
Diagnosing Bottlenecks in Deep Q-learning Algorithms

Justin Fu * 1 Aviral Kumar * 1 Matthew Soh 1 Sergey Levine 1

Abstract
Q-learning methods are a common class of al-
gorithms used in reinforcement learning (RL).
However, their behavior with function approxi-
mation, especially with neural networks, is poorly
understood theoretically and empirically. In this
work, we aim to experimentally investigate po-
tential issues in Q-learning, by means of a ”unit
testing” framework where we can utilize oracles
to disentangle sources of error. Specifically, we
investigate questions related to function approx-
imation, sampling error and nonstationarity, and
where available, verify if trends found in oracle
settings hold true with deep RL methods. We find
that large neural network architectures have many
benefits with regards to learning stability; offer
several practical compensations for overfitting;
and develop a novel sampling method based on
explicitly compensating for function approxima-
tion error that yields fair improvement on high-
dimensional continuous control domains.

1. Introduction
Q-learning algorithms, which are based on approximating
state-action value functions, are an efficient and commonly
used class of RL methods. Q-learning methods have sev-
eral very appealing properties: they are relatively sample-
efficient when compared to policy gradient methods, and
they allow for off-policy learning. This makes them an
appealing choice for a wide range of tasks, from robotic
control (Kalashnikov et al., 2018) and video game AI (Mnih
et al., 2015) to off-policy learning from historical data for
recommender systems (Shani et al., 2005). However, al-
though the basic tabular Q-learning algorithm is convergent
and admits theoretical analysis (Sutton & Barto, 2018), its
counterpart with function approximation is poorly under-
stood. In this paper, we aim to investigate the degree to

*Equal contribution 1UC Berkeley. Correspondence to: Justin
Fu <justinjfu@eecs.berkeley.edu>, Aviral Kumar
<aviralk@berkeley.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

which potential issues with Q-learning manifest in practice.
We empirically analyze aspects of the Q-learning method
in a unit testing framework, where we can employ oracle
solvers to obtain ground truth Q-functions and distributions
for exact analysis. We investigate the following questions:

1) What is the effect of function approximation on con-
vergence? Many practical RL problems require function
approximation to handle large or continuous state spaces.
However, the behavior of Q-learning methods under func-
tion approximation is not well understood – there are simple
counterexamples where the method diverges (Baird, 1995).
To investigate these problems, we study the convergence be-
havior of Q-learning methods with function approximation
by varying the function approximator power and analyzing
the quality of the solution found. We find, somewhat sur-
prisingly, that divergence rarely occurs, and that function
approximation error is not a major problem in Q-learning al-
gorithms when the function approximator is powerful. This
makes sense in light of the theory: a high-capacity approx-
imator can perform an accurate projection of the bellman
Backup, thus mitigating potential convergence issues due to
function approximation. (Section 4)

2) What is the effect of sampling error and overfitting?
RL is used to solve problems where we do not have access
to the transition function of the MDP. Thus, Q-learning
methods need to learn by collecting samples in the environ-
ment, and minimizing errors on samples potentially leads to
overfitting. We experimentally show that overfitting exists
in practice by performing ablation studies on the number of
gradient steps, and by demonstrating that oracle based early
stopping techniques can be used to improve performance of
Q-learning algorithms. (Section 5).

3) What is the effect of distribution shift and a mov-
ing target? The standard formulation of Q-learning pre-
scribes an update rule, with no corresponding objective
function (Sutton et al., 2009a). This results in a process
which optimizes an objective that is non-stationary in two
ways: the target values are updated during training (the
moving target problem), and the distribution under which
the Bellman error is optimized changes, as samples are
drawn from different policies (the distribution shift prob-
lem). These properties can make convergence behavior
difficult to understand, and prior works have hypothesized

Diagnosing Bottlenecks in Deep Q-learning Algorithms

that nonstationarity is a source of instability (Mnih et al.,
2015; Lillicrap et al., 2015). We develop metrics to quantify
the amount of distribution shift and performance change due
to non-stationary targets. Surprisingly, we find that in a con-
trolled experiment, distributional shift and non-stationary
targets do not correlate with a reduction in performance, and
some well-performing methods incur high distribution shift.

4) What is the best sampling or weighting distribution?
Deeply tied to the distribution shift problem is the choice
of which distribution to sample from. Do moving distribu-
tions cause instability, as Q-values trained on one distribu-
tion are evaluated under another in subsequent iterations?
Researchers have often noted that on-policy samples are
typically superior to off-policy samples (Sutton & Barto,
2018), and there are several theoretical results that highlight
favorable convergence properties under on-policy samples.
However, there is little theoretical guidance on how to pick
distributions so as to maximize learning. To this end, we
investigate several choices for the sampling distribution. Sur-
prisingly, we find that on-policy training distributions are
not always preferable, and that broader, higher-entropy dis-
tributions often perform better, regardless of distributional
shift. Motivated by our findings, we propose a novel weight-
ing distribution, adversarial feature matching (AFM), which
is explicitly compensates for function approximator error,
while still producing high-entropy sampling distributions.

In summary, we introduce a unit testing framework for Q-
learning to disentangle potential bottlenecks where approxi-
mate components are replaced by oracles. This allows for
controlled analysis of different sources of error. We study
various sources of instability and error in Q-learning algo-
rithms on tabular domains, and show that many of these
trends hold true in high dimensional domains. We then
propose a novel sampling distribution that improve perfor-
mance even on high-dimensional tasks.

