
Semi-Cyclic Stochastic Gradient Descent

A. Proof of Lower Bounds
In this section, we provide further details on the proofs of
Theorems 1 and 2.
Theorem 1. Consider any (possibly randomized) optimiza-
tion method of the form described in the previous paragraph,
i.e. where access to the objective is by evaluating f (wt, zt)
and ∇f (wt, zt) on semi-cyclic samples (4) and where wt is
chosen based on {(f (ws, zs),∇f (ws, zs)), s < t} and the out-
put ŵ based on all iterates4. For any B, n, K and m > 1
there exists a 1-Lipschitz convex problem over high enough
dimension such that E[F(ŵ)] ≥ F(w?) + Ω(B/K), where the
expectation is over zt and any randomization in the method.

Proof. Let P(z = 1|i < m/2) = 1 and P(z = 2|i ≥ m/2) = 1,
with the following functions taken from Woodworth et al.
(2018), which in turn is based on the constructions in Arje-
vani & Shamir (2015); Woodworth & Srebro (2017); Car-
mon et al. (2017); Woodworth & Srebro (2017):

f (w, 1) =
η

8

(
– 2a〈v1, w〉 + φ(〈v4K , w〉)

+
2K–1∑
k=1

φ(〈v2k – v2k+1, w〉)
)

f (w, 2) =
η

8

(
2K∑
k=1

φ(〈v2k–1 – v2k, w〉)

) (23)

where vr are orthogonal vectors, η = 4BK, γ =
2B/(η

√
K), a = 1/

√
64K3, and for now consider φ(x) =

2γ |x|. The main observation is that each vector v2k+i

is only revealed after w includes a component in direc-
tion v2k+i–1 (more formally: it is not revealed if w ∈
span{v1, . . . , v2k+i–2}), and only when f (w, i) is queried
(Woodworth et al., 2018, Lemma 9). That is, each cycle
will reveal at most two vectors, v2k+1 for queries on the
first half of the blocks, and v2k+2 for queries on the second
half. After K cycles, the method would only encounter
vectors in the span of the first 2K vectors v1, . . . , v2K . But
for ŵ ∈ span{v1, . . . , v2K}, we have F(ŵ) ≥ F(w?) + B

96K
(Woodworth et al., 2018, Lemma 8). These arguments apply
if the method does not leave the span of gradients returned
so far. Intuitively, in high enough dimensions, it is futile
to investigate new directions aimlessly. More formally, to
ensure that trying out new directions over T = Kmn queries
wouldn’t help, following appendix C of (Woodworth et al.,
2018), we can choose vr randomly in RÕ(K5n2m2) and use a
piecewise quadratic φ(x) that is 0 for |z| ≤ a/2 and is equal
to φ(x) = 2γ |x| – γ2 – a2/2 for |x| ≥ γ.

Theorem 2. Under the same setup as in Theorem 1, for any
B, n, K and m > 1 there exists a 1-Lipschitz convex problem

4This theorem, as well as Theorem 2, holds even if the
method is allowed “prox queries” of the form arg minw f (w, zt) +
λt ‖w – wt‖2.

where the gradient ∇wf (w, z) is also 1-Lipschitz, such that
E[F(ŵ)] ≥ F(w?) + Ω(B2/K2).

Proof. Use the same construction as in Theorem 1, but with
η = B2 and

φ(z) =


0 |z| ≤ a/2
2(|z| – a/2)2 a/2 < |z| ≤ a
z2 – a2/2 a < |z| ≤ γ
2γ|z| –γ2– a2/2 |z| > γ

The objective is smooth (Woodworth et al., 2018, Lemma
7), and the same arguments as in the proof of Theorem 1
hold except that now ŵ spanned by v1, . . . , v2K has F(ŵ) ≥
F(w?) + B2

256K (Woodworth et al., 2018, Lemma 8).

B. Deferred Proofs from Section 6
In this section, we give a proof of Lemma 1. Such a result
has been previously shown in Even-Dar et al. (2008); Sani
et al. (2014), building on a lemma of Cesa-Bianchi et al.
(2007). We give a full proof for completeness. We start with
a simple Lemma.

Lemma 2. For any z > – 1
2 ,

z – z2 ≤ ln(1 + z) ≤ z.

Proof. The upper bound on ln(1+z) is standard, and follows
e.g. by the concavity of the log function. For the lower
bound, write

f (z) = ln(1 + z) – (z – z2).

Then f ′(z) = 1
1+z – 1 + 2z = z(1+2z)

(1+z) . Thus f is decreasing in
(– 1

2 , 0) and increasing in (0,∞). Thus in the range (– 1
2 ,∞),

f (z) ≥ f (0) = 0.

