.16). Further XXT is a low-rank deformation
of a Wishart matrix. Hence, for any fixed `, we have, almost surely

lim inf
n,d→∞

λ`(XXT) ≥
(

1 + 1√
δ

)2

.

Thus, if

L(β, δ) = βλmax

(
1 + 1√

δ

)2

µ(β, δ) > 1,

we have λn(∇2G1) ≤ · · · ≤ λn−`(∇2G1) < 0 with high probability for any fixed `.
As explained above, ∇2G2 has rank at most k. Therefore, by Cauchy’s interlacing in-
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equality, if L(β, k, δ, ν) > 1,

λmin
(
∇2F∗

)
≤ λn+k

(
∇2G1 +∇2G2

)
< 0.

Hence, for L(β, δ) > 1, ∇2F∗ has a negative eigenvalue.
Note that the mapping (r, r̃,Ω, Ω̃)→ (m, m̃,Q, Q̃) is a diffeomorphism, and therefore,

uninformative fixed point (m∗, m̃∗,Q∗, Q̃∗) is a saddle also when we consider the free energy
as a function of the parameters (m, m̃,Q, Q̃). The claim that (m∗,Q∗) is unstable under
the naive mean field iteration follows immediately from the above, by using Lemma A.1,
applied to f(x,y) = F(m, m̃,Q, Q̃), whereby x = (m,Q), y = (m̃, Q̃).

E Naive Mean Field: Further numerical results
In this section we report on additional numerical simulations using the alternate minimization
to minimize the naive mean field free energy. These results confirm the one presented in the
main text in Section 3.5.

E.1 Credible intervals
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Figure 10: Bayesian credible intervals as computed by variational inference at nominal cov-
erage level 1 − α = 0.9. Here k = 2, d = 5000, n = 2500 and we consider three values of
β: β ∈ {2, 5.7, 8.5} (for reference βinst ≈ 2.9, βBayes ≈ 8.5. Circles correspond to the poste-
rior mean, and squares to the actual weights. We use red for the coordinates on which the
credible interval does not cover the actual value of wi,1.

In Figures 10 and 11 we plot Bayesian credible intervals for the weights wi,1 as computed
within naive mean field, for k = 2, d = 5000. These simulations are analogous to the one
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Figure 11: Bayesian credible intervals as computed by variational inference at nominal cov-
erage level 1 − α = 0.9. Here k = 2, d = 5000, n = 10000 and we consider three values of
β: β ∈ {1, 3, 4.2} (for reference βinst ≈ 1.7, βBayes ≈ 4.2. Circles correspond to the poste-
rior mean, and squares to the actual weights. We use red for the coordinates on which the
credible interval does not cover the actual value of wi,1.

reported in the main text in Figure 5, but we use n = 2500 (δ = 0.5) in Figure 10 and
n = 10000 (δ = 2) in Figure 10.

The nominal coverage of these intervals is 0.9, but we obtain a smaller empirical coverage.
For δ = 0.5, the empirical coverage was 0.87 (for β = 2 < βinst), 0.61 (for β = 5.7 ∈
(βinst, βBayes)), and 0.64 (for β = 8.5 ≈ βBayes). For δ = 2, the empirical coverage was 0.89 (for
β = 1 < βinst), 0.69 (for β = 3 ∈ (βinst, βBayes)), and 0.65 (for β = 4.2 ≈ βBayes).

E.2 Results for k = 3 topics
In Figures 12 to 15 we report our results using alternating minimization to minimize the
naive mean field free energy for k = 3.

In Figures 12, 13 we plot (respectively) the normalized distances V(Ĥ), V(Ŵ ) from the
uninformative subspaces {H = v ⊗ 1k : v ∈ Rd} and {W = v ⊗ 1k : v ∈ Rd}. Data are
consistent with the claim that this distance becomes significant when β ≥ βinst(k, ν, δ).

In Figures 14, 15 we consider the correlation between the estimates Ĥ , Ŵ and the true
factorization H ,W , and define a Binder cumulant as follows for k ≥ 3. Let Cη(H , Ĥ) be
the k × k matrix with entries

Cη(H , Ĥ)i,j = 〈(Ĥ⊥)i + ηg, (H⊥)j〉
‖(Ĥ⊥)i + ηg‖2‖(H⊥)j‖2

(E.1)
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V(Ĥ)

V(Ŵ)
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Figure 12: Normalized distances V(Ĥ), V(Ŵ ) of the naive mean field estimates from the
uninformative fixed point. Here d = 1000 and changed n = dδ: each data point corresponds
to an average over 400 random realizations.

We then define

R̂ ≡
Ê
{∑

i,j≤k Cη(H , Ĥ)4
i,j

}
Ê
{∑

i,j≤k Cη(H , Ĥ)2
i,j

}2 (E.2)

BH ≡

 6
(

max
{

2
3 − R̂

}
− 1

3

)
if Ê

{∑
i,j≤k Cη(H , Ĥ)2

i,j

}
> 0.01 ,

0 otherwise.
(E.3)

Here Ê denotes empirical average with respect to the sample and g ∼ N(0, Id). We set
η = 10−4. An analogous definition holds for Cη(Ŵ ), Bη(Ŵ ). In equation (E.2) we introduced
a max thresholding step and a threshold on the denominator. These are added to ensure
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Figure 13: Empirical fraction of instances such that V(Ŵ ) ≥ ε0 = 5·10−3 (left) or V(Ĥ) ≥ ε0
(right), where Ŵ , Ĥ are the naive mean field estimate. Here k = 3, d = 1000 and, for
each (δ, β) point on a grid, we used 400 random realizations to estimate the probability of
V(Ŵ ) ≥ ε0.

the stability of the fraction below the phase transition region where the denominator of R̂
vanishes.

Figures 14, 15 are consistent with the prediction that the correlation between the AMP
estimates and the true factors W ,H starts to be non-negligible at the Bayes threshold.

F TAP free energy and approximate message passing

F.1 Heuristic derivation of the TAP free energy
Several heuristic approaches exist to construct the TAP free energy. Here we will derive the
expression (4.3) of the TAP free energy for topic models as an approximation of the Bethe
free energy for the same problem: we refer to [10, 7, 6] for background on the latter. Let us
emphasize that our derivation will be only heuristic, since our rigorous results are obtained
by analyzing the resulting expression FTAP(r, r̃) and do not require a rigorous justification
of Eq. (4.3).

The posterior pH,W |X takes the form

pH,W |X(H ,W |X)

= 1
Z(X)

∏
(a,i)∈[n]×[d]

exp
{√

βXai〈wa,hi〉 −
β

2d〈wa,hi〉2
}

d∏
a=1

q̃0(wa)
d∏
i=1

q0(hi) .

This can be regarded as a pairwise graphical model whose underlying graph is the complete
bipartite graph over vertex sets [n] (associated to variables w1, . . .wn) and [d] (associated to
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Figure 14: Binder cumulant for the correlation between the naive mean field estimates Ĥ
and the true topics H . Here we report results for k = 3, d = 1000 and n = dδ, obtained
by averaging over 400 realizations. Note that for β < βBayes(k, ν, δ), BH decreases with the
dimensions, suggesting asymptotically vanishing correlations.

variables h1, . . .hd). The Bethe free energy FBethe takes as input messages q ≡ (qi→a)i∈[d],a∈[n],
q̃ = (q̃a→i)i∈[d],a∈[n]. Messages are probability densities over the hi’s (for qi→a) or the wa’s
(for q̃a→i), indexed by the directed edges in this graph (each pair (a, i), a ∈ [n], i ∈ [d] gives
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Figure 15: Binder cumulant for the correlation between the naive mean field estimates Ŵ ,
Ĥ and the true weights and topics W , H . Here k = 3, d = 1000 and n = dδ, and we
averaged over 400 realizations.

rise to two directed edges). The free energy takes the form [7]

FBethe(q, q̃) =
n∑
a=1

d∑
i=1

logZai −
d∑
i=1

logZi −
n∑
a=1

log Z̃a,

Zi =
∫ n∏

a=1
exp{

√
βXai〈wa,hi〉 −

β

2d〈wa,hi〉2}dq0(hi)
n∏
a=1

dq̃a→i(wa) , (F.1)

Z̃a =
∫ d∏

i=1
exp{

√
βXai〈wa,hi〉 −

β

2d〈wa,hi〉2}dq̃0(wa)
d∏
i=1

dqi→a(hi) , (F.2)

Zai =
∫

exp{
√
βXai〈wa,hi〉 −

β

2d〈wa,hi〉2} dqi→a(hi) dq̃a→i(wa) . (F.3)