2. Preliminaries
Q-learning algorithms aim to solve a Markov decision
process (MDP) by learning the optimal state-action value
function, or Q-function. We define an MDP as a tuple
(S,A, T,R, γ). S,A represent the state and action spaces,
respectively. T (s′|s, a) and R(s, a) represent the dynam-
ics (transition distribution) and reward function, respec-
tively, and γ ∈ (0, 1) represents the discount factor. Let-
ting ρ0(s) denote the initial state distribution, the goal
in RL is to find a policy π(a|s) that maximizes the ex-
pected cumulative discounted rewards, known as the returns:
π∗ = argmax

π
Es0∼ρ0,st+1∼T,at∼π [

∑∞
t=0 γ

tR(st, at)] The

quantity of interest in many Q-learning methods are the op-
timal state (V ∗(s)) and state-action (Q∗(s, a)) value func-
tions, which give the expected future return of the optimal

policy starting from a particular state or state-action pair.
Q-learning algorithms are based on iterating the Bellman
backup operator T , defined as

(T Q)(s, a) = R(s, a) + γEs′∼T [V (s′)]

V (s) = max
a′

Q(s, a′)

Q-iteration is a dynamic programming algorithm that it-
erates the Bellman backup Qt+1 ← T Qt. Because the
Bellman backup is a γ-contraction in the L∞ norm, and Q∗

is its fixed point, Q-iteration can be shown to converge to
Q∗ (Sutton & Barto, 2018). A deterministic optimal policy
can then be obtained as π∗(s) = argmaxaQ

∗(s, a).

When state spaces are large, function approximation is
needed to represent the Q-values. This corresponds to fitted
Q-iteration (FQI) (Ernst et al., 2005), a form of approximate
dynamic programming (ADP), which forms the basis of
modern deep RL methods such as DQN (Mnih et al., 2015).
FQI projects the values of the Bellman backup onto a family
of Q-function approximators Q: Qt+1 ← Πµ(T Qt). Πµ

denotes a µ-weighted L2 projection, which minimizes the
Bellman error via supervised learning:

Πµ(Q)
def
= argmin

Q′∈Q
Es,a∼µ[(Q′(s, a)−Q(s, a))2]. (1)

The values produced by the Bellman backup, (T Qt)(s, a)
are commonly referred to as target values, and when neural
networks are used for function approximation, the previous
Q-function Qt(s, a) is referred to as the target network.
In this work, we distinguish between the cases when the
Bellman error is estimated with Monte-Carlo sampling or
computed exactly (see Section 3.1). The sampled variant
corresponds to FQI as described in the literature (Ernst
et al., 2005; Riedmiller, 2005), while the exact variant is
an example of conventional ADP methods (Bertsekas &
Tsitsiklis, 1996). Convergence guarantees for Q-iteration do
not cleanly translate to FQI. Πµ is an L2 projection, but T is
a contraction in the L∞ norm – this norm mismatch means
the composition of the backup and projection is no longer
guaranteed to be a contraction under any norm (Bertsekas &
Tsitsiklis, 1996), and hence convergence is not guaranteed.

A related branch of Q-learning methods are online Q-
learning methods, in which Q-values are updated while
samples are being collected in the MDP. This includes
classic algorithms such as Watkin’s Q-learning (Watkins
& Dayan, 1992). Online Q-learning methods can be viewed
as a form of stochastic approximation applied to Q-iteration
and FQI (Bertsekas & Tsitsiklis, 1996), and share many
of its theoretical properties (Tsitsiklis, 1994; Szepesvári,
1998). Modern deep RL algorithms such as DQN (Mnih
et al., 2015) have characteristics of both online Q-learning
and FQI – using replay buffers means the sampling distri-
bution µ changes very little between target updates (see

Diagnosing Bottlenecks in Deep Q-learning Algorithms

Section 6.2), and target networks are justified from the view-
point of FQI. Because FQI corresponds to the case when the
sampling distribution is static between target updates, the be-
havior of modern deep RL methods more closely resembles
FQI than a true online method without target networks.

3. Experimental Setup
Our experimental setup is centered around unit-testing. We
evaluate a spectrum of Q-learning algorithms, starting with
exact dynamic programming and replacing exact compo-
nents with practical approximations, until the algorithm
resembles modern deep Q-learning methods.

3.1. Algorithms

We use three different Q-learning variants, each of which
controls for a specific source of approximation error – Exact-
FQI, Sampling-FQI, and Replay-FQI. We use FQI as a basis
for our controlled analysis, as it strongly resembles modern
deep RL algorithms while allowing us to separately iso-
late target values, update rates, and the number of samples
used for each iteration. We then confirm that the observed
trends hold with several state-of-the-art deep RL methods
(SAC (Haarnoja et al., 2017), TD3 (Fujimoto et al., 2018))
on standard benchmark problems.

Exact-FQI (Algorithm 1): Exact-FQI uses known dynam-
ics and reward functions and computes the backup and pro-
jection on all state-action tuples, without sampling error. We
use Exact-FQI to study convergence, distribution shift (by
varying weighting distributions on transitions), and function
approximation in the absence of sampling error.

Sampled-FQI (Algorithm 2): Sampled-FQI is a special
case of Exact-FQI, where the Bellman error is approximated
with Monte-Carlo estimates from a sampling distribution
µ, and the Bellman backup is approximated with samples
from the dynamics as r(s, a) + γmaxa′ Q(s′, a′). We use
Sampled-FQI to study effects of overfitting. Sampled-FQI
incorporates errors arising from function approximation,
sampling, and distribution shift.

