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Abstract

Generative models have proven to be an outstand-
ing tool for representing high-dimensional proba-
bility distributions and generating realistic look-
ing images. An essential characteristic of gen-
erative models is their ability to produce multi-
modal outputs. However, while training, they are
often susceptible to mode collapse, that is mod-
els are limited in mapping input noise to only a
few modes of the true data distribution. In this
work, we draw inspiration from Determinantal
Point Process (DPP) to propose an unsupervised
penalty loss that alleviates mode collapse while
producing higher quality samples. DPP is an ele-
gant probabilistic measure used to model negative
correlations within a subset and hence quantify
its diversity. We use DPP kernel to model the
diversity in real data as well as in synthetic data.
Then, we devise an objective term that encour-
ages generator to synthesize data with a similar
diversity to real data. In contrast to previous state-
of-the-art generative models that tend to use ad-
ditional trainable parameters or complex training
paradigms, our method does not change the origi-
nal training scheme. Embedded in an adversarial
training and variational autoencoder, our Genera-
tive DPP approach shows a consistent resistance
to mode-collapse on a wide-variety of synthetic
data and natural image datasets including MNIST,
CIFAR10, and CelebA, while outperforming state-
of-the-art methods for data-efficiency, generation
quality, and convergence-time whereas being 5.8x
faster than its closest competitor. 1
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Figure 1. Inspired by DPP, we model a batch diversity using a
kernel L. Our loss encourages generator G to synthesize a batch
SB of a diversity LSB similar to the real data diversity LDB , by
matching their eigenvalues and eigenvectors. Generation loss aims
at generating similar data points to the real, and diversity loss aims
at matching the diversity manifold structures.

1. Introduction
Deep generative models have gained great research inter-
est in recent years as a powerful framework to represent
high dimensional data in an unsupervised fashion. Among
many generative approaches, Generative Adversarial Net-
works (GANs) (Goodfellow et al., 2014) and Variational
AutoEncoders (VAEs) (Kingma & Welling, 2013) took a
place among the most prominent approaches for synthe-
sizing realistic images. They consist of two networks: a
generator (decoder) and a discriminator (encoder), where
the generator attempts to map latent code to fake data points
that simulate the distribution of real data. Nevertheless, in
the process of learning multi-modal complex distributions,
both models may converge to a trivial solution where the
generator learns to produce few modes exclusively, which
referred to by mode collapse.

To address this, we propose using Determinantal Point Pro-
cesses (DPP) to model the diversity within data samples.
DPP is a probabilistic model that has been mainly adopted
for solving subset selection problems with diversity con-
straints (Kulesza & Taskar, 2011), such as video and docu-
ment summarization. In such cases, representative sampling
requires quantifying the diversity of 2N subsets, where N
is the size of the ground set. However, this renders DPP
sampling from true data to be computationally inefficient
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in the generation domain. The key idea of our work is to
model the diversity within real and fake data throughout
the training process using DPP kernels, which adds an in-
significant computational overhead. Then, we encourage
producing samples of similar diversity distribution to the
true data by back-propagating our proposed DPP-inspired
metric through the generator. In such a way, the generator
explicitly learns to cover more modes of real distribution
without a significant overhead.

Recent approaches tackled mode-collapse in one of two
different ways: (1) modifying the learning of the system to
reach a better convergence point (e.g. (Metz et al., 2017;
Gulrajani et al., 2017)); or (2) explicitly enforcing the mod-
els to capture diverse modes or map back to the true-data
distribution (e.g. (Srivastava et al., 2017; Che et al., 2017)).
Here we focus on a relaxed version of the latter, where we
use the same learning paradigm of the standard generators
and add a penalty term to the objective function. The ad-
vantage of such an approach is to avoid adding any extra
trainable parameters to the framework while maintaining
the same back-propagation steps as the default learning
paradigm. Thus, our model converges faster to a fair equilib-
rium point where generator imitates the diversity of true-data
distribution and produces higher quality generations.