The stationarity conditions for FBethe(q, q̃) correspond to the belief propagation fixed point
equations

qi→b(hi) = 1
Ci→b

q0(hi)
∏

a∈[n]\b

∫
exp{

√
βXai〈wa,hi〉 −

β

2d〈wa,hi〉2}dq̃a→i(wa) , (F.4)

q̃a→j(wi) = 1
C̃a→j

q̃0(wi)
∏

i∈[d]\j

∫
exp{

√
βXai〈wa,hi〉 −

β

2d〈wa,hi〉2}dqi→a(hi) . (F.5)

We define f i→a =
∫
hidqi→a(hi), f̃a→i =

∫
wadq̃a→i(wa), and gi→a =

∫
h⊗2
i dqi→a(hi), g̃a→i =
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∫
w⊗2
a dq̃a→i(wa). Since Xai = O(1/

√
n), we have

d∏
i=1

∫
exp{

√
βXai〈wa,hi〉 −

β

2d〈wa,hi〉2}dqi→a(hi)

=
d∏
i=1

exp
{√

βXai〈f i→a,wa〉 −
β

2d〈f i→a,wa〉2 + β

2

(
X2
ai −

1
d

)
〈gi→a − f⊗2

i→a,w
⊗2
a 〉+O(n−3/2)

}

= exp
{

d∑
i=1

√
βXai〈f i→a,wa〉 −

β

2d

d∑
i=1
〈f i→a,wa〉2 +O(n−1/2)

}
, (F.6)

where in the last step we used the fact that E{X2
ai−d−1} = O(n−3/2) and applied the central

limit theorem.
Using the expression (F.6) in Eq. (F.2), and repeating a similar calculation for (F.1), we

get

logZi = φ

(√
β

n∑
a=1

Xaif̃a→i,
β

d

n∑
a=1
f̃
⊗2
a→i

)
+O(n−1/2) , (F.7)

log Z̃a = φ̃

(√
β

d∑
i=1

Xaif i→a,
β

d

d∑
i=1
f⊗2
i→a

)
+O(n−1/2) , (F.8)

where the functions φ, φ̃ are defined implicitly in Eq. (3.5).
We can similarly expand Zai for large n, d:

Zai = 1 +
√
βXai〈f̃a→i,f i→a〉+ β

2

(
X2
ai −

1
d

)
〈g̃a→i, gi→a〉+O(n−3/2)

= exp
{√

βXai〈f̃a→i,f i→a〉 −
β

2X
2
ai〈f̃a→i,f i→a〉2 + β

2

(
X2
ai −

1
d

)
〈g̃a→i, gi→a〉+O(n−3/2)

}
.

Therefore, using again the central limit theorem,

∑
a≤n,i≤d

logZai =
√
β

∑
a≤n,i≤d

Xai〈f̃a→i,f i→a〉 −
β

2d
∑

a≤n,i≤d
〈f̃a→i,f i→a〉2 +O(n1/2) . (F.9)

Putting together Eqs. (F.7), (F.8), and (F.9), we obtain

FBethe(q, q̃) =−
d∑
i=1

φ

(√
β

n∑
a=1

Xaif̃a→i,
β

d

n∑
a=1
f̃
⊗2
a→i

)
−

n∑
a=1

φ̃

(√
β

d∑
i=1

Xaif i→a,
β

d

d∑
i=1
f⊗2
i→a

)

+
√
β

∑
a≤n,i≤d

Xai〈f̃a→i,f i→a〉 −
β

2d
∑

a≤n,i≤d
〈f̃a→i,f i→a〉2 +O(n1/2) .

Close to the solution of the stationarity conditions (F.4), (F.5), the message f i→a should be
roughly independent of a ∈ [n] and f̃a→i should be roughly independent of i ∈ [d]. Hence,
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we can approximate

− β

2d
∑

a≤n,i≤d
〈f̃a→i,f i→a〉2 = − β

2nd2

∑
a≤n,i≤d

∑
b≤n,j≤d

〈f̃a→j,f i→b〉2 + o(n) . (F.10)

In order to obtain the expression of Eq. (4.3) we add auxiliary variables mi, m̃a ∈ Rk, and
Qi, Q̃a ∈ Rk×k, alongside Lagrange multipliers ri, r̃a, Ωi, Ω̃a to enforce the constraints

mi =
√
β

n∑
a=1

Xaif̃a→i , Qi = β

d

n∑
a=1
f̃
⊗2
a→i , (F.11)

ma =
√
β

d∑
i=1

Xaif i→a , Q̃a = β

d

d∑
i=1
f⊗2
i→a . (F.12)

Denoting by m ∈ Rd×k the matrix whose i-th row is mi (and analogously for m̃, f , f̃ and
the Lagrange multipliers r, r̃), and using Eq. (F.10) we obtain the Lagrangian (here all sums
run over a ∈ [n] and i ∈ [d])

L =〈r,m〉 −
√
β
∑
a,i

Xai〈ri, f̃a→i〉+ 〈r̃, m̃〉 −
√
β
∑
a,i

Xai〈r̃a,f i→a〉+
√
β
∑
a,i

Xai〈f̃a→i,f i→a〉

+
√
β

2n
∑
a,i

〈Ω̃a,f
⊗2
i→a〉 −

d

2n
√
β

∑
a

〈Ω̃a, Q̃a〉+
√
β

2d
∑
a,i

〈Ω̃i, f̃
⊗2
a→i〉 −

d

2d
√
β

∑
a

〈Ωi, Q̃i〉

−
∑
i

φ(mi,Qi)−
∑
a

φ̃(m̃i, Q̃i)−
d

2βdn
∑
a,i

〈Q̃a,Qi〉 . (F.13)

We next minimize with respect to the message variables (f i→a), (f̃a→i). The first order
stationarity conditions read

Xaif̃a→i = Xair̃a −
1
n

Ω̃af i→a , (F.14)

Xaif i→a = Xairi −
1
d
Ωif̃a→i . (F.15)

In particular these imply that f̃a→i = r̃a+O(1/
√
n) and f̃a→i = r̃a+O(1/

√
n). Multiplying

the first of these equations by f i→a and the second by f̃a→i, and summing over i, a we obtain∑
a,i

Xai〈f̃a→i,f i→a〉

=1
2
∑
i,a

Xai

(
〈f i→a, r̃a〉+ 〈f̃a→i, ri〉

)
− 1

2n
∑
i,a

〈Ω̃a,f
⊗2
i→a〉 −

1
2d
∑
i,a

〈Ωi, f̃
⊗2
a→i〉

=1
2
∑
i,a

Xai

(
〈f i→a, r̃a〉+ 〈f̃a→i, ri〉

)
− 1

2n
∑
i,a

〈Ω̃a, r
⊗2
i 〉 −

1
2d
∑
i,a

〈Ωi, r̃
⊗2
a 〉+O(n1/2) .
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Further, multiplying Eqs. (F.14), (F.15) respectively by ri and r̃a, we get

1
2
∑
i,a

Xai

(
〈f i→a, r̃a〉+ 〈f̃a→i, ri〉

)

=
∑
a,i

Xai〈r̃a, ri〉 −
1

2n
∑
a,i

〈ri, Ω̃af i→a〉 −
1
2d
∑
a,i

〈r̃a,Ωif̃a→i〉

=
∑
a,i

Xai〈r̃a, ri〉 −
1

2n
∑
a,i

〈Ω̃a, r
⊗2
i 〉 −

1
2d
∑
a,i

〈Ωi, r̃
⊗2
a 〉+O(n1/2) .

Substituting the last two expressions in Eq. (F.13), we obtain

L =〈r,m〉+ 〈r̃, m̃〉 −
√
β〈r̃,Xr〉+

√
β

2n
∑
a,i

〈Ω̃a, r
⊗2
i 〉+

√
β

2d
∑
a,i

〈Ωi, r̃
⊗2
a 〉

− d

2n
√
β

∑
a

〈Ω̃a, Q̃a〉 −
d

2d
√
β

∑
i

〈Ωi,Qi〉 −
∑
i

φ(mi,Qi)−
∑
a

φ̃(m̃i, Q̃i) (F.16)

− d

2βdn
∑
a,i

〈Q̃a,Qi〉+O(n1/2).

Setting Qi = Q independent of i, Q̃a = Q̃ independent of a, defining Ω = d−1∑d
i=1 Ωi,

Ω̃ = n−1∑n
a=1 Ω̃a, and neglecting o(n) terms, we get

F̃TAP =d2‖X‖F −
√
βTr

(
Xrr̃T

)
+ Tr(rTm) + Tr(r̃Tm̃)− d

2
√
β

Tr(QΩ)− d

2
√
β

Tr(Q̃Ω̃)

−
n∑
a=1

φ̃(m̃a, Q̃)−
d∑
i=1

φ(mi,Q) +
√
β

2

d∑
i=1
〈Ω̃, r⊗2

i 〉+
√
β

2

n∑
a=1
〈Ω, r̃⊗2

a 〉

− d

2β 〈Q, Q̃〉 .