Replay-FQI (Algorithm 3): Replay-FQI is a special case
of Sampled-FQI that uses a replay buffer (Lin, 1992), that
saves past transition samples (s, a, s′, r), which are used for
computing Bellman error. Replay-FQI strongle resembles
DQN (Mnih et al., 2015), but lacking the online updates that
allow µ to change within an FQI iteration. With large replay
buffers, we expect the difference between Replay-FQI and
DQN to be minimal as µ changes slowly.

We additionally investigate the following choices of weight-
ing distributions (µ) for the Bellman error:

Unif(s, a): Uniform weights over state-action space.

π(s, a): The on-policy state-action marginal induced by π.

π∗(s, a): The state-action marginal induced by π∗.

Random(s, a): State-action marginal induced by executing
uniformly random actions.

Prioritized(s, a): Weights Bellman errors proportional to
|Q(s, a) − T Q(s, a)|. This is similar to prioritized re-
play (Schaul et al., 2015) with β = 0.

Replay(s, a) and Replay10(s, a): Averaged state-action
marginal of all policies (or the last 10) produced during
training. This simulates sampling from a replay buffer.

3.2. Domains

We evaluate our methods on suite of tabular environments
where we can compute oracle values. We selected 8 tabular
domains, each with different qualitative attributes, includ-
ing: gridworlds of varying sizes and observations, blind
Cliffwalk (Schaul et al., 2015), discretized Pendulum and
Mountain Car based on OpenAI Gym (Plappert et al., 2018),
and a sparsely connected graph. Additional details can be
found in Appendix A. In order to provide consistent metrics
across domains, we normalize returns and errors involving
Q-functions (such as Bellman error) by the returns of the
expert policy π∗ on each environment.

3.3. Function Approximators

Throughout our experiments, we use 2-layer ReLU net-
works, denoted by a tuple (N,N) where N represents the
number of units in a layer. The “Tabular” architecture refers
to the case when no function approximation is used.

3.4. High-Dimensional Testing

In addition to diagnostic experiments on tabular domains,
we also wish to see if the observed trends hold true on high-
dimensional environments. Thus, we include experiments
on continuous control tasks in the OpenAI Gym bench-
mark (Plappert et al., 2018) (HalfCheetah-v2, Hopper-v2,
Ant-v2, Walker2d-v2). In continuous domains, comput-
ing the maximum over actions of the Q-value is difficult
(maxaQ(s, a)). A common choice in this case is to use an
“actor” function to approximate arg maxaQ(s, a) (Lillicrap
et al., 2015; Fujimoto et al., 2018; Haarnoja et al., 2018).
This approach resembles Replay-FQI, but using the actor
network in place of the max.

4. Function Approximation and Convergence
This interaction between approximation and convergence
has been a long-studied topic in RL and ADP. In control
theory, it is closely related to the problems of state-aliasing
or interference (Farrell & Berger, 1995). Baird (1995) in-

Diagnosing Bottlenecks in Deep Q-learning Algorithms

Algorithm 1 Exact-FQI
1: Initialize Q-value approximator
Qθ(s, a).

2: for step t in {1, . . . , N} do

3: Evaluate Qθt(s, a) at all states.
4: Compute exact target values at all

states.
y(s, a) = r(s, a) + γEs′ [Vθt(s

′)]
5: Minimize projection loss with respect

to µ:
argmin

θ

Eµ[(Qθ(s, a)− y(s, a))2]

6: end for

Algorithm 2 Sampled-FQI
1: Initialize Q-value approximator
Qθ(s, a).

2: for step t in {1, . . . , N} do

3: Collect M samples from µ.
4: Evaluate Qθt(s, a) on samples.
5: Compute sampled target values on

samples.
ŷi = ri + γVθt(s

′
i)

6: Minimize projection loss with respect
to samples:
argmin

θ

1
M

∑M
i=1(Qθ(si, ai)− yi)

2

7: end for

Algorithm 3 Replay-FQI

1: Initialize Q-value approximatorQθ(s, a),
replay buffer B.

2: for step t in {1, . . . , N} do
3: Collect K online samples from µ.
4: Append online samples to buffer B.
5: Collect M samples from B.
6: Evaluate Qθt(s, a) on samples.
7: Compute sampled target values on

samples
ŷi = ri + γVθt(s

′
i)

8: Minimize projection loss with respect
to samples:
argmin

θ

1
M

∑M
i=1(Qθ(si, ai)− yi)

2

9: end for

troduces a counterexample in which Watkin’s Q-learning
with linear approximators causes unbounded divergence.
However, several works have noted that divergence need not
occur. Munos (2005); Antos et al. (2008); Farahmand et al.
(2010) address the norm-mismatch problem by showing
convergence guarantees in Lp-norms, at the price of intro-
ducing a concentrability coefficient that worsens the error
bound (and is potentially infinite for deterministic MDPs).
In policy evaluation, Tsitsiklis & Van Roy (1997) prove
that on-policy TD-learning with linear approximators con-
verges, and methods such as GTD (Sutton et al., 2009a) and
ETD (Sutton et al., 2016) have extended results to off-policy
cases. In the control scenario, convergent algorithms such
as SBEED (Dai et al., 2018) and Greedy-GQ (Maei et al.,
2010) have been developed. Concurrently to us,Van Hasselt
et al. (2018) experimentally find that unbounded divergence
rarely occurs with DQN variants on Atari games.

4.1. How does function approximation affect
convergence and solution suboptimality?

The crucial quantities we wish to measure are a trend be-
tween function approximation and performance, and a mea-
sure for the bias in the learning procedure introduced by
function approximation. Using Exact-FQI with uniform
weighting (to remove sampling error), we plot the returns
of the learned policy, and the L∞ error between Q∗ and the
solution found by Exact-FQI (limt→∞(ΠµT)tQ0) and the
projection of the optimal solution (ΠµQ

∗) in Fig. 1. ΠµQ
∗

represents the best solution within model class, in absence
of bootstrapping error. Thus, the difference between FQI
error and projection error represents the additional bias in-
troduced by FQI (the inherent Bellman error of the function
class (Munos & Szepesvári, 2008)). This is the potential
gap that can be improved via better algorithm design.