Contribution. we introduce a new penalty term, that we de-
note Generative Determinantal Point Processes (GDPP) loss.
Our loss only assumes access to a generator G and a feature
extraction function φ(·). The loss encourages the generator
to diversify generated samples to match the diversity of real
data as illustrated in Fig. 1. This criterion can be consid-
ered as a complement to the original generation loss which
attempts to learn an indistinguishable distribution from the
true-data distribution without explicitly enforcing diversity.
We assess the performance of GDPP on three different syn-
thetic data environments, while also verifying its advantage
on three real-world images datasets. Our approach consis-
tently outperforms several state-of-the-art approaches that
of more complex learning paradigms in terms of alleviating
mode-collapse and generation quality.

2. Related Work
Among many existing generation frameworks, GANs tend
to synthesize the highest quality generations, however, they
are harder to optimize due to unstable training dynamics.
Here, we discuss a few generic approaches addressing mode
collapse with an emphasis on GANs. We categorize them
based on their approaches to alleviate mode collapse.

Mapping generated data back to noise. (Donahue et al.,
2017; Dumoulin et al., 2017) are of the earliest methods that
proposed learning a reconstruction network besides learn-
ing the generative network. Adding this extra network to
the framework aims at reversing the action of generator by

mapping from data to noise. Likelihood-free variational
inference (LFVI) (Tran et al., 2017), merges this concept
with learning implicit densities using hierarchical Bayesian
modeling. Ultimately, VEEGAN (Srivastava et al., 2017)
used the same concept, but without basing reconstruction
loss on the discriminator. This has the advantage of isolating
the generation process from the discriminator’s sensitivity
to any of the modes. Along similar lines, (Che et al., 2017)
proposed several ways of regularizing the objective of adver-
sarial learning including geometric metric regularizer, mode
regularizer, and manifold-diffusion training. Specifically,
mode regularization has shown a potential into alleviating
mode collapse and stabilizing the training.
Providing a surrogate objective function. InfoGAN
(Chen et al., 2016) propose an information-theoretic ex-
tension of GANs that obtains disentangled representation
of data by latent-code reconstitution through a penalty term
in its objective. InfoGAN includes autoencoder over latent
codes; however, it was shown to have stability problems sim-
ilar to the standard GAN and requires stabilization empirical
tricks. The Unrolled-GAN of (Metz et al., 2017) propose
a novel objective to update the generator with respect to
the unrolled optimization of the discriminator. This allows
training to be adjusted between using the optimal discrimi-
nator in the generator’s objective, which has been shown to
improve the generator training process and to reduce mode
collapse. Generalized LS-GAN of (Edraki & Qi, 2018) de-
fine a pullback operator to map generated samples to the
data manifold. With a similar philosophy, BourGAN (Xiao
et al., 2018) draws samples from a mixture of Gaussians
instead of a single Gaussian. There is, however, no spe-
cific enforcement to diversify samples. Finally, improving
Wasserstein GANs of (Arjovsky et al., 2017), WGAN-GP
(Gulrajani et al., 2017) introduce a gradient penalization
employed in state-of-the-art systems (Karras et al., 2018).
Using multiple generators and discriminators. One of
the popular methods to reduce mode collapse is using mul-
tiple generator networks to provide better coverage of the
true data distribution. (Liu & Tuzel, 2016) propose using
two generators with shared parameters to learn the joint data
distribution. The two generators are trained independently
on two domains to ensure a diverse generation. However,
sharing the parameters guide both the generators to a similar
subspace. (Durugkar et al., 2017) propose a similar idea of
multiple discriminators that are being an ensemble, which
was shown to produce better quality samples. Recently,
(Ghosh et al., 2018) proposed MAD-GAN which is a multi-
agent GAN architecture incorporating multiple generators
and one discriminator. Along with distinguishing real from
fake samples, the discriminator also learns to identify the
generator that synthesized the fake sample. The learning of
such a system implies forcing different generators to learn
unique modes, which helps in better coverage of data modes.
DualGAN of (Nguyen et al., 2017) improves the diversity
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within GANs at the additional requirement of training two
discriminators. The Mixed GAN approach of (Lucas et al.,
2018) rather introduces a permutation invariant architecture
for the discriminator, that doubles the number of parameters.
In contrast to these approaches, our GDPP-GAN does not re-
quire any extra trainable parameters which results in a faster
training as well as being less susceptible to overfitting.