Finally, the expression (4.3) is recovered by using the stationarity conditions with respect to
Ω and Ω̃, which imply Q = (

√
β/d)∑n

a=1 r̃
⊗2
a and Q̃ = (

√
β/d)∑d

i=1 r
⊗2
i , and maximizing

with respect to m, m̃.

F.2 Gradient of the TAP free energy
From the definition of the partial Legendre transforms ψ(r,Q), ψ̃(r̃, Q̃), the following deriva-
tives hold

∂ψ

∂r
(r,Q) = m(r,Q) , ∂ψ

∂Q
(r,Q) = − 1

2βG
(
m(r,Q),Q

)
, (F.17)
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where m(r,Q) ∈ Rk is the unique solution of

r = 1√
β

F(m;Q) . (F.18)

Using these derivatives we can compute the gradient of the free energy

∂FTAP

∂ri
(r, r̃) = −

√
β(XTr̃)i +mi −

β

d

n∑
a=1
〈r̃a, ri〉 r̃a + 1

d

n∑
a=1

G̃(m̃a, Q̃)ri

= −
√
β(XTr̃)i +mi +

√
βΩ̃ri , (F.19)

∂FTAP

∂r̃a
(r, r̃) = −

√
β(Xr)a + m̃a −

β

d

d∑
i=1
〈r̃a, ri〉 ri + 1

d

d∑
i=1

G(mi,Q)r̃a

= −
√
β(Xr)a + m̃a +

√
βΩr̃a , (F.20)

where mi = m(ri, (β/d)∑a≤n r̃
⊗2
a ), m̃a = m̃(r̃a, (β/d)∑i≤d r

⊗2
i ), are defined as above,

Q = (β/d)∑a≤n r̃
⊗2
a , Q = (β/d)∑i≤d r̃

⊗2
i , and

Ω = 1
d
√
β

d∑
i=1

{
G(mi,Q)− F(mi,Q)⊗2

}
, (F.21)

Ω̃ = 1
d
√
β

n∑
a=1

{
G̃(m̃a, Q̃)− F̃(ma, Q̃)⊗2

}
. (F.22)

Remark F.1. We can express r, r̃ in terms of m, m̃ in Eqs. (F.19), (F.20) by using
Eq. (F.18)

m = XT F̃(m̃; Q̃)− F(m;Q)Ω̃ , m̃ = X F(m;Q)− F̃(m̃; Q̃)Ω , (F.23)

Q = 1
d

n∑
a=1

F̃(m̃a; Q̃)⊗2 , Q̃ = 1
d

d∑
i=1

F(mi;Q)⊗2 . (F.24)

These coincide with the fixed point of the AMP algorithm in Section 4.2.

F.3 Uninformative critical point: Proof of Lemma 4.1
Consider the stationarity conditions (F.23) and (F.24), together with the definitions of
Eqs. (4.11), (4.12). Since these are invariant under permutations of the topics, they ad-
mit a solution of the form m = v1T

k , m̃ = ṽ1T
k , Q = q0Jk + q′0Ik, Q̃ = q̃0Jk + q̃′0Ik. Using

Eq. (F.24) and Lemma D.1, Eqs. (D.31), (D.33), we get q′0 = q̃′0 = 0.
Substituting this in Eqs. (4.11), (4.12), and using again Lemma D.1, we get

Ω =
√
β Ik , Ω̃ =

√
βδ

k(kν + 1)P⊥ , (F.25)

where we recall that P⊥ = Ik − 1k1k/k. Substituting these in Eq. (F.23), we obtained that
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this is satisfied provided v, ṽ are given as in Eqs. (4.13), (4.14). Finally, q0, q̃0 are fixed by
substituting in Eq. (F.24).

G State evolution analysis

G.1 State evolution equations
Note that there is an alternative way to express the state evolution recursion in Eqs. (4.17),
(4.18). Given a probability measure p on Rk and a matrix M � 0, M ∈ Rk×k, we define
the minimum mean square error

mmse(M ; p) ≡ inf
x̂( · )

E
{

[x− x̂(y)][x− x̂(y)]T
}
, (G.1)

where the expectation is with respect to x ∼ p( · ) and y = M 1/2x + z for z ∼ N(0, Ik).
The infimum is understood in the positive semidefinite order, and it is achieved by x̂(y) =
E{x|y}. We then rewrite Eqs. (4.17), (4.18) as

M t+1 = βδ
{

mmse(0; q̃0)−mmse(M̃ t; q̃0)
}
, (G.2)

M̃ t = β
{

mmse(0; q0)−mmse(M t; q0)
}
. (G.3)

G.2 Uninformative fixed point
Lemma G.1. The state evolution recursion in (4.17), (4.18) admit uninformative fixed point
of the form

M̃
∗ = ρ0Jk, ρ0 = δβ2

kδβ + k2 ,

M ∗ = δβ

k2 Jk.

(G.4)

Proof. First note that for this value of M̃ ∗, M̃ ∗
w + M̃

∗1/2

z = y1k for some (random) y.
Hence, using Eq. (D.33)

δ E
{

F̃(M̃ ∗
w + M̃ ∗1/2

z;M̃ ∗)⊗2
}

= δβ

k2 Jk = M ∗.

66



In addition, using the explicit form (D.4)

E
{

F(M ∗h+M ∗1/2
z;M ∗)⊗2

}
= β(Ik +M ∗)−1M ∗

= β2δ

k2

(
Ik + δβ

k2 Jk

)−1

Jk

= ρ0Jk = M̃
∗
.

Hence, the pair M ∗,M̃
∗ in (G.4) is a fixed point for the iterations in (4.17), (4.18).

G.3 Stability of state evolution and proof of Theorem 4
The following theorem characterizes the region of parameters in which the uninformative
fixed point of the state evolution iterations in Lemma G.1 is stable.

Theorem 6. Consider the state evolution equations in (4.17), (4.18). The uninformative
symmetric fixed point of these equations is stable if and only if

β < βspect = k(kν + 1)√
δ

. (G.5)

Proof. We linearize Eqs. (4.17), (4.18) around the fixed point in (G.4) by setting M t =
M ∗ + ∆t, M̃ t = M̃ ∗ + ∆̃t and expanding Eqs. (4.17), (4.18) to first order in ∆, ∆̃t. First
note that Eq. (4.18) takes the explicit form

M̃ t = β(Ik +M t)−1M t . (G.6)

Hence, expanding to linear order we get

∆̃t = β

(
Ik + δβ

k2 Jk

)−1

∆t

(
Ik + δβ

k2 Jk

)−1

+ o(∆t) . (G.7)

In the following, we shall decompose ∆t and ∆̃t in the components along 1k and the ones
orthogonal

∆t = δtP + ∆(1)
t + ∆(2)

t ,

∆(1)
t = P∆tP⊥ + P⊥∆tP ,

∆(2)
t = P⊥∆tP⊥ ,

(G.8)
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and similarly for ∆̃t. Note that the linearization (G.7) preserves these subspaces

δ̃t = β

(
1 + δβ

k

)−2

δt + o(∆t) , (G.9)

∆̃
(1)
t = β

(
1 + δβ

k

)−1

∆(1)
t + o(∆t) , (G.10)

∆̃
(2)
t = β∆(2)

t + o(∆t) . (G.11)

Next we consider Eq. (4.17). We compute the value of

fw,z = F̃(M̃ tw + M̃ 1/2
t z;M̃ t)

=
√
β

∫
w1 exp

{〈
M̃ tw + M̃ 1/2

t z,w1

〉
− 1

2

〈
w1,M̃ tw1

〉}
q̃0(dw1)∫

exp
{〈
M̃ tw + M̃ 1/2

t z,w1

〉
− 1

2

〈
w1,M̃ tw1

〉}
q̃0(dw1)

=
√
β
Aw,z
Bw,z

.

for w ∈ P1(k). We have

M̃ tw = ρ01k + ∆̃
t
w, (G.12)〈

w1,M̃ tw1
〉

= ρ0 +
〈
w1, ∆̃

t
w1

〉
. (G.13)

Hence,

Aw,z =
∫
w1 exp

{〈
ρ01k + ∆̃

t
w +

(
ρ0Jk + ∆̃

t
)1/2

z,w1

〉
− ρ0

2 −
1
2

〈
w1, ∆̃

t
w1

〉}
q̃0(dw1)