We first note the obvious trend that smaller architectures pro-
duce lower returns and converge to worse solutions. How-

Figure 1. Normalized returns and Q-function error with function
approximation, averaged across domains and seeds. Small archi-
tectures show a large gap between the solution found by FQI (FQI
Error) and the best solution within model class (Project Error).

ever, we also find that smaller architectures introduce signif-
icant bias in the learning process, and there is a significant
gap between the solution found by Exact-FQI and the best
solution within the model class. One explanation is that
when the target is bootstrapped, we must represent all Q-
functions along the path to the solution, and not only the
final result (Bertsekas & Tsitsiklis, 1996). This observation
implies that using large architectures is crucial not only be-
cause they have capacity to represent a better solution, but
also because they are easier to train using bootstrapping. We
also note that divergence rarely occurs in practice, occuring
in only 0.9% of our experiments (measured as the Q-values
growing larger than 10 times Q∗(s, a)).

For high-dimensional problems, we present experiments on
varying the architecture of the Q-network in SAC (Haarnoja
et al., 2018) in Appendix Fig. 13. We still observe that large
networks have the best performance, and that divergence
rarely happens even in high-dimensional continuous spaces.
We briefly discuss theoretical intuitions on apparent discrep-
ancy between the lack of unbounded divergence in relation
known counterexamples in Appendix B.

5. Sampling Error and Overfitting

Diagnosing Bottlenecks in Deep Q-learning Algorithms

Figure 2. Samples plotted with returns
for a 256x256 network. More samples
yields better performance.

Approximate
dynamic program-
ming assumes
that the projection
of the Bellman
backup (Eqn. 1) is
computed exactly,
but in reinforce-
ment learning
we can normally
only compute the
empirical Bellman
error over a finite
set of samples. In the PAC framework, overfitting can be
quantified by a bounded error in between the empirical
and expected loss with high probability, which decays
with sample size (Shalev-Shwartz & Ben-David, 2014).
Munos & Szepesvári (2008); Maillard et al. (2010); Tosatto
et al. (2017) provide such PAC-bounds which account for
sampling error in the context of Q-learning and value-based
methods, and quantify the quality of the final solution in
terms of sample complexity.

We analyze several key points that relate to sampling error.
First, we show that Q-learning is prone to overfitting, and
that this overfitting has a real impact on performance. We
also show that the replay buffer is in fact an effective tech-
nique in addressing this issue, and discuss several methods
to migitate the effects of overfitting in practice.

5.1. Quantifying Overfitting

We first quantify the amount of overfitting that happens
during training, by varying the number of samples. In or-
der provide comparable validation errors across different
experiments, we fix a reference sequence of Q-functions,
Q1, ..., QN , obtained during an arbitrary run of FQI. We
then retrace the training sequence, and minimize the projec-
tion error Πµ(Qt) at each training iteration, using varying
amounts of on-policy data or sampling from a replay buffer.
We measure the validation error (the expected Bellman er-
ror) at each iteration under the on-policy distribution, plotted
in Fig. 3. We note the obvious trend that more samples leads
to significantly lower validation loss. A more interesting
observation is that sampling from the replay buffer results
in the lowest on-policy validation loss, despite bias due to
distribution mismatch from sampling off-policy data. As
we elaborate in Section 6, we believe that replay buffers
are effective because they reduce overfitting and have good
sample coverage over the state space, not necessarily due to
reducing the effects of nonstationarity.

Next, Fig. 2 shows the relationship between number of
samples and returns. We see that more samples leads to im-
proved learning speed and a better final solution. A full

sweep including architectures is presented in Appendix
Fig. 14. Despite overfitting being an issue, larger archi-
tectures still perform better because the bias introduced by
smaller architectures dominates.

5.2. How can we compensate for overfitting?

Finally, we discuss methods to compensate for overfitting.
One common method for reducing overfitting is to regularize
the function approximator to reduce its capacity. However,
we have seen that weaker architectures can give rise to
suboptimal convergence. Instead, we study early stopping
methods to mitigate overfitting without reducing model size.
We first note that the number of gradient steps taken per
sample in the projection step has an important effect on
performance – too few steps and the algorithm learns slowly,
but too many steps and the algorithm may initially learn
quickly but overfit. To show this, we run an ablation over
the number of gradient steps taken per sample in Replay-
FQI and TD3 (TD3 uses 1 by default). Results for FQI are
shown in Fig. 4, and for TD3 in Appendix Fig. 15.

In order to understand whether early stopping criteria can
reduce overfitting, we employ oracle stopping rules to pro-
vide an “upper bound” on the best potential improvement.
We try two criteria for setting the number of gradient steps:
the expected Bellman error and the expected returns of the
greedy policy (oracle returns). We implement both methods
by running the projection step of FQI to convergence, and
retroactively selecting the intermediate Q-function which is
judged best by the evaluation metric. Using oracle stopping
metrics results in a modest boost in performance in tabular
domains (Fig. 5). Thus, we believe that there is promise in
further improving such early-stopping methods for reducing
overfitting in deep RL algorithms.

We can draw a few conclusions from these experiments.
First, overfitting is indeed an issue with Q-learning, and too
many gradient steps or too few samples can lead to poor
performance. Second, replay buffers and early stopping
can mitigate the effects of overfitting. Third, although over-
fitting is a problem, large architectures are still preferred,
because the bias from function approximation outweighs
the increased overfitting from using large models.