Proof. Let P(z = 1|i < m/2) = 1 and P(z = 2|i ≥ m/2) = 1,
with the following functions taken from Woodworth et al.
(2018), which in turn is based on the constructions in Arje-
vani & Shamir (2015); Woodworth & Srebro (2017); Car-
mon et al. (2017); Woodworth & Srebro (2017):

f (w, 1) =
η

8

(
– 2a〈v1, w〉 + φ(〈v4K , w〉)

+
2K–1∑
k=1

φ(〈v2k – v2k+1, w〉)
)

f (w, 2) =
η

8

(
2K∑
k=1

φ(〈v2k–1 – v2k, w〉)

) (24)

where vr are orthogonal vectors, η = 4BK, γ =
2B/(η

√
K), a = 1/

√
64K3, and for now consider φ(x) =

2γ |x|. The main observation is that each vector v2k+i

Semi-Cyclic Stochastic Gradient Descent

is only revealed after w includes a component in direc-
tion v2k+i–1 (more formally: it is not revealed if w ∈
span{v1, . . . , v2k+i–2}), and only when f (w, i) is queried
(Woodworth et al., 2018, Lemma 9). That is, each cycle
will reveal at most two vectors, v2k+1 for queries on the
first half of the blocks, and v2k+2 for queries on the second
half. After K cycles, the method would only encounter
vectors in the span of the first 2K vectors v1, . . . , v2K . But
for ŵ ∈ span{v1, . . . , v2K}, we have F(ŵ) ≥ F(w?) + B

96K
(Woodworth et al., 2018, Lemma 8). These arguments apply
if the method does not leave the span of gradients returned
so far. Intuitively, in high enough dimensions, it is futile
to investigate new directions aimlessly. More formally, to
ensure that trying out new directions over T = Kmn queries
wouldn’t help, following appendix C of (Woodworth et al.,
2018), we can choose vr randomly in RÕ(K5n2m2) and use a
piecewise quadratic φ(x) that is 0 for |z| ≤ a/2 and is equal
to φ(x) = 2γ |x| – γ2 – a2/2 for |x| ≥ γ.

We consider the more general case of K + 1 experts with
losses in [–M, M], and a chosen expert 0, with respect to
which we want constant regret. We consider the PROD
Algorithm that starts out with initial weights:

q0
1 = 1 – η; qi

1 = η/K ∀i = 1..K.

At time step t, it picks an expert jt with probability propor-
tional to qj

t:

pi
t = qi

t

/ K∑
j=0

qj
t.

Finally, on receiving the loss function `t, it updates the
weights according to the multiplicative update

qi
t+1 = qi

t ·
(
1 + η

(
`t(0) – `t(i)

))
∀i = 0..K

Lemma 3. Assume that 0 < η ≤ 1/(4M). Then this PROD
algorithm achieves

T∑
t=1

pjt
t `t(jt) –

T∑
t=1

`t(j) ≤ 4ηM2T +
1
η

ln
K
η

for all j = 1, . . . , K, and

T∑
t=1

pjt
t `t(jt) –

T∑
t=1

`t(0) ≤ 1 + η.

Proof. Let Qt =
∑K

j=0 qj
t and let ∆j

t = `t(0) – `t(j) denote the
gap between the chosen expert and expert j at step t. Note
that |∆j

t| ≤ 2M.

On the one hand,

ln
QT+1

Q1
=

T∑
t=1

ln
Qt+1

Qt

=
T∑

t=1

ln
(

1
Qt

K∑
j=0

qj
t(1 + η∆j

t)
)

=
T∑

t=1

ln
K∑

j=0

pj
t(1 + η∆j

t)

=
T∑

t=1

ln
(

1 + η
K∑

j=0

pj
t∆

j
t

)

≤
T∑

t=1

η

K∑
j=0

pj
t∆

j
t

= η
T∑

t=1

`t(0) – η
T∑

t=1

pjt
t `t(jt).

On the other hand, for any j,

ln
QT+1

Q1
≥ ln

qj
T+1

qj
1

+ ln
qj

1

Q1

=
T∑

t=1

ln
qj

t+1

qj
t

+ ln
qj

1

Q1

=
T∑

t=1

ln(1 + η∆j
t) + ln

qj
1

Q1

≥
T∑

t=1

(η∆j
t – (η∆j

t)
2) + ln

qj
1

Q1

≥ η
T∑

t=1

(`t(0) – `t(j)) – 4η2M2T + ln
qj

1

Q1
,

where the middle inequality holds since |η∆j
t| ≤ 1/2. It

follows that for j 6= 0,

T∑
t=1

pjt
t `t(jt) –

T∑
t=1

`t(j) ≤ 4ηM2T +
1
η

ln
K
η

.