=
∫
w1 exp

{
ρ0

2 +
〈
w1, ∆̃

t
w
〉
− 1

2

〈
w1, ∆̃

t
w1

〉
+
√
ρ0

k
〈Jkz,w1〉+

〈
Ct

∆z,w1
〉}

q̃0(dw1)

where Ct
∆ ≡

(
ρ0Jk + ∆̃

t
)1/2
− (ρ0/k)1/2Jk. Therefore, we have

Aw,z = a
∫
w1 exp

{〈
w1, ∆̃

t
w
〉
− 1

2

〈
w1, ∆̃

t
w1

〉
+
〈
Ct

∆z,w1
〉}

q̃0(dw1)

where a = exp
{
ρ0/2 +

√
ρ0/k 〈z,1k〉

}
. Expanding the exponential, we get

Aw,z = a

∫
w1

{
1 +

〈
w1, ∆̃

t
w
〉
− 1

2
〈
w1, ∆̃

t
w1
〉

+
〈
z,Ct

∆w1
〉

+ 1
2
〈
z,Ct

∆w1
〉2

+ o
(
∆̃
t)}

q̃0(dw1).
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Thus,

Aw,z = a


1
k

1k + S∆̃
t
w − 1

2



〈
∆̃

t
,T 1

〉〈
∆̃

t
,T 2

〉
...〈

∆̃
t
,T k

〉

+ SCt
∆z + 1

2


〈
Ct

∆z
⊗2Ct

∆,T 1
〉〈

Ct
∆z
⊗2Ct

∆, Ω′2
〉

...〈
Ct

∆z
⊗2Ct

∆,T k

〉
+ o

(
∆̃

t
)


where S,T ∈ Rk×k are the moment tensors

S =
∫
w⊗2

1 q̃0(dw1) = ν

kν(kν + 1) (Ik + νJk) = 1
k(kν + 1)P⊥ + 1

k
P , (G.14)

T =
∫
w⊗3

1 q̃0(dw1), (G.15)

(Ti)jl = 1
kν(kν + 1)(kν + 2) .


ν(ν + 1)(ν + 2) if j = l = i,

ν2(ν + 1) if j = i, l 6= i or l = i, j 6= i or l = j, j 6= i,

ν3 otherwise.
(G.16)

Similarly, we have

Bw,z = a

∫ {
1 +

〈
w1, ∆̃

t
w
〉
− 1

2
〈
w1, ∆̃

t
w1
〉

+
〈
z,Ct

∆w1
〉

+ 1
2
〈
z,Ct

∆w1
〉2

+ o
(
∆̃
t)}

q̃0(dw1).

Therefore,

Bw,z = a
(

1 + 1
k

〈
1k ⊗w, ∆̃

t
〉
− 1

2

〈
S, ∆̃

t
〉

+ 1
k

〈
1k ⊗ z,Ct

∆

〉
+ 1

2
〈
z,Ct

∆SC
t
∆z
〉

+ o
(
∆̃

t
))

.

Hence, we can write

fw,z =
√
β
Aw,z
Bw,z

=
√
β

1
k

1k + S∆̃
t
w − 1

2



〈
∆̃

t
,T 1

〉
〈

∆̃
t
,T 2

〉
...〈

∆̃
t
,T k

〉


+ SCt

∆z + 1
2



〈
Ct

∆z
⊗2Ct

∆,T 1
〉〈

Ct
∆z
⊗2Ct

∆,T 2
〉

...〈
Ct

∆z
⊗2Ct

∆,T k

〉



− 1
k2

〈
1k ⊗w, ∆̃

t
〉

1k + 1
2k

〈
S, ∆̃

t
〉

1k

− 1
k2

〈
1k ⊗ z,Ct

∆

〉
1k −

1
2k
〈
z,Ct

∆SC
t
∆z

〉
1k

− 1
k

〈
1k ⊗ z,Ct

∆

〉
SCt

∆z −
1
k3

〈
1k ⊗ z,Ct

∆

〉2
1k + o

(
∆̃

t
).

Therefore, linearizing Eq. ((4.17)), we get (below, we denote by [A]s the symmetric part of
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matrix A, namely [A]s = (A+AT)/2)

∆t+1 =δEw,z
(
f⊗2
w,z

)
− δβ

k2 Jk (G.17)

=δβ
 2
k2

[
S(∆̃

t
− (Ct

∆)2)Jk
]
s
− 1

2k



〈
∆̃

t
− (Ct

∆)2,T 1

〉
〈
∆̃

t
− (Ct

∆)2,T 2

〉
...〈

∆̃
t
− (Ct

∆)2,T k

〉


⊗ 1k (G.18)

− 1
2k1k ⊗



〈
∆̃

t
− (Ct

∆)2,T 1

〉
〈
∆̃

t
− (Ct

∆)2,T 2

〉
...〈

∆̃
t
− (Ct

∆)2,T k

〉


− 2
k4

〈
Jk, ∆̃

t
〉
Jk + 1

k2

〈
S, ∆̃

t
− (Ct

∆)2
〉
Jk

− 2
k4

〈
Jk, (Ct

∆)2
〉
Jk + S(Ct

∆)2S − 2
k2

[
S(Ct

∆)2Jk
]
s

+ 1
k4

〈
Jk, (Ct

∆)2
〉
Jk + o(∆̃t)

.
We next decompose ∆̃t in the component along Jk and the one orthogonal, as per

Eq. (G.8), and note that

Ct
∆ =

(
(kρ0 + δ̃t)P + ∆̃

(1)
t + ∆̃

(2)
t

)1/2
− (kρ0)1/2P

=
√
kρ0 + δ̃tP +

(
∆̃

(2)
t

)1/2
−
√
kρ0P +O(∆̃t)− (kρ0)1/2P =

(
∆̃

(2)
t

)1/2
+O(∆̃t) ,

whence

(Ct
∆)2 = ∆̃

(2)
t + o(∆) . (G.19)

Using this identity together with Eqs. (G.15), (G.16) in Eq. (G.19) we get

δt+1 = o(∆̃t) , (G.20)
∆(1)

t+1 = o(∆̃t) , (G.21)

∆(2)
t+1 = βδ

k2(kν + 1)2 ∆̃
(2)
t + o(∆̃t) . (G.22)
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Together with Eqs. (G.9) to (G.11), these yield

δt+1 = o(∆t) , (G.23)
∆(1)

t+1 = o(∆t) , (G.24)

∆(2)
t+1 = β2δ

k2(kν + 1)2 ∆(2)
t + o(∆̃t) . (G.25)

Hence the uninformative fixed point is stable if and only if

β ≤ k(kν + 1)√
δ

. (G.26)

Note that this is the same condition as the spectral threshold.

G.4 Stability of the uninformative point: Proof of Theorem 5
In this section we compute the Hessian of the TAP free energy around the uninformative
stationary point. We will establish a second order approximation of F̃TAP(r, r̃) near the
stationary point. Namely, we denote by r∗i = r∗i 1k, r̃∗a = r̃∗a1k the uninformative stationary
point, and by m∗i = m∗i1k, m̃∗a = m̃∗a1k the dual variables, where

m∗i =
√
β

k
(XT1n)i , m̃∗a = β

k(1 + kq0)(XXT1n)a −
β

k + δβ
, (G.27)

r∗i =
√
β

k(1 + kq∗0)(XT1n)i , r̃∗a = 1
k
. (G.28)

For any other assignment of the variables, r, r̃, m, m̃, we introduce the decomposition

ri = rsi1k + δi , r̃a = r̃sa1k + δ̃a , (G.29)
rsi = r∗i + δsi , r̃sa = r̃∗a + δ̃sa , (G.30)
mi = ms

i1k + ηi , m̃a = m̃s
a1k + η̃a , (G.31)

ms
i = m∗i + ηsi , m̃s

a = m̃∗a + η̃sa , (G.32)

where 〈δi,1k〉 = 〈δ̃a,1k〉 = 〈ηi,1k〉 = 〈η̃a,1k〉 = 0. Note that, by construction r̃sa = 1/k.
We will establish an expansion of the form

FTAP(r, r̃) = F̃TAP(r∗, r̃∗) + F (2)
TAP(δ, δ̃, δs, δ̃s) + o(δ2) , (G.33)

where F (2)
TAP is a quadratic function, and when using the O( · ) notation, we implicitly consider

all δ, η parameters to be of the same order and use δ for denoting that order. Notice that
the first-order term is missing from this expansion since (r∗, r̃∗) is a stationary point.

The crucial step in obtaining the expansion (G.33) is to derive a second order expansion
for the logarithmic moment generating functions φ, φ̃, and subsequently for the entropy
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functions ψ, ψ̃.

Lemma G.2. Setting variables as per Eq. (G.29), we have

φ

(
mi,

β

d

n∑
a=1
r̃⊗2
a

)
=− 1

2 log(1 + ka0) + β2(1 + βδ/k + k(m∗i )2)
2d2k(1 + βδ/k)2

∥∥∥∥∥
n∑
a=1
δ̃a

∥∥∥∥∥
2

2
(G.34)

+ k(ms
i )2

2(1 + ka0) −
βm∗i

d(1 + βδ/k)

n∑
a=1
〈ηi, δ̃a〉+ 1

2‖ηi‖
2
2 (G.35)

− β

2d

n∑
a=1
‖δ̃a‖2

2 + o(δ2) ,

where a0 = (β/d)∑n
a=1(r̃sa)2.