Finally, we also refer to PacGAN (Lin et al., 2018) which
modifies the discriminator input with concatenated samples
to better sample the diversity within real data. Nevertheless,
such an approach is subject to memory and computational
constraints as a result of the significant increase in batch
size. Additionally, spectral normalization strategies have
been recently proposed in (Miyato et al., 2018) and SAGAN
(Zhang et al., 2018) to further stabilize the training. We note
that these strategies are orthogonal to our contribution and
could be implemented in conjunction with ours to further
improve the training stability of generative models.

3. Determinantal Point Process (DPP)
DPP is a probabilistic measure was introduced in quantum
physics (Macchi, 1975) to model the Gauss-Poisson and
the ’fermion’ processes, then was extensively studied in ran-
dom matrix theory, e.g. (Hough et al., 2006). It provides a
tractable and efficient means to capture negative correlation
with respect to a similarity measure, that in turn can be used
to quantify the diversity within a subset. As pointed out by
(Gong et al., 2014), DPP is agnostic about the order of the
items within subsets. Hence, it can be used to model data
that is randomly sampled from a certain distribution such as
mini-batches sampled from training data.

A point processP on a ground set V is a probability measure
on the power set 2N , where N = |V| is the size of the
ground set. A point process P is called determinantal if,
given a random subset Y drawn according to P , we have
for every S ⊆ Y ,

P(S ⊆ Y ) ∝ det(LS) (1)

for some symmetric similarity kernel L ∈ RN×N , where
LS is the similarity kernel of subset S. L must be real,
positive semidefinite matrix L � I (all the eigenvalues of
L are between 0 and 1); since it represents a probabilistic
measure and all of its principal minors must be non-negative.

L is often referred to as the marginal kernel because it con-
tains all the information needed to compute the probability
of any subset S being selected in V . LS denotes the sub-
matrix of L indexed by S, specifically, LS ≡ [Lij ]; i, j ∈ S.
Hence, the marginal probability of including one element
ei is p(ei ∈ Y ) = Lii, and two elements ei and ej is
LiiLjj − L2

ij = p(ei ∈ Y )p(ej ∈ Y )− L2
ij . A large value

of Lij reduces the likelihood of both elements to appear
together in a diverse subset.

(Kulesza & Taskar, 2010) proposed decomposing the kernel
LS as a Gram matrix:

P(S ⊆ Y ) ∝ det(φ(S)>φ(S))
∏
ei∈S

q2(ei), (2)

where q(ei) ≥ 0 can be seen as a quality score of an item ei
in the ground set V , while φi ∈ RD;D ≤ N and ||φi||2 = 1
is used as an `2 normalized feature vector of an item. In
this manner, φ>i φj ∈ [−1, 1] is evaluated as a ”normalized
similarity” between items ei and ej of V , and the kernel LS
is guaranteed to be real positive semidefinite matrix.
Geometric interpretation: det(φ(S)>φ(S)) =

∏
i λi,

where λi is the ith eigen value of the kernel φ(S)>φ(S),
and λ ≥ 0 since the kernel is a positive semidefinite matrix.
Hence, we may visualize that DPP models diverse repre-
sentations of data because the determinant of φ(S)>φ(S)
corresponds to the volume in N -D which is equivalent to
the multiplication of data variances (i.e., the eigen values).

DPP in literature: DPP has proven to be a valuable tool
when tackling diversity enforcement in problems such as
document summarization (e.g., (Kulesza & Taskar, 2011;
Hong & Nenkova, 2014)), pose estimation (e.g., (Gupta,
2015)) and video summarization (e.g., (Gong et al., 2014;
Mahasseni et al., 2017)). For instance, (Zhang et al.,
2016) proposed to learn the two parameters q, φ in eq. 2
to quantify the diversity of the kernel LS based on spatio-
temporal features of the video to perform summarization.
Recently, (Hsiao & Grauman, 2018) proposed to use DPP
to automatically create capsule wardrobes, i.e. assemble a
minimal set of items that provide maximal mix-and-match
outfits given an inventory of candidate garments.