Moreover, since q0
t does not change during the algorithm,

we also have, using the lower bound in Lemma 2, that

ln
QT+1

Q1
≥ ln

q0
1

Q1
= ln(1 – η) ≥ –η – η2.

This implies that

T∑
t=1

pjt
t `t(jt) –

T∑
t=1

`t(0) ≤ 1 + η.

Optimizing parameters, we get the corollary:

Semi-Cyclic Stochastic Gradient Descent

Corollary 1. Set η = 1
2M

√
ln(KMT)/T and assume that that

M ≥ 1 and that T is large enough so that η ≤ 1/(4M). Then
the algorithm achieves the following regret bounds:

T∑
t=1

pjt
t `t(jt) ≤

T∑
t=1

`t(j) + 4M
√

T ln(KMT)

for all j = 1, . . . , K, and

T∑
t=1

pjt
t `t(jt) ≤

T∑
t=1

`t(0) + 2.

Lemma 1 follows from the K = 1 version of this corollary,
where the two experts are the algorithms wj

t and wt.

C. Experimental Details
The source code used for data preprocessing, training, evalu-
ation, and plotting results will be made available at https:
//github.com/tensorflow/federated/tree/
master/tensorflow_federated/python/
research/semi_cyclic_sgd

C.1. Dataset

The sentiment140 dataset set (Go et al., 2009) was collected
by querying Twitter (a popular social network) for posts
(a.k.a. Tweets) containing positive and negative emoticons,
and labeling the retrieved posts (with emoticons removed)
as positive and negative sentiment, respectively.

The data sets used for the above scenarios are created by
first shuffling the data randomly and splitting it into a train-
ing (90%, or 1, 440, 000 examples) and test set (10%, or
160, 000 examples). This data set is used as-is for training
and evaluating the idealized i.i.d. model. For the other sce-
narios trained on block-cyclic data, we group the shuffled
training set and test set into m = 6 blocks each by the time
of day of the post (e.g. midnight block: posts from 12am -
4am; noon block: posts from 12pm - 4pm). This results in
blocks of varying sizes, on average 1, 440, 000/6 = 240, 000
(training) and 160, 000/6 = 24, 000 (testing) examples, re-
spectively.

We simulate K = 10 cycles (days). Observing that one
pass (epoch) over the entire i.i.d. data set was sufficient
for convergence of our relatively small model, this results
in mn = 1, 440, 000/10 training examples per day, or n =
1, 440, 000/10/6 = 24, 000 training examples per day per
block.

C.2. Artificially balanced labels

The raw data grouped by time of day exhibits some block-
cyclic characteristics; for instance, positive tweets are

0:00 4:00 8:00 12:00 16:00 20:00

time of day

0

50000

100000

150000

#
 p

o
st

s

raw, positive sentiment

raw, negative sentiment

modified, positive

modified, negative

Figure 3. Sentiment bias as a function of day time in the Senti-
ment140 dataset. For experiments in this paper, we introduced
additional time-of-day dependent label skew to allow for a clearer
illustration of how pluralistic approaches differ.

slightly more likely at night time hours than day time hours
(see Figure 3). However, we believe this dataset has an
artificially balanced label distribution, which is not ideal
to illustrate semi-cyclic behavior (Go et al., 2009). In par-
ticular, the data collection process separately queried the
Twitter API every 2 minutes for positive tweets (defined to
be those containing the :) emoticon), and simultaneously
for negative sentiment via :(. Since only up to 100 results
are returned via each API query, this will generally produce
an (artificially) balanced label distribution, as in Fig. 3. Due
to this fact, because large diurnal variations are likely in
practice in Federated Learning (e.g., differences in the use
of English language between the US and India), and be-
cause it better illustrates our theoretical results, we adjust
the positive-sentiment rate as a function of time as described
in section 8.

C.3. Details of evaluation methodology

For the block-cyclic consensus model, picking a random
iteration of the form t(k, i, n) ensures we evaluate a set of
models that have the same expected number of iterations
as for the single-chain pluralistic approach, without using
block-specific models. In the implementation, we compute
the expectation of this quantity by evaluating all m iterates
against all m F̂is, and averaging these m2 values.

This same m×m set of evaluation results is used to evaluate
the pluralistic single SGD chain approach, but instead of
averaging all m2 accuracies, we only consider the diago-
nal, where the model most recently trained on data from
component i is evaluated (only) on F̂i.

https://github.com/tensorflow/federated/tree/master/tensorflow_federated/python/research/semi_cyclic_sgd
https://github.com/tensorflow/federated/tree/master/tensorflow_federated/python/research/semi_cyclic_sgd
https://github.com/tensorflow/federated/tree/master/tensorflow_federated/python/research/semi_cyclic_sgd
https://github.com/tensorflow/federated/tree/master/tensorflow_federated/python/research/semi_cyclic_sgd