Proof. LetQ = (β/d)∑n
a=1 r̃

⊗2
a , and define the orthogonal decompositionQ = Q0+Q1+Q2,

where Q0 = PQP , Q1 = PQP⊥ + P⊥QP , Q2 = P⊥QP⊥. Using the representation
(G.29), we get

Q0 = a01k1T
k , a0 = β

d

n∑
a=1

(r̃sa)2 , (G.36)

Q1 = 1kaT
1 + a11T

k , a1 = β

d

n∑
a=1

r̃saδ̃a , (G.37)

Q2 = β

d

n∑
a=1
δ̃aδ̃

T
a . (G.38)

By Gaussian integration, we have

φ(mi,Q) = −1
2Tr log

(
I +Q

)
+ 1

2〈mi, (I +Q)−1mi〉 . (G.39)

Expanding the logarithm, we get

Tr log
(
I +Q

)
=Tr log

(
I +Q0

)
+ Tr

{
(I +Q0)−1(Q1 +Q2)

}
− 1

2Tr
{

(I +Q0)−1Q1(I +Q0)−1Q1

}
+ o(δ2)

=Tr log
(
I +Q0

)
+ Tr(Q2)− 〈a1, (I +Q0)−1a1〉 〈1, (I +Q0)−11〉+ o(δ2)

= log(1 + ka0) + β

d

n∑
a=1
‖δ̃a‖2

2 −
k

1 + ka0

∥∥∥∥∥βd
n∑
a=1

r̃saδ̃a

∥∥∥∥∥
2

2
+ o(δ2)

= log(1 + ka0) + β

d

n∑
a=1
‖δ̃a‖2

2 −
β2

kd2(1 + kq∗0)

∥∥∥∥∥
n∑
a=1
δ̃a

∥∥∥∥∥
2

2
+ o(δ2) (G.40)
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Considering next the second term in Eq. (G.39), we get

〈mi, (I +Q)−1mi〉 =(ms
i )2〈1, (I +Q0 +Q1 +Q2)−11〉+ 2ms

i 〈ηi, (I +Q0 +Q1)−11〉
+ 〈ηi, (I +Q0)−1ηi〉+ o(δ2)

=(ms
i )2〈1, (I +Q0)−11〉

+ (ms
i )2〈1, (I +Q0)−1Q1(I +Q0)−1Q1(I +Q0)−11〉

− 2ms
i 〈ηi, (I +Q0)−1Q1(I +Q0)−11〉+ ‖ηi‖2

2 + o(δ2)

= k(ms
i )2

1 + ka0
+ (kms

i )2

(1 + ka0)2‖a1‖2
2 −

2kms
i

(1 + ka0)〈ηi,a1〉+ ‖ηi‖2
2 + o(δ2)

= k(ms
i )2

1 + ka0
+ (βms

i )2

d2(1 + kq∗0)2

∥∥∥∥∥
n∑
a=1
δ̃a

∥∥∥∥∥
2

2
− 2βms

i

d(1 + kq∗0)

n∑
a=1
〈ηi, δ̃a〉

+ ‖ηi‖2
2 + o(δ2) .

Lemma G.3. Setting variables as per Eq. (G.29), we have

φ̃

(
m̃a,

β

d

d∑
i=1
r⊗2
i

)
=m̃s

a −
1
2b0 + 1

2k(kν + 1)

∥∥∥∥∥η̃a − β

d

d∑
i=1

r∗i δi

∥∥∥∥∥
2

2

− β

2dk(kν + 1)

d∑
i=1
‖δi‖2

2 + o(δ2) ,

where b0 = (β/d)∑d
i=1(rsi )2.

Proof. Let Q̃ = (β/d)∑d
i=1 r

⊗2
i and, as in the previous proof, define the orthogonal decom-

position Q̃ = Q̃0 + Q̃1 + Q̃2, where Q̃0 = PQ̃P , Q̃1 = PQ̃P⊥ + P⊥Q̃P , Q̃2 = P⊥Q̃P⊥.
Using the representation (G.29), we get

Q̃0 = b01k1T
k , b0 = β

d

d∑
i=1

(rsi )2 ,

Q̃1 = 1kbT
1 + b11T

k , b1 = β

d

d∑
i=1

rsiδi ,

Q̃2 = β

d

d∑
i=1
δiδ

T
i .
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For w ∈ supp(q̃0), we have 〈1,w〉 = 1 and therefore

φ̃(m̃a, Q̃) = log
{∫

e〈m̃,w〉−
1
2 〈w,Q̃w〉q̃0(dw)

}
= m̃s

a −
1
2b0 + log

{∫
e〈η̃a−b1,w〉− 1

2 〈w,Q̃2w〉q̃0(dw)
}

= m̃s
a −

1
2b0 + 1

2〈(η̃a − b1)(η̃a − b1)T − Q̃1,S⊥〉+ o(δ2) ,

where, cf. Eq. (G.14),

S⊥ =
∫

(P⊥w)⊗2q̃0(dw) = 1
k(kν + 1)P⊥ .

Hence, we obtain immediately the claim.

We next transfer the above results on the moment generating functions φ, φ̃, to analogous
results on the entropy functions ψ, ψ̃.

Lemma G.4. Setting variables as per Eq. (G.29), we have

ψ

(
ri,

β

d

n∑
a=1
r̃⊗2
a

)
=1

2 log(1 + ka0) + 1
2k(1 + ka0)(rsi )2 − β2(1 + βδ/k + k(m∗i )2)

2d2k(1 + βδ/k)2

∥∥∥∥∥
n∑
a=1
δ̃a

∥∥∥∥∥
2

2

+ 1
2

∥∥∥∥∥δi + βm∗i
d(1 + βδ/k)

n∑
a=1
δ̃a

∥∥∥∥∥
2

2
+ β

2d

n∑
a=1
‖δ̃a‖2

2 + o(δ2) ,

where a0 = (β/d)∑n
a=1(r̃sa)2.

Proof. By definition

ψ(ri,Q) = max
ms

i ,ηi

{
kms

ir
s
i + 〈ηi, δi〉 − φ(mi,Q)

}
.

Since φ( · ,Q) is strongly convex, the maximum is realized when ηsi ,ηi = O(δ) and can be
computed order-by-order in δ. Hence, substituting (G.34) we obtain the claim.

Lemma G.5. Setting variables as per Eq. (G.29), we have

ψ̃

(
r̃a,

β

d

d∑
i=1
r⊗2
i

)
= 1

2b0 + 1
2k(kν + 1)‖δ̃a‖2

2 + β

d

d∑
i=1

r∗i 〈δi, δ̃a〉

+ β

2dk(kν + 1)

d∑
i=1
‖δi‖2

2 + o(δ2) ,

where b0 = (β/d)∑d
i=1(rsi )2.
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Proof. By definition

ψ̃(r̃i, Q̃) = max
m̃s

i ,η̃i

{
km̃s

i r̃
s
i + 〈η̃i, δ̃i〉 − φ̃(m̃i, Q̃)

}
.

The proof is again obtained by maximizing order by order in δ, and using r̃sa = 1/k.

Lemma G.6. Setting variables as per Eq. (G.29), and introducing the vectors rs =
(rsi )i≤d ∈ Rd, r̃s = (r̃sa)a≤n ∈ Rn, we obtain

FTAP(r, r̃) =F (s)
TAP(rs, r̃s) + F (a)

TAP(δ, δ̃) + o(δ2) , (G.41)

F (s)
TAP(rs, r̃s) =d2 log

(
1 + βδ

k

)
+ 1

2k
(

1 + βδ

k

)
‖rs‖2

2 − k
√
β〈1,Xrs〉 , (G.42)

F (a)
TAP(δ, δ̃) =1

2

(
1 + βδ

k(kν + 1)

)
‖δ‖2

F + 1
2
(
β + k(kν + 1)

)
‖δ̃‖2

F (G.43)

− β2

2dk(1 + βδ/k)

∥∥∥∥∥∥
∑
a≤n

δ̃a

∥∥∥∥∥∥
2

2

−
√
βTr(Xδδ̃T) + β

d(1 + βδ/k)
∑

i≤d,a≤n
m∗i 〈δi, δ̃a〉 .