4. Generative Determinantal Point Processes
Our GDPP loss encourages the generator to sample fake
data of diversity similar to real data diversity. The key chal-
lenge is to model the diversity within real data and fake data.
We discussed in Sec. 3 how DPP can be used to quantify the
diversity within a discrete data distribution. Unlike subset
selection problems (e.g., document/video summarization),
in the generation domain we are not merely interested in
increasing diversity within generated samples. Only increas-
ing the samples diversity will result in samples that are far
apart in the generation domain, but not necessarily repre-
sentative of real data diversity. Instead, we aim to generate
samples that imitate the diversity of real data. Thus, we con-
struct a DPP kernel for both the real data and the generated
samples at every iteration of the training process as shown in
Fig. 2. Then, we encourage the generator to synthesize sam-
ples that have a similar diversity kernel to that of the training
data. In order to simplify learning kernels, we match the
eigenvalues and eigenvectors of the fake data DPP kernel
with their corresponding of the real data DPP kernel. Eigen-
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Figure 2. Given a generator G and feature extraction function φ(·),
the diversity kernel is constructed as L = φ> ·φ. By modeling the
diversity of fake and real batches, our loss matches their kernels
LSB and LDB to encourage synthesizing samples of similar diver-
sity to true data. We use the last feature map of the discriminator
in GAN or the encoder in VAE as the feature representation φ.

values and vectors capture the manifold structure of both
real and fake data, and hence renders the optimization more
feasible. Fig. 1 shows pairing the two kernels by matching
their high dimensional eigen manifolds.

During training, a generative model G produces a batch of
samples SB = {e1, e2, · · · eB};SB = G(zB), where B is
the batch size and zB ∈ Rdz×B is noise vector inputted to
the generator G. At every iteration, we also have a batch of
samples DB ∼ pd, where pd is a sampler from true distri-
bution. Our aim is to produce SB that is probabilistically
sampled following the DPP kernel of DB , which satisfies:

P(SB ⊆ Y ) ∝ det(LDB
) (3)

such that Y is a random variable representing a fake subset
SB drawn with a generative point process P , and LDB

is
DPP kernel of a real subset indexed by DB .

To construct LSB
, LDB

, we use the kernel decomposition
in Eq. 2. However, since both true and fake samples
are drawn randomly with no quality criteria, it is safe
to assume q(ei) = 1;∀i ∈ 1, 2, ..., B. Thus, we con-
struct the kernels as follows: LSB

= φ(SB)
>φ(SB) and

LDB
= φ(DB)

>φ(DB), such that φ(SB) and φ(DB) are
feature representations extracted by the feature extraction
function φ(·).

Our aim is to learn a fake diversity kernel LSB
close to

the real diversity kernel LDB
. Nonetheless, matching two

kernels is an unconstrained optimization problem as pointed
out by (Li et al., 2009). So, instead, we match the kernels
using their major characteristics: eigenvalues and eigenvec-
tors. This results in scaling down the matching problem
into regressing the magnitudes of eigenvalues and the ori-
entations of eigenvectors. Hence, our devised GDPP loss
is composed of two components: diversity magnitude loss

Lm, and diversity structure loss Ls as follows:

LDPP = Lm + Ls =∑
i

‖λireal − λifake‖2 −
∑
i

λ̂ireal cos(v
i
real, v

i
fake)

(4)

where λifake and λireal are the ith eigenvalues of LDB
and

LSB
respectively.

Finally, we account for the outlier structures by using the
min-max normalized version of the eigenvalues λ̂ireal to
scale the cosine similarity between the eigenvectors vifake
and vireal. This aims to alleviate the effect of noisy structures
that intrinsically occur within the real data distribution or
within the learning process.

Integrating GDPP loss with GANs. As a primary bench-
mark, we integrate our GDPP loss with GANs . Since our
aim is to avoid adding any extra trainable parameters, we
utilize features extracted by the discriminator: we choose
to use the hidden activations before the last layer as our fea-
ture extraction function φ(.). We apply `2 normalization on
the obtained features that guarantees constructing a positive
semi-definite matrix according to eq. 4. We finally inte-
grate LDPP into the GAN objective by only modifying the
generator loss of the standard adversarial loss (Goodfellow
et al., 2014) as follows:

Lg = Ez∼pz [log(1−D(G(z)))] + LDPP (5)

Integrating GDPP loss with VAEs. A key property of our
loss is its generality to any generative model. We show that
by also embedding it within VAEs. A VAE consists of an en-
coder network qθ1(z|x), where x is an input training batch
and z is sampled from a normal distribution parametrized
by encoder outputs σ and µ, representing respectively the
standard deviation and the mean of the distribution. Addi-
tionally, VAE has a decoder network pθ2(x|z) which recon-
structs x̂. We use the final hidden activations in q as our
feature extraction function φ(.). Given a z sampled from a
normal distribution z ∼ N (µ, σ), pθ2(x̂|z) is used to gener-
ate the fake batch SB , while the real batch DB is randomly
sampled from training data. Finally, we compute the LDPP
as in Eq. 4, rendering the GDPP-VAE loss as:

LV AE =− Ez∼q(z|x)[log{p(x|z)}]
+KL[q(z|x)||p(z)] + LDPP .