6. Non-Stationarity
Instability in Q-learning methods is often attributed to the
nonstationarity of the objective (Lillicrap et al., 2015; Mnih
et al., 2015). Nonstationarity occurs in two places: in
the changing target values T Q, and in a changing weight-
ing distribution µ (“distribution shift”). Note that a non-
stationary objective, by itself, is not indicative of insta-
bility. For example, gradient descent can be viewed as
successively minimizing linear approximations to a func-

Diagnosing Bottlenecks in Deep Q-learning Algorithms

Figure 3. On-policy validation losses for
varying amounts of on-policy data (or re-
play buffer), averaged across environments
and seeds. Note that sampling from the re-
play buffer has lower on-policy validation
loss, despite bias from distribution shift.

Figure 4. Normalized returns plotted over
training iterations (32 samples are taken per
iteration), for different ratios of gradient
steps per sample using Replay-FQI. We ob-
serve that intermediate values of gradient
steps work best, and too many gradient steps
hinders performance.

Figure 5. Normalized returns plotted over
training iterations (32 samples are taken per
iteration), for different early stopping meth-
ods using Replay-FQI. We observe that us-
ing proper early stopping can result in a mod-
est performance increase.

tion: for gradient descent on f with parameter θ and
learning rate α, we have the “moving” objective θt+1 =

argmin
θ
{θT∇θf(θt) − 1

2α ‖θ − θ
t‖22} = θt − α∇θf(θt).

However, the fact that the Q-learning algorithm prescribes
an update rule and not a stationary objective complicates
analysis. Indeed, the motivation behind algorithms such as
GTD (Sutton et al., 2009b;a), approximate linear program-
ming (De Farias, 2002), and residual methods (Baird, 1995;
Scherrer, 2010) can be seen as introducing a stationary ob-
jective that can be optimized with standard methods such as
gradient descent.

6.1. Does a moving target cause instability in the
absence of a moving distribution?

To study the moving target problem, we first isolate the
speed at which the target changes. To this end, we define
the α-smoothed Bellman backup, T α, which computes an
exponentially smoothed update as follows: T αQ = αT Q+
(1− α)Q. This scheme is inspired by the soft target update
used in algorithms such as DDPG (Lillicrap et al., 2015)
and SAC (Haarnoja et al., 2017) to improve the stability of
learning. Standard Q-iteration uses a “hard” update where
α = 1. A soft target update weakens the contraction of
Q-iteration from γ to 1− α+ αγ (see Appendix C), so we
expect slower convergence, but perhaps it is more stable
under heavy function approximation error. We performed
experiments with this modified backup using Exact-FQI
under the Unif(s, a) weighting distribution.

Our results are presented in Appendix Fig. 10. We find that
the most cases, the hard update with α = 1 results in the
fastest convergence and highest asymptotic performance.
However, for smaller architectures, 4×4 and 16×16, lower
values of α (such as 0.1) achieve slightly higher asymptotic
performance. Thus, while more expressive architectures
are still stable under fast-changing targets, we believe that

Figure 6. Distribution shift and loss shift plotted against time.
Prioritized and on-policy distributions induce the greatest shift,
whereas replay buffers greatly reduce the amount of shift.

a slowly moving target may have benefits under heavy ap-
proximation error. This evidence points to either using large
function approximators, in line with the conclusions drawn
in the previous sections, or slowing the target updates on
problems with high approximation error.

6.2. Does distribution shift impact performance?

To study the distribution shift problem, we exactly com-
pute the amount of distribution shift between iterations in
total-variation distance,DTV (µt+1||µt) and the “loss shift”:
Eµt+1 [(Qt − T Qt)2]− Eµt [(Qt − T Qt)2]. The loss shift
quantifies the Bellman error objective when evaluated under
a new distribution - if the distribution shifts to previously
unseen states, we would expect a highly inaccurate Q-value
in such states, leading to high loss shift.

We run our experiments using Exact-FQI with a 256x256
layer architecture, and plot the distribution discrepancy and
the loss discrepancy in Fig. 6. We find that Prioritized(s, a)
has the greatest shift, followed by on-policy variants. Re-
play buffers greatly reduce distribution shift compared to
on-policy learning, which is similar to the de-correlation ar-

Diagnosing Bottlenecks in Deep Q-learning Algorithms

gument cited for its use by Mnih et al. (2015). However, we
find that this metric correlates little with the performance of
FQI (Fig. 7). For example, prioritized weighting performs
well yet has high distribution shift.

Overall, our experiments indicate that nonstationarities in
both distributions and target values, when isolated, do not
cause significant stability issues. Instead, other factors such
as sampling error and function approximation appear to
have more significant effects on performance.

7. Sampling Distributions
Off-policy data has been cited as one of the “deadly tri-
ads” for Q-learning (Sutton & Barto, 2018), which has
potential to cause instabilities in learning. On-policy dis-
tributions (Tsitsiklis & Van Roy, 1997) and fixed behavior
distributions (Sutton et al., 2009b; Maei et al., 2010) have
often been targeted for theoretical convergence analysis,
and many works use importance sampling to correct for
off-policyness (Precup et al., 2001; Munos et al., 2016)
However, to our knowledge, there is relatively little guid-
ance which compares how different weighting distributions
compare in terms of convergence rate and final solutions.