Proof. Using the decomposition (G.29), we get

Tr(Xrr̃T) = kTr
(
Xrs(r̃s)T

)
+ Tr(Xδδ̃T) ,∑

i≤d,a≤n
〈ri, r̃a〉2 = k2 ∑

i≤d,a≤n
(rsi )2(r̃sa)2 + 2k

∑
i≤d,a≤n

(rsi r̃sa)〈δi, δ̃a〉+ o(δ2)

= k2 ∑
i≤d,a≤n

(rsi )2(r̃sa)2 + 2
∑

i≤d,a≤n
rsi 〈δi, δ̃a〉+ o(δ2) ,

where we used the fact that r̃sa = 1/k. Using these, together with Lemma G.4, G.5 in
Eq. (4.3), we get the decomposition (G.41) where

F (s)
TAP(rs, r̃s) =d2 log

(
1 + βk

d
‖r̃s‖2

2

)
+ 1

2k
2
(

1 + βk

d
‖r̃s‖2

2

)
‖rs‖2

2 + 1
2βδ‖r

s‖2
2

− k
√
βTr(Xrs(r̃s)T)− βk2

2d ‖r
s‖2

2‖r̃s‖2
2 ,

Substituting r̃s = 1n/k, we obtain Eq. (G.42).

Notice that F (s)
TAP(rs, r̃s) is a positive definite quadratic function in rs, minimized at

rs = r∗. Hence, in order to establish the stability of the uninformative stationary point,
it is sufficient to check that the quadratic form F (a)

TAP(δ, δ̃) is positive definite. The matrix
representation of this quadratic form yields

Ω =


(

1 + δβ
k(kν+1)

)
Id −

√
βXT

(
In − β

d(k+δβ)Jn
)

−
√
β
(
In − β

d(k+δβ)Jn
)
X

(
β + k(kν + 1)

)
In − β2

d(k+δβ)Jn

 . (G.44)
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We are left with the task of proving that Ω � 0 for β < βspect(k, δ, ν). We will use the
following random matrix theory lemma.

Lemma G.7. Let u ∈ Rn, v ∈ Rd be vectors with ‖u‖2 = ‖v‖2 = 1, γ, α‖, α⊥, λ ∈ R be
numbers, and let P u = uuT be the orthogonal projector onto u, and P⊥u = I − uuT be its
orthogonal complement. Denote by Z ∈ Rn×d random matrices with (Zij)i≤n,j≤d ∼ N(0, 1/d),
with n/d→ δ ∈ (0,∞) as n→∞, and define the matrix

M = γuvT + α‖P uZ + α⊥P
⊥
uZ . (G.45)

Finally define γ2
∗ ≡ (1 +

√
δ)α2

⊥ − α2
‖, and

λ2
∗ ≡


(γ2+α2

‖)(γ
2+α2

‖−α
2
⊥(1−δ))

γ2+α2
‖−α

2
⊥

if γ2 > γ2
∗ ,

α2
⊥(1 +

√
δ)2 otherwise.

(G.46)

Then, denoting by smax(M ) the largest singular value of M , we have limn→∞ smax(M) = λ∗
in probability.

Proof. By rotational invariance of Z, we can and will assume u = e1, and will denote by Z̃ ∈
R(n−1)×d the matrix containing the last (n− 1) rows of Z. We further let w = γv+α‖Z

Tu.
With these definitions,

MMT =
 ‖w‖2

2 α⊥(Z̃w)T

α⊥(Z̃w) α2
⊥Z̃Z̃

T

 .
Note that, almost surely, limn→∞ λmax(Z̃Z̃T) = (1 +

√
δ)2 [2], and therefore

lim inf
n→∞

smax(M)2 ≥ α2
⊥(1 +

√
δ)2

almost surely.
Recall that, as long as s2

n is not an eigenvalue of α2
⊥Z̃Z̃

T, we have

det(s2
nI −MMT) = det(s2

nI − α2
⊥Z̃Z̃

T)
{
s2
n − ‖w‖2

2 − α2
⊥〈w, Z̃

T(s2
nI − α2

⊥Z̃Z̃
T)−1Z̃w〉

}

It is immediate to see that (unless α⊥ = 0 or v = 0), s2
n > λmax(α2

⊥Z̃Z̃
T) almost surely, and

therefore sn is given by the largest solution of the equation

s2
n = ‖w‖2

2 + α2
⊥〈w, Z̃

T(s2
nI − α2

⊥Z̃Z̃
T)−1Z̃w〉 . (G.47)

Note that, almost surely, limn→∞ ‖w‖2
2 = γ2 + α2

‖ ≡ γ̃2. Further, w is independent of Z̃.
Hence, by a standard random matrix theory argument [1, 2], for any s2 > α2

⊥(1 +
√
δ)2, the
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following limits hold almost surely

lim
n→∞

α2
⊥

‖w‖2
2
〈w, Z̃

T(s2I − α2
⊥Z̃Z̃

T)−1Z̃w〉 = lim
n→∞

1
d

Tr
[
Z̃

T((s2/α2
⊥)I − Z̃Z̃T)−1

Z̃
]

= −δ − s2δ

α2
⊥

lim
n→∞

1
n

Tr
[(
Z̃Z̃

T
− (s2/α2

⊥)I
)−1

]

= −δ − s2δ

α2
⊥
R
(
s2

α2
⊥

)
,

where R(t) is the Stieltjes transform of the limit eigenvalues distribution of a Wishart matrix,
which is given by the Marchenko-Pastur law [2]

R(z) =
−z − δ + 1 +

√
(z + δ − 1)− 4δz

2δz .

Recall that z 7→ R(z) is increasing on [zv,∞), zc ≡ (1 +
√
δ)2, with R(zc + u) = R(zc) −

c
√
u + O(u) (for a constant c > 0) as u ↓ 0, and R(z) = −1/z + O(1/z2) as z → ∞. We

therefore can consider the following asymptotic version of Eq. (G.47):

s2

γ̃2 = R̂

(
s2

α2
⊥

)
, R̂(z) = 1− δ − δz R(z) . (G.48)

Note that R̂(z) is monotone decreasing on [zc,∞) with R̂(zc) = (1 +
√
δ), R̂(zc + u) =

R̂(zc) − c
√
u + O(u), and R̂(z) = 1 + O(1/z) as z → ∞. For γ̃2 > (1 +

√
δ)α2

⊥, this
equation has a unique solution s2

∗ with s2/γ̃2 < R̂(s2α2
⊥) for s2 ∈ [α2

⊥(1 +
√
δ)2, s2

∗) and
s2/γ̃2 > R̂(s2α2

⊥) for s2 > s2
∗. Hence, the largest solution s2

n of (G.47) converges almost
surely to s2

∗ as n→∞.
For γ̃2 > (1 +

√
δ)α2

⊥, we have s2/γ̃2 > R̂(s2α2
⊥) for all s2 > α2

⊥(1 +
√
δ)2 and therefore

lim supn→∞ s2
n ≤ α2

⊥(1 +
√
δ)2 almost surely. Since we have a matching lower bound, we

conclude that limn→∞ s
2
n ≤ α2

⊥(1 +
√
δ)2 in this case.

Finally, the expression (G.46) follows by solving rewriting Eq. (G.48) as R̂−1(s2/γ̃2) =
s2/α2

⊥, whereby the inverse of R̂ in (1, 1 +
√
δ) is given by

R̂−1(x) = x(x+ δ − 1)
x− 1 .

We next state a general lemma that can be used to check whether a matrix of the form
(G.44) is positive semidefinite.

Lemma G.8. Let Z ∈ Rn×d be random matrices with (Zij)i≤n,j≤d ∼ N(0, 1/d), and u ∈ Rn,
v ∈ Rd be unit vectors, with n/d → δ as n → ∞. Define the projectors P u = uuT and
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P⊥u = I − uuT. For a, br, s, β, ξ ∈ R with β ≥ 0 and r > s, let

X̄ = ξ uvT +Z , (G.49)

Ω̄ =
[

a Id −
√
β X̄

T(In − bP u)
−
√
β (In − bP u)X̄ (rIn − sP u)

]
. (G.50)

Assume that one of the following two conditions holds:

1. (1− b)2(1 + ξ2)/(r − s) ≥ (1 +
√
δ)/r and

a(r − s) > β
(1− b)2(1 + ξ2)

[
(1− b)2(1 + ξ2)r − (1− δ)(r − s)

]
(1− b)2(1 + ξ2)r − (r − s) . (G.51)

2. (1− b)2(1 + ξ2)/(r − s) < (1 +
√
δ)/r and

a >
β

r
(1 +

√
δ)2 . (G.52)

Then, there exists a constant ε > 0 such that, almost surely, Ω � εI for all n large enough.

Proof. Let us first prove that, under the stated conditions, Ω � 0. Since rIn − sP u � 0,
we have Ω � 0 if and only if

aId � βX̄
T(I − bP u)(r − sP u)−1(I − bP u)X̄ . (G.53)

Notice that

(I − bP u)(r − sP u)−1(I − bP u) = 1
r
P⊥u + (1− b)2

r − s
P u .

Hence, condition (G.53) is equivalent to a > λmax(MTM ) = smax(M )2, where

M =
√
β

[
1− b√
r − s

P u + 1√
r
P⊥u

]
X̄ .