(6)

5. Experiments
In our experiments, we target evaluating the generation
based on two criteria: mode collapse and generated samples
quality. Due to the intractability of log-likelihood estima-
tion, this problem is non-trivial for real data. Therefore,



GDPP: Learning Diverse Generations using Determinantal Point Processes

2D Ring 2D Grid 1200D Synthetic
Modes

(Max 8)
% High Quality

Samples
Modes

(Max 25)
% High Quality

Samples
Modes

(Max 10)
% High Quality

Samples
GAN (Goodfellow et al., 2014) 1 99.3 3.3 0.5 1.6 2.0
ALI (Dumoulin et al., 2017) 2.8 0.13 15.8 1.6 3 5.4
Unrolled GAN (Metz et al., 2017) 7.6 35.6 23.6 16.0 0 0.0
VEE-GAN (Srivastava et al., 2017) 8.0 52.9 24.6 40.0 5.5 28.3
WGAN-GP (Gulrajani et al., 2017) 6.8 59.6 24.2 28.7 6.4 29.5
GDPP-GAN 8.0 71.7 24.8 68.5 7.4 48.3

Table 1. Degree of mode collapse and sample quality on mixtures of Gaussians. GDPP-GAN consistently captures the highest number of
modes and produces better samples.

GAN ALI Unrolled-GAN VEE-GAN WGAN-GP GDPP-GAN

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 3. Scatter plots of the true data (green dots) and generated data (blue dots) from different GAN methods trained on mixtures of 2D
Gaussians arranged in a ring (top) or a grid (bottom).

we start by analyzing the performance on synthetic data
where we can accurately evaluate these criteria. Then, we
demonstrate the effectiveness of our method on real data
using standard evaluation metrics. The same architecture is
used for all methods and hyperparameters were tuned sep-
arately for each approach to achieve the best performance
(See Appendix A for details).

5.1. Synthetic Data Experiments

Mode collapse and the quality of generations can be explic-
itly evaluated on synthetic data since the true distribution is
well-defined. In this section, we evaluate the performance
of the methods on mixtures of Gaussian of known mode
locations and distribution (See Appendix B for details). We
use the same architecture for all the models, which is the
same one used by (Metz et al., 2017) and (Srivastava et al.,
2017). We note that the first four rows in Table 1 are ob-
tained from (Srivastava et al., 2017), since we are using the
same architecture and training paradigm. Fig. 3 illustrates
the effect of each method on the 2D Ring and Grid data. As
shown by the vanilla-GAN in the 2D Ring example (Fig. 3a),
it can generate the highest quality samples however it only
captures a single mode. On the other extreme, the WGAN-
GP on the 2D grid (Fig. 3k) captures almost all modes in

the true distribution, but this is only because it generates
highly scattered samples that do not precisely depict the
true distribution. GDPP-GAN (Fig. 3f,l) creates a precise
representation of the true data distribution reflecting that the
method learned an accurate structure manifold.

Performance Evaluation: At every iteration, we sample
fake points from the generator and real points from the given
distribution. Mode collapse is quantified by the number
of real modes recovered in fake data, and the generation
quality is quantified by the % of High-Quality Samples.
A generated sample is counted as high-quality if it was
sampled within three standard deviations in case of 2D Ring
or Grid, and ten standard deviations in case of the 1200D
data. We train all models for 25K iterations, except for
VEEGAN which needs 100K iterations to properly converge.
At inference time, we generate 2500 samples from each of
the trained models and measure both metrics. We report
the numbers averaged over five runs with different random
initialization in Table 1. GDPP-GAN clearly outperforms
all other methods, for instance on the most challenging
1200D dataset that was designed to mimic a natural data
distribution, bringing a 63% relative improvement in high-
quality samples and 15% in mode detection over its best
competitor WGAN-GP. Finally, we show that our method is
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2D Ring 2D Grid
Modes