Nevertheless, several works give hypotheses on good
choices for weighting distributions. (Munos, 2005) provides
an error bound which suggests that “more uniform” distri-
butions can guarantee better worst-case performance. (Geist
et al., 2017) suggests that when the state-distribution is fixed,
the action distribution should be weighted by the optimal
policy for residual Bellman errors. In deep RL, prioritized
replay (Schaul et al., 2015), and mixing replay buffer with
on-policy data (Hausknecht & Stone, 2016; Zhang & Sutton,
2017) have been found to be effective.

7.1. What Are the Best Weighting Distributions in
Absence of Sampling Error?

We begin by studying the effect of weighting distributions
when disentangled from sampling error. We run Exact-
FQI with an ablation over architectures and weighting
distributions and report our results in Fig. 8. Unif(s, a)
Replay(s, a), and Prioritized(s, a) consistently result in
the highest returns across all architectures. We believe that
these results are in favor of the uniformity hypothesis: the
best distributions spread weight across larger support of the
state-action space. For example, a replay buffer contains
state-action tuples from many policies, and therefore would
be expected to have wider support than the state-action dis-
tribution of a single policy. We can see this general trend in
Fig. 9.

7.2. Designing a Better Off-Policy Distribution:
Adversarial Feature Matching

In our final study, we attempt to design a better weighting
distribution using insights from previous sections that can be
integrated into deep RL methods. We refer to this method as
adversarial feature-matching (AFM). We draw upon three
specific insights outlined in previous analysis. First, the
function approximator should be incentivized to maximize
its ability to distinguish states to minimize function approxi-
mation bias (Section 4). Second, the weighting distribution
should emphasize areas where the Q-function incurs high
Bellman error, to minimize the discrepancy between L2

norm error and L∞ norm error. Third, high-entropy weight-
ing distributions tend to be higher performant. The first
insight was also demonstrated in (Liu et al., 2018) where
enforcing sparsity in the Q-function was found to provide
locality in the Q-function which prevented catastrophic in-
terference and provided better values for bootstrapping.

We propose to model our problem as a minimax game,
where the weighting distribution is a parameterized adver-
sary pφ(s, a) which tries to maximize the Bellman error,
while the Q-function (Qθ(s, a)) tries to minimize it. Note
that in the unconstrained setting, this game is equivalent
to minimizing the L∞ norm error in its dual-norm repre-
sentation. However, in practical settings where minimizing
stochastic approximations of the L∞ norm can be difficult
for neural networks, it is crucial to introduce constraints
to weaken the adversary. These constraints also make the
adversary closer to the uniform distribution while allowing
it to be sufficiently different at specific state-action pairs.

We use a feature matching constraint which enforces the
expected feature vectors, E[Φ(s)], under pφ(s, a) to roughly
match the expected feature vector under uniform sampling
from the replay buffer. We can express the output of a
neural network Q-function as Qθ(s, a) = wTa Φθ(s) or, in
the continuous case, as Qθ(s, a) = wTΦθ(s, a), where the
feature vector Φθ(s),Φθ(s, a) represent the the output of
all but the final layer. Intuitively, this constraint restricts the
adversary to distributing probability mass among states that
are perceptually similar to the Q-function. The objective is

min
θ,w

max
φ

Epφ(s,a)[(Qw,θ(s, a)− y(s, a))2]

s.t. ||Epφ(s,a)[Φ(s)]−
∑
i Φ(si)

N
|| ≤ ε

Note that Φ(s) is a function of θ but, while solving the max-
imization, θ is assumed to be a constant. This is equivalent
to solving only the inner maximization with a constraint,
and empirically provides better stability. Implementation
details for AFM are provided in Appendix D. The

∑
i Φ(si)

N
denotes an estimator for the true expectation under some
sampling distribution, such as a uniform distribution over

Diagnosing Bottlenecks in Deep Q-learning Algorithms

Figure 7. Average distribution shift across
time for different weighting distributions,
plotted against returns for a 256x256 model.
We find that distribution shift does not have
strong correlation with returns.

Figure 8. Weighting distribution versus ar-
chitecture in Exact-FQI. Replay(s, a) con-
sistently provides the highest performance.
Note that Adversarial Feature Matching is
comparable to Replay(s, a), but surprisingly
better for small networks.

Figure 9. Normalized returns plotted
against normalized entropy for different
weighting distributions. All experiments
use Exact-FQI with a 256x256 network.
We see a general trend that high-entropy
distributions lead to greater performance.

all states and actions (in exact FQI) or the replay buffer
distribution. So,

∑
i Φ(si)

N ≈ Eprb [Φ] holds when using a
replay buffer.

In tabular domains with Exact-FQI, we find that AFM per-
forms at par with the top performing weighting distributions,
such as Unif(s, a) and better than Prioritized(s, a) (Fig. 8).
This confirms that adaptive prioritization works better than
Prioritized(s, a). Another benefit of AFM is its robustness
to function approximation and the performance gains in
the case of small architectures (say, (4, 4)) are particularly
noticeable. (Fig. 8)

In tabular domains with Replay-FQI (Table 1), we also
compare AFM to prioritized replay (PER) (Schaul et al.,
2015), where AFM and PER perform similarly in terms
of normalized returns. We also evaluate a variant of AFM
(AFM+Sampling in Table 1) which changes which samples
instead of reweighting. We further evaluate AFM on Mu-
JoCo tasks with the TD3 algorithm (Fujimoto et al., 2018)
and the entropy constrained SAC algorithm (Haarnoja et al.,
2018). The results are presented in the appendix. We find
AFM improving performance of the algorithm with three
MuJoCo tasks (Ant, Hopper and Cheetah) and two algo-
rithms (TD3 and SAC).

8. Conclusions and Discussion
From our analysis, we have several broad takeaways for the
design of deep Q-learning algorithms.