Note that M is of the form of Lemma G.7, with

γ =
√
βξ2(1− b)2

r − s
, α‖ =

√
β(1− b)2

r − s
, α⊥ =

√
β

r
.

The claim that Ω � 0 then follows by using the asymptotic characterization of smax(M) in
Lemma G.7.

We next prove that in fact Ω � εI. If the stated conditions hold, there exists ε small
enough such that they hold also after replacing a with a′ = a − ε and r with r′ = r − ε.
Let us write Ω(a, r) for the matrix of Eq. (G.50), where we emphasized the dependence on
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the parameters a, r. We have Ω(a, r) = Ω(a′, r′) + εI, and hence the thesis follows since
Ω(a′, b′) � 0.

In order to apply the last lemma, we will show that, for β < βspect, the LDA model of
Eq. (1.2) is equivalent for our purposes to a simpler model.

Lemma G.9. Let X ∈ Rn×d be distributed according to the LDA model (1.2) and let R1 ∈
Rn×n, R2 ∈ Rd×d be uniformly random (Haar distributed) orthogonal matrices conditional to
R11 = 1, with {X,R1,R2} mutually independent. Denote by P1,n the law ofXR ≡ R1XR2.

Define X̄ = ξ uvT + Z as per Eq. (G.49), with u = 1n/
√
n, v be a vector with i.i.d.

entries vi ∼ N(0, 1/d), independent of Z, and ξ =
√
βδ/k, and denote by P0,n the law of X̄.

If β < βspect(k, ν, δ), then P1,n is contiguous to P0,n.

Proof. Recalling that P = 1k1T
k /k, P⊥ = IkP , and letting v0 = H1k/

√
dk, we have

X = ξ uvT
0 +
√
β

d
W⊥H

T
⊥ +Z ≡ ξ uvT

0 + Z̃ ,

where W⊥ = WP⊥ and H⊥ = HP⊥. Since v0 is distributes as v, and independent of Z̃,
it is sufficient to prove that the law of Z̃R = R1Z̃R2 is contiguous to the law of Z.

Note that by the law of large numbers, almost surely (see Eq. (G.14))

lim
n→∞

1
n
‖W⊥‖2

op = lim
n→∞

1
n
‖W T

⊥W⊥‖op =
∥∥∥∥∫ (P⊥w)⊗2q̃0(dw)

∥∥∥∥
op

= 1
k(kν + 1) ,

lim
d→∞

1
d
‖H⊥‖2

op = lim
d→∞

1
d
‖HT

⊥H⊥‖op = 1 .

Hence

lim sup
n→∞

∥∥∥∥∥
√
β

d
W⊥H

T
⊥

∥∥∥∥∥
op

≤
√

βδ

k(kν + 1) ≡
√
β⊥ .

For β < βspect, we have β⊥ <
√
δ, and therefore the rank-k perturbation in Z̃ does not

produce an outlier eigenvalue [3].
In order to prove that the law of Z̃R = R1Z̃R2 is contiguous to the law of Z, note that

Z̃R
d= (
√
β/d)R1W⊥H⊥R2 +Z. Let Q1,n be the law of W 1 = R1W⊥ and Q2,n the law of

W 2 = R̃1W⊥, where R̃1 is a uniformly random orthogonal matrix (not Haar distributed).
We claim that limn→∞ ‖Q1,n −Q2‖TV = 0. Indeed both Q1 and Q1 are uniform conditional
on W TW /

√
n = Q and W T1/

√
n = b. However, the joint laws of (Q, b) converge in total

variation to the same Gaussian limit by the local central limit theorem.
It is therefore sufficient to show that the law of Z̃RR = R̃1Z̃R2 is contiguous to the law

of Z. This follows by second moment method and follows exactly as in [9].
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Lemma G.10. Let X̄ as per Eq. (G.49), with u = 1n/
√
n, v be a vector with i.i.d. entries

vi ∼ N(0, 1/d), independent of Z, and ξ =
√
βδ/k, and define

Ω̄ =


(

1 + δβ
k(kν+1)

)
Id −

√
βX̄

T
(
In − β

d(k+δβ)Jn
)

−
√
β
(
In − β

d(k+δβ)Jn
)
X̄

(
β + k(kν + 1)

)
In − β2

d(k+δβ)Jn

 . (G.54)

If β < βspect(k, ν, δ), then the law of the eigenvalues of the Hessian Ω defined in Eq. (G.44)
is contiguous to the law of the eigenvalues of Ω̄.

Proof. Consider the random orthogonal matrix R ∈ R(n+d)×(n+d)

R =
[
RT

2 0
0 R1

]

where R1 ∈ Rn×n, R2 ∈ Rd×d be uniformly random (Haar distributed) orthogonal matrices
conditional toR11 = 1. Notice that the eigenvalues of Ω are the same as the ones of RΩRT.
Further, we have

RΩRT =


(

1 + δβ
k(kν+1)

)
Id −

√
βXT

R

(
In − β

d(k+δβ)Jn
)

−
√
β
(
In − β

d(k+δβ)Jn
)
XR

(
β + k(kν + 1)

)
In − β2

d(k+δβ)Jn

 ,
where XR = R1XR2 is defined as in the statement of Lemma G.9. Applying that lemma,
we obtain that the law of RΩRT is contiguous to the one of Ω̄, and therefore we obtain the
desired contiguity for the laws of eigenvalues.

The next lemma establishes that the simplified Hessian Ω̄ is positive semidefinite.

Lemma G.11. Let Ω̄ be defined as per Eq. (G.54) where X̄ = ξ uvT +Z with u = 1n/
√
n,

v be a vector with i.i.d. entries vi ∼ N(0, 1/d), independent of (Zij)i≤n,j≤d ∼i.i.d. N(0, 1/d),
and ξ =

√
βδ/k.

If β < βspect(k, δ, ν), then there exists ε > 0 such that, almost surely, Ω̄ � ε I for all n
large enough.

Proof. The matrix X̄ fits the setting of Lemma G.8 with

a = 1 + δβ

k(kν + 1) , b = βδ

k + δβ
,

r = β + k(kν + 1) , s = β2δ

k + δβ
.

The claim follows by checking that condition 2 in Lemma G.8 holds. Indeed we have

A ≡ (1− b)2(1 + ξ2)
r − s

= 1
β + (kν + 1)(k + βδ) .
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Hence A < (1 +
√
δ/r). Further, setting q = k(kν + 1), we have

a− β

r
(1 +

√
δ)2 = 1 + δβ

q
− β(1 +

√
δ)2

β + q

= 1
β + q

(
δβ2

q
− 2
√
δβ + q

)
= δ

q(β + q)

(
β − q√

δ

)
> 0 .

(The last inequality follows since βspect = q/
√
δ.) This completes the proof.

The proof of Theorem 5 follows immediately from the above lemmas. Since the law of
the eigenvalues of Ω is contiguous to the law of the eigenvalues of Ω̄ (by Lemma G.10), and
Ω̄ � εI with high probability, we have

lim
n→∞

P(λmin(Ω) < ε/2) = 0 .

H TAP free energy: Numerical results

H.1 Damped AMP
AMP turns out to converge poorly near the spectral threshold, i.e. for β ≈ βspect. Note that
this appears to be an algorithmic problem, rather than a problem related to the free energy
approximation. To alleviate this issue, we used damped AMP for our numerical simulations.
Damped AMP iterations are as follows

mt+1 = (1− γ)mt + γXT F̃(m̃t; Q̃t)− γ2F(mt;Qt)Kt
W ,

m̃t = (1− γ)m̃t−1 + γX F(mt;Qt)− γ2F̃(m̃t−1; Q̃t−1)Kt
H ,

Qt+1 = 1
d

n∑
a=1

F̃(m̃t
a; Q̃

t)⊗2 ,

Q̃
t = 1

d

d∑
i=1

F(mt
i;Qt)⊗2 .

The matrices Kt
H and Kt

W are smoothed sum of Jacobian matrices and are computed as

Kt+1
H =

t+1∑
i=1

(1− γ)t−i+1Bt ,

Kt
W =

t∑
i=1

(1− γ)t−iCt
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where

(Bt)rs = 1
d

d∑
i=1

∂Fs
∂(mt

i)r
(mt

i;Qt) ,

(Ct)rs = 1
d

n∑
a=1

∂F̃s
∂(m̃t

i)r
(m̃t

a; Q̃
t) .

In these calculations, γ is the smoothing parameter that throughout our simulations is fixed
to γ = 0.8.

The specific choice of this damping scheme (and –in particular– the construction of
matricesKt+1

H , Kt+1
W ) is dictated by the fact that this specific choice admits a state evolution

analysis, analogous to the one holding on the undamped case.

I Approximate Message Passing: Numerical results for
k = 3

In Figures 16 to 19 we report our numerical results using damped AMP for the case of k = 3
topics. These simulations are analogous to the one presented in the main text for k = 2, cf.
Section 4.5.