(Max 8)
% High Quality

Samples
Modes

(Max 25)
% High Quality

Samples
Exact determinant (det [LSB

]) 8 82.9 12.6 21.7
Only diversity magnitude (Lm) 8 67.0 20.4 15.9
Only diversity structure (Ls) 8 65.2 18.2 35.2
GDPP with unnormalized structure term (Lm + Lus ) 7.2 81.2 20.6 68.8
Final GDPP-loss (Lm + Ls) 8 71.7 24.8 68.5

Table 2. GDPP loss Ablation study on GAN. Lu
s is the same as Ls without min-max eigen value normalization.

Figure 4. Data-Efficiency: examining the effect of training batch
size B given the same number of training iterations. GDPP-GAN
requires the least amount of training data to converge.

Figure 5. Time-Efficiency: monitoring convergence rate through-
out the training given the same training data size. GDPP-GAN is
the first to converge in both evaluation metrics.

robust to random initialization in Appendix C.1.

Ablation Study: We run a study on the 2D Ring and Grid
data to show the individual effects of each component in
our loss. As shown in Table 2, optimizing the determinant
detLS directly increases the diversity generating the highest
quality samples. This works best on the 2D Ring since the
true data distribution can be represented by a repulsion
model. However, for more complex data as in 2D Grid,
optimizing the determinant fails because it does not well-
represent the real manifold structure but aims at repelling
the fake samples from each other. Using GDPP with an
unnormalized structure term Lus is prone to learning outlier
caused by the inherent noise within the data. Nonetheless,
scaling the structure loss by the true-data eigenvalues λ̂
seems to disentangle the noise from the prominent structure
and better models the data diversity.

Data-Efficiency: We evaluate the amount of training data
needed by each method to reach the same local optima
as evaluated by our two metrics on both the 2D Ring and
Grid data. Since the true-data is sampled from a mixture of
Gaussians, we can generate an infinite size of training data.
Therefore, we can quantify the amount of the training data
by using the batch-size while fixing the number of back-
propagation steps. In this experiment (Fig. 4), we run all the
methods for the same number of iterations (25,000) and vary
the batch size. However, WGAN-GP tends to capture higher
quality samples with fewer data. In the case of 2D Grid data,

GDPP-GAN performs on par with other methods for small
amounts of data, yet it tends to significantly outperform
other methods on the quality of generated samples once
trained on enough data.

Time-Efficiency: To analyze time efficiency, we explore
two primary aspects: convergence rate, and physical running
time. First, to find out which method converges faster, we
fix the batch size at 512 and vary the number of training
iterations for all models (Fig. 5). In the 2D Ring, only
VEEGAN captures a higher number of modes before GDPP-
GAN, however, they are of much lower quality than the ones
generated by GDPP-GAN. In 2D Grid, however, GDPP-
GAN performs on par with unrolled-GAN for the first 5,000
iterations while the others are falling behind. After then,
our method significantly outperforms all the methods with
respect to both the number of captured modes and the quality
of generated samples. Second, we compare the physical
running time of all methods given the same data and number
of iterations. To obtain reliable results, we chose to run the
methods on CIFAR-10 instead of the synthetic, since the
latter has an insignificant running time. We compute the
average running time of an iteration across 1000 iterations
over five different runs of each method. Table 4 shows
that GDPP-GAN has a negligible computational overhead
beyond DCGAN, rendering it the fastest improved-GAN
approach. We also elaborate on the run-time analysis and
conduct additional experiments in Appendix C.3 to explore
the computation overhead.
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Stacked-MNIST CIFAR-10
#Modes (Max 1000) KL div. Inception score IvO

DCGAN (Radford et al., 2016) 427 3.163 5.26 ± 0.13 0.0911
DeLiGAN (Gurumurthy et al., 2017) 767 1.249 5.68 ± 0.09 0.0896
Unrolled-GAN (Metz et al., 2017) 817 1.430 5.43 ± 0.21 0.0898
RegGAN (Che et al., 2017) 955 0.925 5.91 ± 0.08 0.0903
WGAN (Arjovsky et al., 2017) 961 0.140 5.44 ± 0.06 0.0891
WGAN-GP (Gulrajani et al., 2017) 995 0.148 6.27 ± 0.13 0.0891
GDPP-GAN (Ours) 1000 0.135 6.58 ± 0.10 0.0883
VAE (Kingma & Welling, 2013) 341 2.409 1.19 ± 0.02 0.543
GDPP-VAE (Ours) 623 1.328 1.32 ± 0.03 0.203