Potential convergence issues with Q-learning do not seem
to be endemic empirically, but function approximation still
has a strong impact on the solution to which these methods
converge. The bias introduced from small architectures is
magnified by bootstrapping error. Expressive architectures
in general suffer less from bootstrapping error, converge
faster, and more stable with moving targets.

Sampling distribution Norm. Returns Norm. Returns
(16, 16) (64, 64)

None 0.18 0.23
Uniform(s, a) 0.19 0.25
π(s, a) 0.45 0.39
π∗(s, a) 0.30 0.21

Prioritized(s, a) 0.17 0.33
PER (Schaul et al., 2015) 0.42 0.49

AFM (Ours) 0.41 0.48
AFM + Sampling (Ours) 0.43 0.51

Table 1. Average Performance of various sampling distributions
for (16, 16) and (64, 64) neural nets in the setting with replay
buffers averaged across 5 random seeds. PER, our AFM and on-
policy sampling perform roughly at par on benchmark tasks in
expectation when using (16, 16) architectures. However, note that
π(s, a) is generally computationally intractable.
Sampling error can cause substantial overfitting problems
with Q-learning. However, replay buffers and early stopping
can mitigate this problem, and the biases incurred from
small function approximators outweigh any benefits they
may have in terms of overfitting. We believe a good strategy
is to use large architectures but tune the number of gradient
steps used per sample, or intelligently use early stopping to
dynamically control the number of gradient steps.

The choice of sampling or weighting distribution has sig-
nificant effect on solution quality, even in the absence of
sampling error. Surprisingly, we do not find on-policy dis-
tributions to be the most performant, but rather methods
which have high state-entropy are highly effective. Based
on these insights, we propose a new weighting algorithm
which balances high-entropy and state aliasing, AFM, that
yields fair improvements in both tabular and continuous
domains with state-of-the-art off-policy RL algorithms.

Finally, we note that there are several topics that we did
not investigate, such as overestimation bias and multi-step
returns. We believe that understanding these issues could
also be benefit from unit-testing.

Diagnosing Bottlenecks in Deep Q-learning Algorithms

Acknowledgements
We thank Vitchyr Pong and Kristian Hartikainen for provid-
ing us with implementations of RL algorithms. We thank
Csaba Szepesvári and Chelsea Finn for comments on an
earlier draft of this paper. SL thanks George Tucker for
helpful discussion. We thank Google, NVIDIA, and Ama-
zon for providing computational resources. This research
was supported by Berkeley DeepDrive, NSF IIS-1651843
and IIS-1614653, the DARPA Assured Autonomy program,
and ARL DCIST CRA W911NF-17-2-0181.

References
Antos, A., Szepesvári, C., and Munos, R. Learning

near-optimal policies with bellman-residual minimiza-
tion based fitted policy iteration and a single sample path.
Machine Learning, 71(1):89–129, 2008.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gen-
erative adversarial networks. In International Conference
on Machine Learning (ICML), pp. 214–223, 2017.

Baird, L. Residual Algorithms : Reinforcement Learning
with Function Approximation. In International Confer-
ence on Machine Learning (ICML), 1995.

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-dynamic pro-
gramming. Athena Scientific, 1996.

Dai, B., Shaw, A., Li, L., Xiao, L., He, N., Liu, Z., Chen, J.,
and Song, L. Sbeed: Convergent reinforcement learning
with nonlinear function approximation. In International
Conference on Machine Learning, pp. 1133–1142, 2018.

Daskalakis, C., Ilyas, A., Syrgkanis, V., and Zeng, H.
Training GANs with optimism. In International Confer-
ence on Learning Representations, 2018. URL https:
//openreview.net/forum?id=SJJySbbAZ.

De Farias, D. P. The linear programming approach to ap-
proximate dynamic programming: Theory and applica-
tion. PhD thesis, 2002.

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch
mode reinforcement learning. Journal of Machine Learn-
ing Research, 6(Apr):503–556, 2005.

Farahmand, A.-m., Szepesvári, C., and Munos, R. Error
propagation for approximate policy and value iteration.
In Advances in Neural Information Processing Systems
(NIPS), 2010.

Farrell, J. A. and Berger, T. On the effects of the training
sample density in passive learning control. In American
Control Conference, 1995.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing
function approximation error in actor-critic methods. In
International Conference on Machine Learning (ICML),
pp. 1587–1596, 2018.

Geist, M., Piot, B., and Pietquin, O. Is the bellman resid-
ual a bad proxy? In Advances in Neural Information
Processing Systems (NeurIPS), pp. 3205–3214. 2017.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Rein-
forcement learning with deep energy-based policies. In
International Conference on Machine Learning (ICML),
2017.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. CoRR,
abs/1801.01290, 2018. URL http://arxiv.org/
abs/1801.01290.

Hausknecht, M. and Stone, P. On-policy vs. off-policy
updates for deep reinforcement learning. In Deep Rein-
forcement Learning: Frontiers and Challenges, IJCAI,
2016.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog,
A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M.,
Vanhoucke, V., and Levine, S. Qt-opt: Scalable deep rein-
forcement learning for vision-based robotic manipulation.
In CoRL, volume 87 of Proceedings of Machine Learning
Research, pp. 651–673. PMLR, 2018.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. International
Conference on Learning Representations (ICLR), 2015.

Lin, L.-J. Self-improving reactive agents based on reinforce-
ment learning, planning and teaching. Machine learning,
8(3-4):293–321, 1992.

Liu, V., Kumaraswamy, R., Le, L., and White, M. The utility
of sparse representations for control in reinforcement
learning. CoRR, abs/1811.06626, 2018. URL http:
//arxiv.org/abs/1811.06626.