Figures 16 and 17 report results on the normalized distance from the uninformative
subspace V(Ĥ), V(Ŵ ). These are consistent with the claim that AMP converges to a fixed
point that is significantly distant from this subspace only if β > βBayes(k, ν, δ) = βspect(k, ν, δ).
In Figures 18 and 19 we present our results on the correlation between the AMP estimates
Ĥ , Ŵ and the true factors H , W . We measure this correlation through the same Binder
parameter introduced in Section E.2.

J Uniqueness of the solution to (3.14)
In this appendix, we prove that the solution to (3.14) is unique under the following conjecture

Conjecture J.1. Let q > 0 and w ∈ Rk be a random variable with density p(w) ∝
exp

{
−q ‖w‖2

2

}
q̃0(w). Then

σ(q)γ(q) ≤ 2
q

where σ(q) and γ(q) are the standard deviation and skewness of ‖w‖2
2.

Remark J.1. For a Gaussian random vector z ∼ N (0, (2q)−1Ik) so that p(z) ∝ exp
{
−q ‖z‖2

2

}
,

σ̃(q)γ̃(q) = 2
q
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Figure 16: Normalized distances V(Ĥ), V(Ŵ ) of the AMP estimates from the uninformative
fixed point. Here k = 3, d = 1000 and n = dδ: each data point corresponds to an average
over 400 random realizations.

where σ̃(q), γ̃1(q) are the standard deviation and the skewness of ‖z‖2
2.

Using the above conjecture, it can be shown that the solution to (3.14) is unique.
Let V (q) be the variance of X = ‖w‖2

2, when w is distributed with density p(w) ∝
exp

{
−q ‖w‖2

2

}
q̃0(w). Define

f(q) = kβδ

k − 1

{
E
(

β

1 + q
; ν
)
− 1
k2

}
.

Note that using the proof of Lemma (3.2), f(q) is non-negative, continuous and monotone
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Figure 17: Empirical fraction of instances such that V(Ŵ ) ≥ ε0 = 5·10−3 (left) or V(Ĥ) ≥ ε0
(right), where Ŵ , Ĥ are the AMP estimates. Here k = 3, d = 1000, and for each (δ, β)
point on a grid we ran AMP on 400 random realizations.

increasing for q > 0. Further,

f ′(q) = β2δ

(k − 1)(1 + q)2V

(
β

1 + q

)
.

Since f(0) > 0, if we show that f ′(q) is decreasing, then for q > q∗ where q∗ is the smallest
solution to f(q) = q, f ′(q) < 1. This will imply that f(q) < q for q > q∗ that proves the
uniqueness. We have

f ′′(q) = β2δ

(k − 1)(1 + q)4

[
− β

(1 + q)2V
′
(

β

1 + q

)
(1 + q)2 − 2(1 + q)V

(
β

1 + q

)]

Hence, f ′(q) is decreasing if and only if

−V ′
(

β

1 + q

)
≤ 2

(
1 + q

β

)
V

(
β

1 + q

)
.

Therefore, it is sufficient to show that for q > 0,

−V ′(q)
V (q) ≤

2
q
.

Note that if we let X = ‖w‖2
2 where w is as in Conjecture J.1, we have

V (q) = E(X2)− (EX)2.
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Figure 18: Binder cumulant for the correlation between AMP estimates Ŵ , Ĥ and the true
weights and topics W ,H . Here k = 3, d = 1000, n = dδ and estimates are obtained by
averaging over 400 realizations.

Further,

V ′(q) = −EX3 + (EX)(EX2)− 2(EX)
[
−EX2 + (EX)2

]
= −EX3 + 3(EX2)(EX)− 2(EX)3.

Hence,

−V ′(q)
V (q) = E(X3)− 3(EX2)(EX) + 2(EX)3

−EX2 + (EX)2 = σ(q)γ(q) ≤ 2
q

using Conjecture J.1. Therefore, f(q) is concave and (3.14) has a unique solution in q ∈
(0,∞).

85



0 2 4 6 8 10 12 14 16 18
β

0.5

1.0

1.5

2.0

2.5

3.0

δ

BW

βBayes

βinst

0 2 4 6 8 10 12 14 16 18
β

0.5

1.0

1.5

2.0

2.5

3.0

δ

BH

βBayes

βinst

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 19: Binder cumulant for the correlation between AMP estimates Ŵ , Ĥ and the true
weights and topics W ,H . Here k = 3, d = 1000 and estimates are obtained by averaging
over 400 realizations.

K Extension to the Case of Dirichlet H
In this appendix, we consider the model (1.2) but instead with the modification that wa ∼iid
Dir(ν1; k) and hi ∼iid Dir(ν2; k). We briefly provide the formulae used for our experiments
in this modified model.

In the modified model, the mean field iterations are still of the form presented in (3.20)
and (3.21). Similarly, the AMP iterations are of the form stated in equations (4.7) and (4.8).
However, Dirichlet prior should be used as q0(h) when computing the quantities F(mi;Q)
and G(mi;Q).

Lemma K.1 (Counterpart to Lemma 3.2). Let q∗1 be the solution of the following equation
in (0,∞)

q∗1 = δβ

k(k − 1)

{
k2E

{ β

k(k − 1)(k2E
(
q∗1; ν2

)
− 1); ν1

}
− 1

}
. (K.1)

Further define

q∗2 = δβ
−kE

(
q̃∗1; ν1

)
+ 1

k(k − 1) , q̃∗1 = β

k2E
(
q)1∗; ν2

)
− 1

k(k − 1) , q̃∗2 = β
−kE

(
q∗1; ν2

)
+ 1

k(k − 1)
(K.2)

Then the naive mean field free energy of Eq. (3.9) admits a stationary point whereby, for all
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i ∈ [d], a ∈ [n],

m∗i =
√
β

k
(XT1n)i 1k , (K.3)

m̃∗a =
√
β

k
(X1d)a 1k , (K.4)

Q∗i = q∗1Ik + q∗2Jk , Q̃
∗
a = q̃∗1Ik + q̃∗2Jk . (K.5)

Theorem 7. Define q∗i , q̃∗i as in Eqs. (K.1), (K.2), and let

L(β, k, δ, ν1, ν2) ≡ β(1 + 1√
δ

)2λmax(DD̃) (K.6)

where

D ≡ q∗1
δβ
Ik +

(
q∗2
δβ
− 1
k2

)
Jk, D̃ ≡ q̃∗1

β
Ik +

(
q̃∗2
β
− 1
k2

)
Jk. (K.7)

If L(β, k, δ, ν) > 1, then there exists ε1, ε2 > 0 such that the uninformative critical point
of Lemma K.1, (m∗, m̃∗,Q∗, Q̃∗) is, with high probability, a saddle point, with index at least
nε1 and λmin(F|

m∗,m̃∗,Q∗,Q̃
∗) ≤ −ε2.

Moreover, λmax(DD̃) can be written explicitly as

q∗1 q̃
∗
1

δβ2 + k

[
q̃∗1q
∗
2 + q∗1 q̃

∗
2

δβ2 − 1
k2 ( q̃

∗
1
β

+ q∗1
δβ

) + kq∗2 q̃
∗
2

δβ2 −
1
k

( q
∗
2
δβ

+ q̃∗2
β

) + 1
k3

]
+

(K.8)

Under the Dirichlet distributed H model, the spectral threshold has the form

βspect = (k2(kν1 + 1)(kν2 + 1))√
δ

. (K.9)

For our experiments, we use this quantity as our theoretical prediction for the instability
threshold of AMP.

To initialize our experiments, we need to calculate the uninformative fixed point of AMP.
Similar to the case of the Gaussian H , we can leverage the symmetry of the solution and
get the fixed point quantities:

F(m;Q) =
√
β

k
Jd×k, F̃(m̃; Q̃) =

√
β

k
Jn×k, (K.10)

Ω̃ =
√
βδ

k(kν1 + 1)P⊥, Ω =
√
β

k(kν2 + 1)P⊥ (K.11)

Which uniquely define the fixed point.

87



K.1 Additional Figures For Dirichlet H Model
In this subsection, we present additional figures describing our experimental results in the
Dirichlet H case. Due to space considerations, these figures were omitted from the main
text.
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V(Ĥ)

V(Ŵ)
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Figure 20: Normalized distances V(Ĥ), V(Ŵ ) of the naive mean field estimates from the
uninformative fixed point. Here k = 2, ν1 = ν2 = 1, d = 1000 and n = dδ: each data point
corresponds to an average over 400 random realizations.
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Figure 21: Normalized distances V(Ĥ), V(Ŵ ) of the AMP estimates from the uninformative
fixed point. Here k = 2, ν1 = ν2 = 1, d = 1000 and n = dδ: each data point corresponds to
an average over 400 random realizations.
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