Table 3. Performance of various methods on real datasets. Stacked-MNIST is evaluated using the number of captured modes (Mode
Collapse) and KL-divergence between the generated class distribution and true class distribution (Quality of generations). CIFAR-10 is
evaluated by Inference-via-Optimization (Mode-Collapse) and Inception-Score (Quality of generations).

DCGAN Unrolled-GAN VEE-GAN Reg-GAN WGAN WGAN-GP GDPP-GAN

Avg. Iter.
Time (s) 0.0674 0.2467 0.1978 0.1357 0.1747 0.4331 0.0746

Table 4. Average Iteration running time on CIFAR-10. GDPP-GAN obtains the closest time to the default (non-improved) DCGAN.

5.2. Image generation experiments

We run real-image generation experiments on three various
datasets: Stacked-MNIST, CIFAR-10, and CelebA. For the
first two, we use the experimental setting used in (Gulrajani
et al., 2017) and (Metz et al., 2017). We also investigated the
robustness of our method by using another more challenging
setting proposed by (Srivastava et al., 2017) in Appendix
C.2. For CelebA, we use the experimental setting of (Karras
et al., 2018). In our evaluation, we focus on comparing
with the state-of-the-art methods that adopt a change in the
original adversarial loss. Nevertheless, most baselines can
be deemed orthogonal to our contribution and can enhance
the generation if integrated with our approach. Finally, we
show that our loss is generic to any generative model by
incorporating it within Variational AutoEncoder (VAE) of
(Kingma & Welling, 2013) in Table 3. Appendix D shows
qualitative examples from several models and baselines.

Stacked-MNIST A variant of MNIST (LeCun, 1998) de-
signed to increase the number of discrete modes in the data.
The data is synthesized by stacking three randomly sam-
pled MNIST digits along the color channel resulting in a
28× 28× 3 image. In this case, Stacked MNIST has 1000
discrete modes corresponding to the number of possible
triplets of digits. Following (Gulrajani et al., 2017), we
generate 50,000 images that are later used to train the net-
works. We train all the models for 15,000 iterations, except
for DCGAN and unrolled-GAN that need 30,000 iterations
to converge to a reasonable local-optima.

We follow (Srivastava et al., 2017) to evaluate the number
of recovered modes and divergence between the true and
fake distributions. We sample 26000 fake images for all the

models. We identify the mode of each generated image by
using the classifier mentioned in (Che et al., 2017), which
is trained on the standard MNIST dataset to classify each
channel of the fake sample. The quality of samples is eval-
uated by computing the KL-divergence between generated
label distribution and training labels distribution. As shown
in Table 3, GDPP-GAN captures all modes and generates
a fake distribution that has the lowest KL-Divergence with
the true-distribution. Moreover, when applied on the VAE,
it doubles the number of modes captured (i.e., from 341 to
623) and cuts the KL-Divergence to half (from 2.4 to 1.3).
Lastly, we follow (Richardson & Weiss, 2018) to assess
the severity of mode collapse by computing the number of
statistically different bins using MNIST in Appendix C.4.

CIFAR-10 We evaluate the methods on CIFAR-10 after
training all the models for 100K iterations. Unlike Stacked-
MNIST, the modes are intractable in this dataset. This is
why we follow (Metz et al., 2017) and (Srivastava et al.,
2017) in using two different metrics: Inception Score (Sali-
mans et al., 2016) for the generation quality and Inference-
via-Optimization (IvO) for diversity. As shown in Table 3,
GDPP-GAN consistently outperforms all other methods
in both metrics. Furthermore, applying the GDPP on the
VAE reduces the IvO by 63%. However, we note that both
the inception-scores are considerably low which is also ob-
served by (Shmelkov et al., 2018) when applying the VAE
on CIFAR-10.