Maei, H. R., Szepesvári, C., Bhatnagar, S., and Sutton,
R. S. Toward off-policy learning control with function
approximation. In International Conference on Machine
Learning (ICML), 2010.

Maillard, O.-A., Munos, R., Lazaric, A., and Ghavamzadeh,
M. Finite-sample analysis of bellman residual minimiza-
tion. In Asian Conference on Machine Learning (ACML),
pp. 299–314, 2010.

Metelli, A. M., Papini, M., Faccio, F., and Restelli, M.
Policy optimization via importance sampling. CoRR,

https://openreview.net/forum?id=SJJySbbAZ
https://openreview.net/forum?id=SJJySbbAZ
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1811.06626
http://arxiv.org/abs/1811.06626

Diagnosing Bottlenecks in Deep Q-learning Algorithms

abs/1809.06098, 2018. URL http://arxiv.org/
abs/1809.06098.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-
stra, D., Legg, S., and Hassabis, D. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, feb 2015. ISSN 0028-0836.

Munos, R. Error bounds for approximate value iteration.
In AAI Conference on Artificial intelligence (AAAI), pp.
1006–1011. AAAI Press, 2005.

Munos, R. and Szepesvári, C. Finite-time bounds for fitted
value iteration. Journal of Machine Learning Research, 9
(May):815–857, 2008.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare,
M. Safe and efficient off-policy reinforcement learning.
In Advances in Neural Information Processing Systems
(NeurIPS), pp. 1054–1062, 2016.

Plappert, M., Andrychowicz, M., Ray, A., McGrew, B.,
Baker, B., Powell, G., Schneider, J., Tobin, J., Chociej,
M., Welinder, P., Kumar, V., and Zaremba, W. Multi-goal
reinforcement learning: Challenging robotics environ-
ments and request for research, 2018.

Precup, D., Sutton, R. S., and Dasgupta, S. Off-policy tem-
poral difference learning with function approximation. In
International Conference on Machine Learning (ICML),
pp. 417–424, 2001.

Riedmiller, M. Neural fitted q iteration–first experiences
with a data efficient neural reinforcement learning method.
In European Conference on Machine Learning, pp. 317–
328. Springer, 2005.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Prior-
itized experience replay. International Conference on
Learning Representations (ICLR), 2015.

Scherrer, B. Should one compute the temporal difference
fix point or minimize the bellman residual? the unified
oblique projection view. In International Conference on
Machine Learning (ICML), pp. 959–966, 2010.

Shalev-Shwartz, S. and Ben-David, S. Understanding ma-
chine learning: From theory to algorithms. Cambridge
university press, 2014.

Shani, G., Heckerman, D., and Brafman, R. I. An mdp-
based recommender system. Journal of Machine Learn-
ing Research, 6(Sep):1265–1295, 2005.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. Second edition, 2018.

Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Sil-
ver, D., Szepesvári, C., and Wiewiora, E. Fast gradient-
descent methods for temporal-difference learning with
linear function approximation. In International Confer-
ence on Machine Learning (ICML), 2009a.

Sutton, R. S., Maei, H. R., and Szepesvári, C. A convergent
o(n) temporal-difference algorithm for off-policy learning
with linear function approximation. In Advances in Neu-
ral Information Processing Systems (NeurIPS), 2009b.

Sutton, R. S., Mahmood, A. R., and White, M. An emphatic
approach to the problem of off-policy temporal-difference
learning. The Journal of Machine Learning Research, 17
(1):2603–2631, 2016.

Szepesvári, C. The asymptotic convergence-rate of q-
learning. In Advances in Neural Information Processing
Systems, pp. 1064–1070, 1998.

Tosatto, S., Pirotta, M., D’Eramo, C., and Restelli, M.
Boosted fitted q-iteration. In International Conference on
Machine Learning (ICML), pp. 3434–3443. JMLR. org,
2017.

Tsitsiklis, J. N. Asynchronous stochastic approximation and
q-learning. Machine learning, 16(3):185–202, 1994.

Tsitsiklis, J. N. and Van Roy, B. Analysis of temporal-
diffference learning with function approximation. In
Advances in Neural Information Processing Systems
(NeurIPS), pp. 1075–1081, 1997.

Tuomas Haarnoja, Aurick Zhou, K. H. G. T. S. H. J. T. V.
K. H. Z. A. G. P. A. and Levine, S. Soft actor-critic
algorithms and applications. Technical report, 2018.

Van Hasselt, H., Doron, Y., Strub, F., Hessel, M., Sonnerat,
N., and Modayil, J. Deep reinforcement learning and the
deadly triad. arXiv preprint arXiv:1812.02648, 2018.

Watkins, C. J. and Dayan, P. Q-learning. Machine learning,
8(3-4):279–292, 1992.

Yazıcı, Y., Foo, C.-S., Winkler, S., Yap, K.-H., Piliouras,
G., and Chandrasekhar, V. The unusual effectiveness of
averaging in GAN training. In International Conference
on Learning Representations, 2019. URL https://
openreview.net/forum?id=SJgw_sRqFQ.

Zhang, S. and Sutton, R. S. A deeper look at experience
replay. CoRR, abs/1712.01275, 2017. URL http://
arxiv.org/abs/1712.01275.

http://arxiv.org/abs/1809.06098
http://arxiv.org/abs/1809.06098
https://openreview.net/forum?id=SJgw_sRqFQ
https://openreview.net/forum?id=SJgw_sRqFQ
http://arxiv.org/abs/1712.01275
http://arxiv.org/abs/1712.01275