Inference-via-optimization (Metz et al., 2017) is used to
assess the severity of mode collapse in generations by com-
paring real images with the nearest generated image. In the
case of mode collapse, there are some real images for which
this distance is large. We measure this metric by sampling a
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Figure 6. Real images and their nearest generations of CIFAR-10.
Nearest generations are obtained by optimizing the input noise to
minimize the reconstruction error of the generated image.

real image x from the test set of real data. Then we optimize
the `2 loss between x and generated image G(z) by modify-
ing the noise vector z. If a method attains low MSE, then it
can be assumed that this method captures more modes than
ones that attain a higher MSE. Fig. 6 presents some real
images with their nearest optimized generations.

We also assess the stability of the training, by calculating
inception score at different stages while training on CIFAR-
10 (Fig. 7). Evidently, DCGAN has the least stable training
with a high variation. However, by only adding GDPP
penalty term to the generator loss, the model generates high-
quality images the earliest on training with a stable increase.

CelebA Finally, to evaluate the performance of our loss on
large-scale adversarial training, we embed our GDPP loss in
Progressive-Growing GANs (Karras et al., 2018). We train
the models for 40K iterations corresponding to 4 scales up
to 64×64 results, and for 200K iterations at 5 scales (128×
128). On large scale datasets such as CelebA dataset (Liu
et al., 2018), it is harder to stabilize the training of DCGAN.
In fact, DCGAN is only able to produce reasonable results
in the first scale but not the second due to the high-resolution
requirement. That is why, we embed our loss with WGAN-
GP this time instead of DCGAN paradigm, which is as well
orthogonal to our loss.

Unlike CIFAR-10 dataset, CelebA does not simulate
ImageNet because it only contains faces, not natural
scenes/objects. Therefore, using a model trained on Im-
ageNet as a basis for evaluation (i.e., Inception Score), will
cause inaccurate recognition. On the other hand, IvO was
shown to be fooled by producing blurry images out of the
optimization in high-resolution datasets as in CelebA (Sri-
vastava et al., 2017). Therefore, we follow (Karras et al.,
2018) to evaluate the performance on CelebA using Sliced
Wasserstein Distance (SWD) (Peyré et al., 2017). A small
Wasserstein distance indicates that the distribution of the
patches is similar, which entails that real and fake images ap-
pear similar in both appearance and variation at this spatial
resolution. Accordingly, the SWD metric can evaluate the

Figure 7. Adding GDPP loss to DCGAN stabilizes adversarial
training and generates high quality samples earliest on CIFAR-10.

Avg. SWD Min. SWD

64
×

6
4 Training Data 0.0033

DCGAN 0.0906 0.0241
WGAN-GP 0.0186 0.0115
GDPP-GAN 0.0163 0.0075

12
8
2 Training Data 0.0023

WGAN-GP 0.0197 0.0095
GDPP-GAN 0.0181 0.0088

Table 5. Average and Minimum Sliced Wasserstein Distance over
the last 10K iterations at scales 642, and scales 1282 on CelebA.
Training Data is the upper limit for this metric.

quality of images as well as the severity of mode-collapse
on large-scale datasets such as CelebA. Table 5 shows the
average and minimum SWD metric across the last 10K train-
ing iterations. We chose this time frame because it shows a
saturation in training loss for all the competing methods.

6. Conclusion
In this work, we introduced a novel criterion to train gen-
erative networks on capturing a similar diversity to one of
the true data by utilizing Determinantal Point Process(DPP).
We apply our criterion to Generative Adversarial training
and the Variational AutoEncoder by learning a kernel via
features extracted from the discriminator/encoder. Then,
we train the generator on optimizing a loss between the
fake and real, eigenvalues and eigenvectors of this kernel
to encourage the generator on simulating the diversity of
real data. Our GDPP framework accumulates many de-
sirable properties: it does not require any extra trainable
parameters, it operates in an unsupervised setting, yet it
consistently outperforms state-of-the-art methods on a bat-
tery of synthetic data and real image datasets as measure by
generation quality and invariance to mode collapse. Further-
more, GDPP-GANs exhibit a stabilized adversarial training
and has been shown to be time and data efficient as com-
pared to state-of-the-art approaches. Moreover, the GDPP
criterion is architecture and model invariant, allowing it to
be embedded with any variants of generative models such
as adversarial feature learning and conditional GANs.
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